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Abstract: An electronic current transformer with a B-dot sensor is proposed in this study. The 
B-dot sensor can realize the current measurement of the transmission line in a non-contact way in 
accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing 
structure is applied together with differential input structures and active integrating circuits, 
which can allow the sensor to operate in differential mode. Maxwell software is adopted to model 
and simulate the sensor. Optimization of the sensor structural parameters is conducted through 
finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off 
operation, and linearity tests for the designed current transformer under the power-frequency 
current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed 
current transformer can achieve high accuracy and good phase-frequency; its linearity is also very 
good at different distances from the wire. The proposed current transformer provides a new 
method for electricity larceny prevention and on-line monitoring of the power grid in an electric 
system, thereby satisfying the development demands of the smart power grid. 

Keywords: non-contact; magnetic field coupling; current transformer; current monitoring 
 

1. Introduction 

In a power system, the accurate measurement of power-frequency current is an important 
approach in ensuring the reliable operation of a power distribution network. The accuracy, 
convenience, and speed of current transformers play a significant role in electric energy 
measurement, system monitoring and diagnosis, and power system fault analysis in smart power 
grids. Given that traditional electromagnetic current transformers (CTs) contain an iron core, their 
ferromagnetic effect tends to produce linear saturation and ferromagnetic resonance problems as 
well as insulation and volume and bandwidth response problems [1]. The method of current 
measurement by using Rogowski coil has been proposed [2,3], resulting in high measurement 
accuracy and good transient response. However, this kind of method based on the Rogowski coil 
targets high-frequency lightning current measurements, pulse current measurements, and partial 
discharge measurements on power cables, and the current loop to be measured must pass through 
the coil [4–13]. 

Current measurement methods based on the B-dot principle have been studied [14–16], 
resulting in high measurement accuracy and bandwidths reaching MHz. A B-dot coil is actually a 
special type of Rogowski coil that calculates the wire current via retroduction by sensing the change 
of magnetic field generated by the current-carrying wire. Compared with a normal Rogowski coil, a 
B-dot coil does not need to pass through the coil [17]. Most studies based on the B-dot principle 
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focus on high-frequency current measurement (MHz, kA level) by a sensor under the self-integral 
state, such as in a lightening current and plasma discharge pulse current [18–21]. In comparison, 
only a few studies have examined the performance of B-dot sensors in measuring currents in 
differential mode. 

In the paper, a B-dot sensor is proposed based on magnetic field coupling, and a non-contact 
electronic current transformer with stacked printed circuit board (PCB) is proposed. By analyzing 
the working principle and the working mode of the B-dot sensor and its influencing factors, a 
method for differential input and multiple electrode series-opposing is introduced, with the aim of 
designing a transformer that can be operated in differential mode for measuring the power 
frequency current of power system. The proposed transformer has the following advantages: good 
phase-frequency characteristic, good linearity, simple structure, and easy installation. It offers an 
alternative for electricity larceny prevention and on-line monitoring of a power grid in an electric 
system and meets the development requirements of smart power grids. 

2. Principle of Current Measurement 

2.1. Principal for B-Dot 

The B-dot probe is a Rogowski coil with a special structure, and measures the current indirectly 
by measuring the changing magnetic field built by the changing current [17]. The principle for the 
B-dot current measurement is shown in Figure 1. 

0r

 
Figure 1. B-dot coil magnetic field induction. 

Here, r is the distance from the plane of the probe to the conductor, r0 is the radius of the probe 
coil, S is the area enclosed by the probe coil, B is the magnetic induction intensity generated by the 
current at a given moment, and R is a pure resistance. 

According to the law of electromagnetic induction, when r0 << r, the induced probe voltage in 
the magnetic field is given by 
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In Equation (1), coil magnetic flux is ψ, S is the active area of the probe coil, and r is the 
distance from probe center to the electrified wire. From Equation (2), the output voltage of the 
probe is proportional to the differential wire current. Thus, by calculating the integral of the 
induced electromotive force of the probe, the wire current can be calculated. 
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2.2. Sensor Design  

Based on the principle of B-dot coil current measurement, the PCB air-core coil sensor is 
designed. Its structure is shown in Figure 2. The top layer coil is reversely connected in series with 
the corresponding bottom coil through vias, and a total of eight air-core coils are placed 
successively in a series to form a loop. Obviously, the electromotive force of the coils is 
superimposed in sequence. By applying the Rogowski coil principle, the returning turn coils can 
eliminate the interference magnetic field from the external environment [22]. In the present paper, 
the idea of the returning turn design is adopted. Hence, the d, d’ coils are adopted as compensating 
coils. When the sensor is subject to external disturbance in the magnetic field, the d coil can 
counteract the interference flux in the a, b, c coils to a certain extent. 
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Figure 2. Series-opposing structure of the printed circuit board (PCB) air-core coil. 

As shown in Figure 3a, an air-core coil is equivalent to N square coils. Here, r is the distance 
from the point on the coil to the wire, a is the width of the outermost layer of the air-core coil, c is the 
distance between the turns of the coil, d is the distance from the outermost coil to the center of the 
wire, and N is the number of turns of a single air-core coil. In Figure 2, the distances of each air-core 
coil to the wire are given by da, db, dc, dd respectively, where db is equal to dc. 
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(a) a single-core coil (b) calculation of rectangular coil flux 

Figure 3. Principle of magnetic induction in a single-core coil.  

According to the law of electromagnetic induction, the flux of a single turn coil in Figure 3b is 
given by 
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The total flux of a single air-core coil is expressed as 
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From the mathematical relationship, we know that when d = 0, the flux Φ will reach the 
maximum value, so the induced voltage is the maximum value. 

Induced electromotive force of PCB air-core coil is given by 

( ) ( ) ( ) ( ) ( )a b c de t e t e t e t e t     (5) 
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2.3. Sensor under Self-Integrating Mode 

As shown in Figure 4, when the value of sample resistance Ra is small and 1/ωC0 >> Ra, then ic ≈ 
0, and iR ≈ i2, and when the current change rate is larger, namely, when di2/dt is quite large, we have 

1 2di diM L
dt dt

  (7) 

Then the sample resistance voltage is expressed as 

0 2 1a a
Mu i R i R
L

   (8) 

Now, the output voltage of the sample resistance is in direct proportion to the measured 
current; here, coil self-inductance L serves as an integral. Hence, the external integrating circuit is 
not required, because the circuit itself achieves integral function. Such a status is called 
self-integrating status [11,13,14]. Under this status, the sensor is suitable for the measurement of 
high-frequency current rather than a low-frequency current. 

i1
i2

L ic iRM r
C0 Ra u0e

 
Figure 4. Equivalent circuit of the sensor under self-integrating mode. 

2.4. Sensor under Differential Mode 

When Ra is large (Ra >> r) and the variation of di2/dt is small (relatively low-frequency), the PCB 
air-core coil equivalent circuit is similar to a pure resistance circuit. At this time, the sensor output 
voltage is given by 
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1
1

( )
( )

di tu t M
dt

   (9) 

At this moment, an integrating circuit must be connected to the sensor so that the output 
voltage and measured current can have a direct ratio with each other. This kind of working 
condition is called differential status or external integral status. 

In Figure 5, the transfer function in the measurement link is expressed as 
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The active integral link is given by 
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The transfer function of the whole system is given by 
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The transfer function is required to draw a Bode figure, as shown in Figure 6. 
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Figure 5. Equivalent circuit of the sensor with active integral. 
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Figure 6. Amplitude-frequency characteristic of a sensor with an active integrator (lg is a base—10 
logarithm). 

Based on Ra >> r, the system’s upper and lower cut-off frequency are simplified respectively as 
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The frequency band is given by 
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In Equation (13), the lower cut-off frequency of the system is determined by the feedback 
resistance R2 and the integral capacitance C, whereas the upper cut-off frequency is determined by 
the coil parameters. 

The system sensitivity is given by 

  2

1 2 1

1MR MS G j
R R C RC

    (15) 

In Equation (14), the sensitivity of the system can be improved by reducing R1, and the lower 
cut-off frequency can be reduced by increasing the R2. Therefore, the integral link can be utilized to 
properly adjust the cut-off frequency. Using the Bode function of MATLAB software to analyze the 
transfer function of the system, we find that the upper cut-off frequency of the sensor can reach 
MHz, and the lower cut-off frequency is close to 0 Hz. Therefore, when the sensor is operating in 
differential mode, it can meet the requirements of low frequency current measurement, which is 
suitable for measuring and monitoring power frequency current. 

2.5. Anti-Interference Sensor Analysis 

Interference magnetic field can be decomposed into two components: parallel to the PCB board 
and perpendicular to the PCB board. 

2.5.1. Magnetic Field Component Parallel to the PCB Board 

When the magnetic field is parallel to the PCB board, as shown in Figure 7a, the direction of 
the magnetic field is parallel to the air-core coils, and the magnetic flux passing through these coils 
is zero; hence, no induced electromotive force is generated. 

 

(a) Interference magnetic field component 
parallel to PCB board 

(b) Interference magnetic field component 
vertical to PCB board 

Figure 7. Influence of the external interference magnetic field.  
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2.5.2. Magnetic Field Component Vertical to the PCB Board 

When the external magnetic field is a uniform magnetic field, the magnetic fluxes through the 
four air-core coils have the same size, and the induced electromotive forces are equal in size and 
opposite in direction. Due to the reverse series of the coils, the induced electromotive forces cancel 
each other out, as shown in Figure 7b. Therefore, the air-core coils can resist the interference of the 
uniform magnetic field. 

The external interference current is taken as an example for this analysis. When the external 
magnetic field is not uniform, the current in the plane of the PCB board can produce a magnetic 
field perpendicular to the air-core coils. As shown in Figure 8, the interference current i(t) is located 
on the side of the PCB board. The distances of interference currents to each air-core coil are da, db, dc 
and dd. The length of the outer coil is a, the width is b, the turn pitch is c. 

 

Figure 8. The calculations of interference magnetic. 
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The total flux generated by the interference current in the air-core coil is 

( ) 2[ ( ) ( ) ( ) ( )]a b c dt t t t t       (20) 

In Figure 9, the magnetic field intensity decays rapidly along the radial direction of the wire, 
and at a distance of 0.5 m from the wire, it decays to about 3%. The influence of the magnetic field 
generated by other wires can be ignored when the other wires are away from the wire to be 
measured by more than 0.5 m. The transmission lines are usually overhead lines in the operation of 
the power system, and the wire spacing is much larger than 0.5 m. Therefore, the measurement 
accuracy can be achieved as long as the distance is maintained. Once the PCB air-core coil sensor is 
applied in more complex scenes, the adjacent phase interference must be considered. 
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Figure 9. Magnetic field curve around the wire in 100 A. 

3. Design of the Current Transformer 

3.1. Sensor Optimization Based on Finite Element Simulation 

The Ansoft Maxwell software is used to build the model of the conducting wire. The wire 
radius is set to 2.5 mm, and the current is set to 100 A. The variation curve of the magnetic field 
intensity around the wire is shown in Figure 9. As can be seen, the magnetic field intensity decays 
rapidly along the radial direction of the wire. At the distance of 0.5 m from the wire, it decays to 
about 3% of the maximum value. Therefore, when the current is measured by the sensor, the 
measuring points should be in the vicinity of the conductor region. 

According to Equation (7), major factors influencing the sensor mutual induction coefficient 
are coil length, distance between turns, and the number of turns. Coil length and number of turns 
can influence the PCB size, whereas the distance between turns can affect the frequency response of 
the sensor. Finite element in Ansoft Maxwell software is applied to optimize the above parameters 
and guarantee proper mutual induction coefficient. The simulation settings are as follows: 
connecting transmission wire of 5 m with current of 50 Hz and 100 A, wire radius of 2.5 mm, region 
size that is 300% of the calculation model, and border region calculation of 0 to simulate the 
situation wherein the magnetic field at the infinite point is 0, as shown in Figure 10. Based on the 
simulation, the model is further optimized and improved to obtain higher voltage output. The 
distribution of the magnetic field is shown in Figure 11. 

The calculation of the magnetic flux density of the sensor coil is performed by using the 
Maxwell software. Then, the output voltage of the sensor is calculated based on the flux data 
obtained. After considering all the parameters and the output voltage, a set of suitable parameters 
is selected to determine the structure of PCB air-core coil. The coil parameters are shown in Table 1. 

 

Figure 10. Finite element calculation model. 
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Figure 11. PCB air-core coil magnetic simulation calculation. 

Table 1. Design parameters for single-layer PCB air-core coil structure. 

Coil 
Number of Turns (n) Length (cm) Electrode Width (mil) Distance Between Electrodes (mil) 

4 × 25 38 8 8 

Based on the parameters, the total magnetic flux of the coil in a, b, c, d, which are obtained from 
the simulation are −2.28 × 10−6, −2.32 × 10−6, −2.31 × 10−6 and −5.04 × 10−7 Wb, respectively. Thus, the 
total magnetic influx of the CT based on PCB planar-type air-core coil is given by 

  6 62 2 6.41 10 12.82 10    a b c d Wb                

The mutual induction efficient is expressed as 

M
I


  . (21) 

The output voltage of the whole transformer is given by 

( ) 100sin(100 )
( )

di t d te t M M
dt dt


      Amplitude: 4.03 mV E   

Finally, the PCB air-core coil sensor is fabricated by calculating the coil parameters [23]. The 
impedance of the sensor coil itself is measured by using Agilent 4294A (Agilent Technologies Inc., 
Santa Clara, CA, USA), as shown in Figure 12. Measurement is done within the scope of 40 Hz to 4 
MHz. The induction and capacitance parameters have certain fluctuations. The result is shown in 
Table 2. 

 
Figure 12. Parameter measurement of the PCB air-core coil sensor. 
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Table 2. Inner impedance parameter of PCB air-core coil. 

PCB Air-core coil 
Resistance Induction Fluctuating Deviation Capacitance Fluctuating Deviation

25.75 Ω 149.36 μH 5 μH 37.2 pF 8 pF 

3.2. Device Design for the Electronic Transformer 

In consideration of the low output voltage of the single-block PCB sensor, multi-block PCBs 
are connected in a series to improve output voltage [24]. The transformer structure is designed as 
shown in Figure 13, and consists of the sensor, signal acquisition unit, and signal processing unit. 

The output signal of the sensor is collected by a circuit with a differential amplifying structure 
[25,26]. The differential amplifier circuit is mainly composed of a differential amplifier AD620 
(Analog Devices Inc., Norwood, MA, USA) and gain resistor. The AD620 performs a differential 
operation on the output signal to remove the common-mode signal with the same polarity in the 
interfering signal. Simultaneously, the differential mode signal with opposite polarity is amplified, 
and this differential mode signal is a useful signal we want to obtain. This not only increases the 
output of the transformer, but also restrains the common mode interference, such as high-frequency 
noise signal.  

 

Figure 13. A model of the current transformer structure. 

For the integral link, an active integrator with an inertial element acts as a circuit for restoring 
the original signal. When measuring the current of the high-voltage transmission line, as an 
electronic transformer, introducing the AD module and WIFI technology is convenient, after which 
the data is sent to the remote terminal using WIFI technology. 

4. Test Result Analysis 

4.1. Test Platform 

A current test platform is built to simulate the current measurement environment of the power 
distribution network. The structure of the platform is shown in Figure 14. Both the traditional 
electromagnetic current transformer (CT, HL-3, 0.2 level) [27], and the designed transformer are 
used at the same time to conduct current measurement for the power wire in the platform. Here, 
the WIFI technology is no longer needed because of the low power output. 

 
Figure 14. Test platform structure. 
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The test platform is shown as Figures 15 and 16; it uses the program-controlled convertor (type: 
JJ98DD53D, Shandong Jingjiu Science and Technology Co., Ltd., Jinan, China) as the power supply 
and the high-power resistance is considered the load. The oscilloscope (Tektronix, DPO2014B, 
Beaverton, OR, USA) is applied as a waveform display and measuring equipment. The CT is used 
as the measurement standard to realize the calibration of the designed transformer. The amplitude, 
phase position, and waveform are compared to verify the performance of the designed transformer. 

CT

Variable frequency power supply 

High power load

Sensor

Oscilloscope

DC power supply 

 

Figure 15. Test platform. 

 
Figure 16. Sensor test physical picture. 

4.2. Steady-State Performance Test 

On the above test platform, the sensor is fixed above the wire, and the vertical relative distance 
D is kept invariant, as shown in Figure 14. The current output is adjusted gradually. In addition, the 
secondary CT is connected to a resistive load for I-V conversion. The output waveform of the 
designed transformer and the CT is displayed via oscilloscope, as shown in Figure 17. The 
oscilloscope channel 1 shows the output waveform of the designed transformer, whereas channel 2 
shows the CT output waveform. 

(a)
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(b)

(c)

Figure 17. The steady state waveform of the designed transformer and the current transformer (CT). 
(a) f = 50 Hz, I = 10 A, D = 5 mm; (b) f = 50 Hz, I = 23 A, D = 5 mm; (c) f = 150 Hz, I = 9 A, D = 5 mm. 

In Figure 17, the output waveform of the transformer is basically the same as that of the CT, 
which indicates that the transformer has good steady-state response characteristics. If φ < 0, the 
phase of the designed transformer’s output voltage is delayed. 

As stipulated in IEC60044-8-2002 Standard [28], ratio error ε% and phase position difference φ 
are respectively defined as 

% 100%n s p

p

K U I
I




  , (22) 

s p    . (23) 

Here, Us is the output voltage of the designed transformer, Kn is the rated transformation ratio, 
Ip is the current in the wire, φp is the phase position of the designed transformer, and φs is the phase 
position of the standard CT. 

First, we adjust the power to current changes between 0 A and 40 A; then, when the output 
current changes, the amplitude and frequency of both the CT and the transformer output voltage 
are recorded, and the waveform is saved. Finally, the experimental data are collated, and the ratio 
difference and phase difference of the transformer are calculated. The results are shown in Table 3. 
In this Table, In is the rated current, Im is the wire current, and Up is the output voltage of the 
transformer. 

Table 3. Accuracy measurement for the current transformer (D = 1 mm). 

Measuring Point Im/A Up/mv ε% ( ± ) φ/(°)
2% In 0.602 60.62 0.70 2.0 
5% In 1.511 151.87 0.51 1.9 
10% In 3.024 303.62 0.40 1.6 
20% In 6.013 599.42 0.31 1.5 
40% In 12.161 1208.29 0.64 1.5 
60% In 18.06 1818.36 0.68 1.4 
80% In 24.120 2419.32 0.30 1.3 
100% In 30.060 3016.12 0.34 1.3 
120% In 36.042 3625.12 0.58 1.2 
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The results above show the following: 

1) In Table 3, within the rated current range from 2% to 120%, the transformer ratio error ε% < 
0.9%, and the phase difference φ < 3°. Thus, the designed transformer has high measurement 
accuracy.  

2) In Figure 17 and Table 3, a small error can be found in the phase position, which may be due to 
the parasitic capacitance between the coils and the resulting coil inductance. 

4.3. Linearity Test 

On the test platform, the linearity performance is tested. The test is done via three steps: 1) 
adjust the distance from the sensor (PCB board) to the wire, taking 5 mm as a unit (change the 
height of lifting column in Figure 16); 2) gradually adjust the output current from 0 A to 40 A; and 
3) record the data. The experimental data when the distance D is 5 mm are shown in Table 4. 

Table 4. Output voltage of the transformer under different currents (D = 5 mm, f = 50 Hz). 

Uc/mV Up/mV I/A Uc/mV Up/mV I/A 
60 264 1.99 632 2880 22.01 
121 568 4.01 680 3120 23.97 
180 860 6.02 744 3360 26.01 
226 1120 7.98 808 3600 27.99 
292 1380 10.03 848 3840 30.02 
352 1600 12.01 920 4160 32.02 
396 1880 13.99 968 4320 34.02 
464 2160 16.03 1020 4560 36.01 
516 2360 17.97 1080 4720 37.99 
580 2640 20.01 1140 5040 40.02 

In fitting the experimental data of transformer and CT, the horizontal axis represents the 
output voltage of the transformer, whereas the vertical axis represents the CT. The fitting curve is 
shown in Figure 18. The ratio of the linear fitting curve is the correction factor of the transformer 
error. 
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(e) 25 mm (f) 30 mm 

Figure 18. Curve fitting of current at different distances 

Moreover, linearity is tested when D has the values of 10, 15, 20, 25, and 30 mm. The data are 
shown in Table 5. 

Table 5. Transformer fitting data under various distances. 

Dstance/D Fitting Correction Coefficient Congruence Mean Error Maximum Phase Difference φ (°)
5 mm 4.39 0.0041 1.5 
10 mm 3.49 0.0027 2.0 
15 mm 2.29 0.0017 2.1 
20 mm 1.59 0.0026 2.5 
25 mm 1.17 0.0032 2.8 
30 mm 0.86 0.0018 3.2 

The test results show the following: 

(1) As shown in Figure 18, each point is extremely close to the fitting line, which indicates good 
linearity of the designed transformer.  

(2) In Table 5, the designed transformer maintains a small phase error at different distances. 
However, as can be seen in Table 5, the first-order fitting correction factor with the CT is 
gradually reduced. This finding means that when the distance from the designed transformer 
to the wire becomes closer, the transformer linearity also improves. However, as the distance 
increases, the phase error tends to enlarge. Chances are that when the distance is closer, the 
magnetic induction line through the sensor is denser, and then the impact of interference on 
the environment surrounding the sensor becomes relatively weak. When the distance is far, the 
sensor becomes more susceptible. 

4.4. On-off Operation Test 

On the test platform, the transient performance of the designed transformer is tested under the 
on-off state. The sensor is fixed above the wire, and the relative position remains constant. Under 
different current levels, the power is switched off suddenly so as to cut off the current, then the 
oscilloscope is used to record the waveform response of voltage attenuation for both the designed 
transformer and the CT. 
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Figure 19. Switching transient waveform (I = 30 A, D = 5 mm, f = 50 Hz). 

In Figure 19, the results show that the output waveform of the transformer closely follows the 
change of current, and its output voltage is reduced within a certain period to 10% of the peak 
before the fault in a very short period of time. Furthermore, the waveform no longer fluctuates. 
Therefore, the designed transformer can effectively reflect and track the changes in the current in 
the wire. 

4.5. Frequency Test 

This experiment is done to verify the performance of the transformer under different 
frequencies. According to the analysis of the test data of the linearity of the transformer, the smaller 
distance D has a smaller phase error, so the selected distance for testing is set to is 5 mm. The 
corresponding data linear fitting is shown in Figure 20. 
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Figure 20. Voltage fitted curve under different frequencies 

In Figure 20, the output voltage of the designed transformer has good linearity under different 
frequencies. This finding means that the transformer has good frequency response under low 
frequency. Limited by the output power and frequency of the power supply, there is no longer a 
need to conduct more performance tests of the designed transformer at higher current and higher 
frequency. 

5. Conclusion and Future Prospects  

In this paper, by studying the relationship between the current in the wire and its surrounding 
magnetic field, a non-contact electronic current transformer based on the magnetic field coupling 
principle is proposed. According to the experimental results, compared with the traditional CT, 
when the designed transformer is used to measure the power frequency current, the results 
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demonstrate that it has very good steady-state and transient characteristics as well as high accuracy. 
At the same time, the results show that it has excellent linearity when the measuring distance is 
changing. In addition, the current transformer has good accuracy and small phase error. 

In further studies, more performance tests of the designed transformer shall be carried out at 
higher currents and higher frequencies. To improve the anti-interference capacity of the sensor, 
research on phase compensation to the sensor will also be done, along with an investigation into the 
structural optimization of the sensor. 
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