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Abstract: An adaptive optics (AO) system provides real-time compensation for atmospheric
turbulence. However, an AO image is usually of poor contrast because of the nature of the
imaging process, meaning that the image contains information coming from both out-of-focus
and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a
robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation.
Our proposed algorithm uses a maximum likelihood method with image regularization as the basic
principle, and constructs the joint log likelihood function for multi-frame AO images based on a
Poisson distribution model. To begin with, a frame selection method based on image variance is
applied to the observed multi-frame AO images to select images with better quality to improve the
convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and
the AO system properties, a point spread function estimation model is built. Finally, we develop our
iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct
a number of experiments to evaluate the performances of our proposed algorithm. Experimental
results show that our algorithm produces accurate AO image restoration results and outperforms the
current state-of-the-art blind deconvolution methods.

Keywords: atmospheric turbulence; image restoration; adaptive optics; blind deconvolution;
maximum likelihood; frame selection

1. Introduction

Because of the turbulent flow field, an imaging system with adaptive optics (AO) is interfered by
heat, thermal radiation, and image transmission. The observed image contains pointing jitters and
is fuzzy, and this effect is known as the aero optical effect [1,2]. However, the AO correction within
the system is often only partial, and the long-exposure images must be restored by postprocessing,
where a deconvolution is required for reaching the diffraction limit. The AO images in a real system
are usually represented by the convolution of an ideal image with a point spread function (PSF) [3].
The AO image is also contaminated by other noises, such as read-out, photon counting, multiplicative,
and compression noise [4,5]. In most practical applications, however, finding the real PSF is impossible
and an estimation must be carried out. Because the observed AO image is corrupted by various sources
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of noise, the estimation of both the object image and the PSF should be carried out at the same time,
and this process is called blind deconvolution [6].

Blind deconvolution is also very sensitive to the noise present in the observed
images [7,8]. To handle this problem, researchers have been making efforts in developing AO image
restoration algorithms under various conditions. Using a total variation (TV) prior on the variational
Bayesian blind deconvolution algorithm (VBBD-TV algorithm), Babacan et al. [9] developed an
algorithm which shows good restoration performance for total variation based blind deconvolution and
parameter estimation utilizing a variational framework. Katsaggelos and Lay proposed a maximum
likelihood (ML) blur identification and image restoration method using the Expectation-Maximization
algorithm (ML-EM algorithm) [10], which uses no knowledge about the type of distortion or its support
region during iteration.

Zhu et al. presented an adaptive algorithm for image restoration using combined penalty functions
(CPF-adaptive algorithm) [11]. This algorithm is adaptive and is used to estimate the smoothing and
roughness parameters. The advantage of this method is that it is able to remove noise at the same time
when restoring the image information around edges.

Zhang et al. proposed a multi-frame iterative blind deconvolution algorithm based on an
improved expectation maximization algorithm for AO image restoration (RT-IEM algorithm) [12],
which represents a more complex function to minimize. This algorithm contains a cost function for the
joint-deconvolution of multi-frame AO images, and it estimates the regularization terms. The major
limitation for this algorithm is its computational speed. Robust blind deconvolution methods optimize
a data fidelity term, which can be stabilized by some additional regularization terms. Yap and Guan [13]
proposed an approach for adaptive image regularization based on a neural network and a hierarchical
cluster model. The main advantage of the method is that the empirical relationship between the
optimized regularization vector and the local perception measure can be reused in the restoration of
other degraded images. The major limitation for the algorithm is its convergence speed.

Although a number of blind deconvolution methods have been proposed, a good knowledge
of the PSF is always desirable in order to achieve an accurate restoration. For example,
Deforest et al. [14] modeled the scattering portion of the transition region and coronal explorer
(TRACE) PSF as the sum of a measured diffraction pattern and a circularly symmetric scattering
profile. In addition to constructing a parametric model of the PSF using the specification instrument,
Poduval et al. modeled the PSF with a diffraction kernel and an isotropic scattering term representing
stray light [15]. In these works, the parametric methods have the limitation that they depend on a
particular instrument and the PSF models need to be available [16].

Our goal in this paper is to propose a new deconvolution scheme based on our frame selection
method and the initial PSF estimation approach. The frame selection method is used to choose the
better quality images from the multi-frame short exposure image sequence, which is initially corrected
by the AO system. We take the variance of the AO image as the evaluation method for frame selection.
The turbulence effect of an AO imaging system refers to the fact that when a reference star is regarded
as the center for wavefront detection, the fluctuation of wavefront is no longer consistent with the
detected wavefront for the regions that are beyond an isoplanatic angle. If this effect exists for an
imaging process, it affects the restoration of AO images. Therefore, we develop the method for initial
PSF estimation, which is a parametric method based on the physics of the instrument, and we provide
a more precise PSF model containing some instrument’s properties. The initial estimation of the
PSF model takes into account the a priori information on the object and the AO system parameters.
A theoretical expression of the PSF is derived. The proposed PSF initial estimation is also evaluated by
sensitivity analysis techniques and an error analysis is carried out based on simulation results (with
and without noise).

The outline of our paper is as follows. Section 2 describes the frame selection method and the
PSF model. Section 3 presents our new algorithm for joint blind deconvolution based on Poisson
distribution and gives several methods for improved ML estimation and regularization. The restoration
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algorithm is applied to real AO images and the results are presented in Section 4. Finally in Section 5
we conclude.

2. Frame Selection Method and PSF Model

2.1. AO Image Degradation Model

Affected by atmospheric turbulence, observed images from astronomical imaging and remote
sensing often suffer from image quality degradation. The readout noise satisfies an additive Gaussian
model [17], and the degradation process can be represented as

i(x, y) = o(x, y)⊗ h(x, y) + c(x, y), (x, y) ∈ Ω, (1)

where (x, y) is the spatial coordinate in the image, o(x, y) is the original image, h(x, y) refers to the PSF,
i(x, y) represents the degraded image acquired by the image sensor, c(x, y) is the noise, Ω is the region
of the object image, and ⊗ stands for the convolution operation.

A multi-frame AO image degradation model can be represented as

ik(x, y) = o(x, y)⊗ hk(x, y) + c(x, y), 1 < k ≤ M, (2)

where ik(x, y) denotes the kth frame of the observed AO images, hk(x, y) represents its corresponding
PSF, and M is the total number of frames. In this paper, we use the sequence of the degraded
multi-frame images ik (k = 1, 2, . . . , M) of the same object to restore the original image o.

2.2. Frame Selection Technique Based on Variance

In an experiment, the system can collect thousands of images for the same object. Interfered by
atmospheric turbulence with various strengths, the AO system compensates the turbulence effects,
and the image restoration results are directly affected by each frame. We select better quality frames in
a sequence of images for image restoration [18].

A frame selection technique is used to select the high quality images from the multi-frame images
that are initially corrected by an AO system. There are a number of evaluation criteria that can be
used to evaluate the quality of degraded images. In this paper, we use the variance of an image as the
frame evaluation method. The variance of the kth frame of an observed degraded image ik(x, y) can be
calculated by

S2
k =

1
N1N2

N1

∑
x=1

N2

∑
y=1

(ik(x, y)− µk)
2, (3)

where N1 and N2 represent the width and height of the observed image, respectively, and µk refers to
the mean of an observed image ik(x, y)

µk =
1

N1N2

N1

∑
x=1

N2

∑
y=1

ik(x, y). (4)

The mean of variance S2
mean of the multi-frame observed images is defined as

S2
mean =

1
M

M

∑
k=1

S2
k . (5)

The constraint for frame selection is defined as

|S2
k − S2

mean| < T, (6)
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where T is the threshold for frame selection. In this method, the variance value S2
k of the degraded

image should be close to the mean of variance S2
mean. Note that S2

k can be higher than S2
mean or lower

than it. We only keep those images with variance values in the middle. Images with too low variance
will be removed, and images with too high ones will also be removed.

The variance for the observed multi-frame images is defined as a sequence of data samples
{S2

1, S2
2, ..., S2

M}, and the variance σ2
s of the data samples is

σ2
s =

1
M

M

∑
k=1

(S2
k − S2

mean)
2. (7)

In the frame selection method, we choose the threshold T according to the variance σ2
s . In the

frame selection process, we have carried out a lot of experiments and chosen different T values for
obtaining high quality images from the collected thousands of degraded AO images for the same
object. Finally, we found that the threshold T is approximately 2–3 times of σ2

s , which can obtain better
frames in a sequence of degraded AO images.

The frame selection process is based on an iterative algorithm. That is, when a better frame has
been selected, the threshold T is recalculated. Then, the remaining frames will be checked by this
method until the constraint is satisfied. The frame selection algorithm is shown in Algorithm 1.

Algorithm 1 Frame selection

• Step 1: Initialize and calculate the variance set {S2
1, S2

2, ..., S2
M} for {ik(x, y)}, k = 1, 2, ..., M;

• Step 2: Calculate the following with iteration number j = 1, 2, ..., MaxIterations

1. According to Equation (5), calculate the mean value S2
mean of sequence {S2

1, S2
2, ..., S2

M};
2. According to Equation (7), calculate the variance σ2

s of sequence {S2
1, S2

2, ..., S2
M};

3. Set the threshold T = 2.6σ2
s ;

4. Check the constraint as in Equation (6);
5. Update the sequence {ik(x, y)} after frame selection. If {ik(x, y)} no longer changes, then go

to Step 3;
6. Increase j;

• Step 3: If the number of iterations is MaxIterations or if ik(x, y) does not change, output the
selected images {ik(x, y)} and finish; otherwise, go to Step 2.

In Algorithm 1, the threshold T = 2.6σ2
s was estimated experimentally by running the frame

selection method with different Ts and selecting the one with the most visually acceptable results.

2.3. PSF Model

According to Veran et al. [19], the wavefront phase that is corrected by the AO system is still a
quasi-stationary random process. The optical transfer function (OTF) of an AO system is defined as

Ha(u) = exp
(
− Ca(λ f u)

2
)
, (8)

where f is the focal length of the imaging system, Ca(λ f u) is the phase structure function of the
wavefront, and its calculation formula can be expressed as

Ca(λ f u) = Ca(∆z) = 〈(φres(z)− φres(z + ∆z))2〉, (9)

where 〈·〉 denotes the expectation over turbulence realizations, z is a space vector within the telescope
pupil, ∆z is a space interval vector within the telescope pupil, and φres(z) denotes the residual
wavefront phase after an AO system correction.
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According to the analysis in [20,21], the residual wavefront phase structure function Ca(∆z) is the
sum of an isoplanatic and an anisoplanatic structure functions, which is defined as

Ca(∆z) = C0(∆z) + C̃(∆z, θ), (10)

where θ is the off-axis angle interval, C0(∆z) represents the on-axis isoplanatic structure function, and
C̃(∆z, θ) represents the anisoplanatic structure function, which is defined as

C̃(∆z, θ) =〈(φres,θ(z)− φres,θ(z + ∆z))2

−(φres,0(z)− φres,0(z + ∆z))2〉.
(11)

According to Zernike polynomial theory and assuming that an AO system can fully compensate
for the first n order Zernike polynomials, the residual wavefront phase of isoplanatic φres,0(z) and
residual wavefront phase of anisoplanatic φres,θ(z) are expressed as [22]

φres,θ(z) = 2π

(
n

∑
j=1

(
aj(θ)− aj(0)

)
Zj(z) +

∞

∑
j=n+1

aj(θ)Zj(z)

)
,

φres,0(z) = 2π
∞

∑
j=n+1

aj(0)Zj(z),

(12)

where aj(0) and aj(θ) represent the coefficients of the on-axis and off-axis Zernike polynomial,
respectively, and Zj(z) is the jth order Zernike polynomial.

Under the anisoplanatic situation, the OTF of the imaging system is defined as

H̃(u, θ) = exp
(
− C̃(λ f u, θ)

2
)
. (13)

Similarly, modifying Equation (8) and the atmospheric environment, an OTF of an AO system is
defined as

Ha(u) = H0(u)H̃(u, θ), (14)

where H0(u) is an OTF for the anisoplanatic effect.
Therefore, an OTF of the whole AO system is

H(u, θ) = Ha(u)Htel(u) = H0(u)H̃(u, θ)Htel(u), (15)

where Htel(u) is the telescope diffraction-limited OTF, which is [20]

Htel(u) =
2
π

circ
( u

D

)(
arccos

( u
D

)
− u

D

√
1− u2

D2

)
, (16)

where D is the telescope diameter, and circ
( u

D
)

will return a circle mask array with a circle of radius
u
D and the default array size is 128× 128 with a central location at the middle of the array.

Modifying Equation (11) according to [11], we obtain the expression for the anisoplanatic structure
function, which is

C̃(∆z, θ) =
n

∑
k=1

∞

∑
j=1

2(−Γa(θ) + Γa(0))Zk,j(∆z), (17)

where Γa(θ1 − θ2) = 〈ak(θ1)aj(θ2)〉, Γa(θ) is the angular correlation function between coefficients ak
and aj of the Zernike polynomial, and Zk,j(∆z) are functions defined as [21]

Zk,j(∆z) =

∫
(Zk(z)− Zk(z + ∆z))(Zj(z)− Zj(z + ∆z))dz∫

P(z)P(z + ∆z)dz
, (18)
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where P(z) is the telescope pupil function.
Based on Equations (13), (15) and (17), the OTF of an AO imaging system can be calculated.

Therefore, the OTF can be transformed to PSF by the inverse Fourier transform, which is

PSF = F−1{H(u, θ)}. (19)

In this paper, we adopt the above method to rebuild the AO-PSF estimated model as an initial
estimation for the AO image restoration. Considering that the isoplanatic angle is 2′′, it is equivalent to
a square isoplanatic area with 2′′ × 2′′. Assuming that the PSF is with circular symmetry, we build the
PSF model when the field-of-view is 10′′, and the grid is 5× 5. Based on Equation (1) for the image
deconvolution reconstruction, we will describe our AO image restoration method in Section 3.

3. Joint Blind Deconvolution Algorithm Based on Poisson Distribution

3.1. Estimators with Poisson Statistics

A blind deconvolution algorithm is to estimate both the object and the PSF at the same time.
The noise in an AO image is mainly photon noise that has a Poisson distribution. However,
an AO astronomy image is dominated by a quite homogeneous background [23,24]. The intensity
convolution based on the Shell theorem describes the non-coherent imaging system, the object image
{o(a, b), (a, b) ∈ Ω} which is a nonnegative function, and the PSF {hk((x, y)|(a, b)), (x, y) ∈ D} (D is
the region of the observed image) which is affected by atmospheric turbulence. Then, we define the
object intensity ek(x, y) at point (x, y) in the kth frame as [25]

ek(x, y) = ∑
(a,b)∈Ω

hk((x, y)|(a, b))o(x, y) = ∑
(a,b)∈Ω

hk(x− a, y− b)o(a, b), 1 < k ≤ M, (20)

where (x, y) ∈ D, and Ω is the region of the object image. In fact, the value of ek cannot be detected
perfectly because it is always contaminated by some noise.

Considering the cases where the degraded image with atmosphere turbulence has noise,
the intensity ek(x, y) at each point (x, y) in the observed image is a random variable that follows an
independent Poisson distribution. The ML estimator based on Poisson distribution can be expressed
as [23,25]

p(ik(x, y)|o, hk) =

∑
(x,y)∈Ω

(o(x, y)hk(x, y))ik(x,y)

M
∏

k=1
ik(x, y)

× exp(− ∑
(x,y)∈Ω

o(x, y)hk(x, y)). (21)

The intensity ek(x, y) in Equation (20) is taken into account in the calculation of the ML estimator
as in Equation (21), which is

p(ik(x, y)|o, hk) =
(ek(x, y))ik(x,y) exp(−ek(x, y))

M
∏

k=1
ik(x, y)

. (22)

Assuming that the pixels of the observed image are independent from each other [15], the joint
likelihood function can be defined as

p(ik(x1x2 · · · xN1 , y1y2 · · · yN2)|o, hk) = ∏
(x,y)∈Ω

(ek(x, y))ik(x,y) exp(−ek(x, y))
M
∏

k=1
ik(x, y)

. (23)
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3.2. Algorithm Implementation for AO Image Restoration

To estimate ô and ĥ, an iterative deconvolution algorithm can be used. The ô and ĥ are based on
the maximum likelihood estimation criterion, and the cost function can be written as

J1(o, hk) = arg min
ik

ln(p(ik(x1x2 · · · xN1 , y1y2 · · · yN2)|o, hk)) (24)

Taking the logarithm on both sides of Equation (23), the log-likelihood function is defined as

ln(p(ik(x1x2 · · · xN1 , y1y2 · · · yN2)|o, hk))

= − ∑
(x,y)∈Ω

ek + ∑
(x,y)∈Ω

ik log ek − ∑
(x,y)∈Ω

log
M

∏
k=1

ik(x, y). (25)

It is assumed that the M observed images {i1(x1x2 . . . xN1, y1y2 . . . yN2),
i2(x1x2 . . . xN1, y1y2 . . . yN2), · · · , iM(x1x2 . . . xN1,y1y2 . . . yN2)} are statistically independent [26], and
the log-likelihood function of the multi-frame joint estimator is expressed as

ln(p({ik}|o, {hk}) = −
M

∑
k=1

∑
(x,y)∈Ω

ek +
M

∑
k=1

∑
(x,y)∈Ω

ik log ek + b. (26)

The last term of Equation (25) is a constant, and we represent it as b in Equation (26).
Based on Equations (25) and (26), we modify the cost function J1(o, hk) as

J′1(o, {hk}) = arg min
ik

ln(p({ik}|o, {hk})). (27)

However, it has been shown that the restoration algorithm does not converge to the solution
because the noise is amplified during iterations [25]. To avoid excessive noise amplification,
regularization on the cost function is required. We combine Equation (27) with regularization
parameters to establish the cost function for joint deconvolution for multi-frame AO images,
which is

Jmulti(o, {hk}) = J′1(o, {hk}) +
|∇ô(x, y)|

γ(∇v)
, (28)

where the second term is a regularization term that can be defined as

|∇ô(x, y)| =
√
(∇ox(x, y))2 + (∇oy(x, y))2 (29)

and

γ(∇v) = exp(−|∇v|2
2ξ2 ), (30)

where γ(∇v) has a variable regularization coefficient associated with the gradient of each point with
0 < γ(∇v) ≤ 1 [12,27]; parameter ξ is the smoothing coefficient; and ∇v is the gradient for point
v(x, y), where v is a gray pixel value.

In order to minimize the cost function, Equation (28) can be differentiated with respect to o(x, y)
and hk(x, y), and then make the differentiation equal to zero, which is

∂Jmulti(o, {hk})
∂o(x, y)

= 0, (31)

∂Jmulti(o, {hk})
∂hk(x, y)

= 0. (32)
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In order to take the o(x, y) derivative easily, ek(x, y) can be formulated by Equation (20), and then
brought into Equation (26). According to Equations (26), (28), and (31), the derivation process is

∂Jmulti(o, {hk})
∂o(x, y)

=
∂J′1(o, {hk})

∂o(x, y)
+

∂( |∇ô(x,y)|
γ(∇v) )

∂o(x, y)

=

∂(−
M
∑

k=1
∑

(x,y)∈Ω
ek +

M
∑

k=1
∑

(x,y)∈Ω
ik log ek + b)

∂o(x, y)
+

1
βγ(∇v)

× div(
∇ô(x, y)
|∇ô(x, y)| )

= −
M

∑
k=1

∑
(x,y)∈Ω

hk(x, y) +
M

∑
k=1

∑
(x,y)∈Ω

ik(x, y)
hk(x, y)

∑
(x,y)∈Ω

hk(x, y)o(x, y)

+
1

βγ(∇v)
× div(

∇ô(x, y)
|∇ô(x, y)| )

= 0.

(33)

With the condition of image energy conservation, the sum value of each frame PSF of the

turbulence degraded images is 1, namely
M
∑

k=1
∑

(x,y)∈Ω
hk(x, y) = 1. According to conservation of

energy, the image energy before and after degradation remains unchanged, that is

1

1− 1
βγ(∇v)div( ∇ô(x,y)

|∇ô(x,y)| )

M

∑
k=1

∑
(x,y)∈Ω

ik(x, y)
hk(x, y)

∑
(x,y)∈Ω

hk(x, y)o(x, y)
= 1. (34)

Therefore, an iterative relationship can be established as follows:

ô(n+1)(x, y) =ôn(x, y)
M

∑
k=1

∑
(x,y)∈Ω

ik(x, y)
ĥn

k (x, y)

∑
(x,y)∈Ω

ĥn
k (x, y)ôn(x, y)

× 1

1− 1
βγ(∇v)div( ∇ôn(x,y)

|∇ôn(x,y)| )
,

(35)

where ôn(x, y) and ĥn
k (x, y) are the results of the nth iteration.

In order to take the hk(x, y) derivative easily, ek(x, y) can be formulated by Equation (20).
According to Equations (28) and (32), the solution is

∂Jmulti(o, {hk})
∂hk(x, y)

=
∂J′1(o, {hk})

∂hk(x, y)
+

∂( |∇ô(x,y)|
γ(∇v) )

∂hk(x, y)

=

∂(−
M
∑

k=1
∑

(x,y)∈Ω
ek +

M
∑

k=1
∑

(x,y)∈Ω
ik log ek + b)

∂hk(x, y)
+ 0

= − ∑
(x,y)∈Ω

o(x, y) + ∑
(x,y)∈Ω

ik(x, y)
o(x, y)

∑
(x,y)∈Ω

hk(x, y)o(x, y)

= 0.

(36)
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Because the object image is within the support region of the observed image, the original object
image o(x, y) is normalized in advance, namely ∑

(x,y)∈Ω
o(x, y) = 1. Therefore, within the support

region for the observed image, the energy sum value for the original object images is 1, which is

∑
(x,y)∈Ω

ik(x, y)
o(x, y)

∑
(x,y)∈Ω

hk(x, y)o(x, y)
= 1. (37)

When the object ô(n+1)(x, y) is estimated by Equation (35), we can build the iterative relationship
of the new PSF, ĥ(n+1)

k (x, y), which is

ĥ(n+1)
k (x, y) = ĥn(x, y) ∑

(x,y)∈Ω

ôn(x, y)
i(x, y)

∑
(x,y)∈Ω

ĥn(x, y)ôn(x, y)

 ,

ĥ(n+1)(x, y) =
ĥn(x, y)

∑
(x,y)∈Ω

ĥn
k (x, y)

,

(38)

where β is a constant.
In summary, the object image ô and the estimation of the PSF model, ĥ, are obtained by multiple

iterations of Equations (35) and (38). The specific implementation steps for our algorithm are
summarized in Algorithm 2.

Algorithm 2 Steps for our proposed restoration algorithm
• Step 1: Initialize operation. According to the method described in Section 2.2, the M frames of

images (i1, i2, . . . , iM) are obtained with our frame selection technique. Then, the initial object
image is ô0 = (i1 + i2 + · · ·+ iM)/M;

• Step 2: Obtain the initial estimation of the PSF model, ĥ0, according to Equation (19), with the
algorithm described in Section 2.3;

• Step 3: Calculate parameter values. β is a constant. According to the scheme and formula described
in Section 3.2, estimate the regularization parameters γ(∇x);

• Step 4: Iterate through j=1, 2, . . ., MaxIteration (MaxIteration = 200 or 300):

1. The inner loop count variable of PSF h_count = 0;
2. The iteration process of PSF estimation, p=0, 1, . . ., Max_count

(a) Complete the PSF estimation ĥ(p) using Equation (38);
(b) Increase h_count; Increase p;
(c) Check the value of the loop variable p: if p < Max_count, continue; otherwise, go to Step 4

(3).
3. The inner loop counter variable of object estimation: o_count = 0;
4. The iteration process of object estimation, q=0, 1, . . ., Max_count

(a) The conjugate gradient method was used to optimize Equation (35) and to obtain object
image estimation ô(q);

(b) Increase o_count; Increase q;
(c) Check loop variable q: if q < Max_count, continue; otherwise, go to Step 4 (5);

5. Check whether the outer loop is finished: if j > MaxIteration, then go to Step 5;
6. Increase j, return to Step 4 (1).

• Step 5: If j > MaxIteration, then output object estimate image ô and PSF estimation ĥ, and end the
algorithm; otherwise go to Step 4.
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4. Experimental Results

In this section, we use simulated images and a set of real AO images to verify our proposed
restoration algorithm. We present experimental results on AO images taken by a 1.2 m AO telescope
(Yunnan Observatory, Yunnan, China) which uses the Hartmann–Shack wavefront sensor from the
Chinese Academy of Sciences at Yunnan Observatory on 3 December 2006. The second set of AO
images are from the observations of celestial bodies on 13 January 2007. The values of the main
parameters for the AO imaging system are shown in Table 1.

Table 1. The values of the main parameters for an AO imaging system.

Parameter Name Parameter Value Remarks

r0 13 cm Atmospheric coherence length
λ 0.72 µm Central wavelength
f 20 m Imaging focal length
D 1.03 m Telescope aperture

The size for imaging CCD 320 × 240 pixel
Size of pixel in CCD 6.7 µm

Imaging observation range 0.7−0.9 µm
Field of view for imaging system 24′′ × 18′′

In order to verify the restoration effect and the reliability of our algorithm, we implement it using
MATLAB 6.5 (The MathWorks, Natick, MA, USA) and test it on a 2.5 GHz Intel i5-2525M CPU (Intel
Corporation, Santa Clara, CA, USA) with 4.0 GB of RAM running on a 32 bit Windows 7 operating
system (Microsoft Corporation, Redmond, WA, USA).

In order to evaluate the image restoration result, we adopt the objective evaluation criteria
Normalized Mean Square Error (ENMSE) [28] and Full Width at Half Maximum (EFWHM) [29] in this
paper. The ENMSE is defined as

ENMSE =

N1
∑

x=1

N2
∑

y=1
(ô(x, y)− i(x, y))2

N1
∑

x=1

N2
∑

y=1
(i(x, y))2

. (39)

ENMSE is an estimator of the overall deviations between the original image and the object image.
A lower ENMSE value indicates that the deviation between the original image and the object image is
small and a better restored image quality is obtained.

EFWHM is a parameter commonly used to describe the width of a “bump” on a curve or function.
It is given by the distance between points on the curve at which the function reaches half its maximum
value. For a point-like object in an astronomical image, EFWHM is two times that of the pixel distance
between the image peak value and half its peak value [29]. It is used to measure for the quality of
an image in astronomical observations. The EFWHM components along the x- and y-directions of an
image are used for evaluation in astronomical observations with the following formula:

EFWHM =
√

E2
FWHMx

+ E2
FWHMy

, (40)

where EFWHMx and EFWHMy represent the peak pixels for the EFWHM on the x- and y-directions,
respectively. The closer the value of EFWHM is to the optical diffraction limit for the AO imaging
system, the better it is for the image restoration quality.
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4.1. The Restoration Experiment on Simulated Images

In the simulation experiments in this paper, the original images (“House” with 256 × 256 pixels,
“Chemical Plant” with 256 × 256 pixels, and “The Little Girl” with 256 × 256 pixels) are selected
from [30]. Ten frames of simulation degraded images are generated by image degradation software
from the Key Optical Laboratory of the Chinese Academy of Sciences [25], and then Gaussian
white noise is added and the signal-to-noise ratio (SNR) of the images is set to be 20 dB, 25 dB,
and 30 dB with real AO imaging conditions including atmospheric turbulence. The equivalent
parameters for the four layers turbulence model are the same as those in Reference [22], and we set the
parameters to be the same as the 1.2 m AO telescope at the observatory in Yunnan, China. The main
parameters of the telescope imaging system are the atmospheric coherence as shown in Table 1.
The simulated degraded images are assumed to be at certain distances so that one arcsecond imaging
angle corresponds to degradation of a certain linear scale. Experiments on the ML-EM algorithm [10],
the CPF-adaptive algorithm [11], the RT-IEM algorithm [12], the VBBD-TV algorithm [9], and our
algorithm are compared.

Figure 1 is the original image and simulated multi-frame degradation images. Figure 1a is the
original images, and example frames with turbulence and noise are shown in Figure 1b–d (to save
space, only three frames are shown). The comparison results based on the five algorithms are shown
in Figure 2. In our algorithm, the parameters β = 1.31 and ξ = 1.35 were selected experimentally for
visually acceptable results. Table 2 gives the results of our algorithm and those of the ML-EM [10],
CPF-adaptive [11], RT-IEM [12], and VBBD-TV [9] methods, and the number of iterations for the
four algorithms is 300. Our algorithm ranks on the top of the list, and the results demonstrate the
superiority of our method.

(a) (b) (c) (d)

Figure 1. The original images and the simulated multi-frame degradation images. (a) input images of
the datasets; (b) images degraded by the 5 × 5 PSF at SNR of 20 dB under ideal conditions; (c) images
degraded by the 5 × 5 PSF at SNR of 25 dB under ideal conditions; (d) images degraded by the
5 × 5 PSF at SNR of 30 dB under ideal conditions.
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Table 2. Comparison results on ENMSE and running time of different restoration algorithms.

ML-EM CPF-Adaptive RT-IEM VBBD-TV Our Algorithm

Image Names ENMSE Running Time (s) ENMSE Running Time (s) ENMSE Running Time (s) ENMSE Running Time (s) ENMSE Running Time (s)

House 0.0034 12.18 0.0025 13.27 0.0030 13.96 0.0023 13.87 0.0015 13.90
Chemical Plant 0.0069 11.97 0.0072 12.89 0.0054 13.04 0.0051 13.12 0.0045 13.21
The Little Girl 0.0046 9.24 0.0039 10.54 0.0028 10.91 0.0021 10.87 0.0017 11.08
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(a) (b) (c) (d) (e)

Figure 2. The comparison results of the restored images based on four algorithms (with 300 iterations).
(a) by the ML-EM algorithm; (b) by the CPF-adaptive algorithm; (c) by the RT-IEM algorithm; (d) by
the VBBD-TV algorithm; (e) by our algorithm with β = 1.31 and ξ = 1.35.

4.2. Restoration Experiments on Binary-Star AO Images

For adaptive optics compensated images, the degradation is dominated by the residual fine-scale
wavefront error, which requires several parameters to characterize and varies from frame to frame.
Now, we show the restoration results of our proposed algorithm on binary-star AO images that were
taken by a 1.2 m AO imaging system on 3 December 2006. The adaptive optics bench is a system
with 88 actuators, with a Shack–Hartman wave-front sensor (64 sub-apertures). The values of the
main parameters for the AO imaging system are shown in Table 1. The estimated PSF model for
an AO image is under the following conditions: the full field-of-view for the system is 20′′; the
Zernike model for the fully corrected turbulence effect is with the first 35 orders; the field-of-view
is 10′′; the size of the space-variant PSF is 5× 5 pixels; and the isoplanatic angle θ is 2′′. The AO
image restoration experiments based on the ML-EM algorithm [10], the CPF-adaptive algorithm [11],
the RT-IEM algorithm [12], the VBBD-TV algorithm [9], and our algorithm are compared.

We apply our frame select technique, which is introduced in Section 2.2, and select 50 frames from
200 of the observed AO images as the input images for blind convolution. Figure 3 shows the observed
multi-frame degraded binary-star AO images (only nine frames are shown). In order to obtain better
restoration results, our frame selection technique is used to select a group of high-quality degraded
AO images to improve the stability of the algorithm.

In Figure 3, frame selection experiment based on image variance is carried out for binary-star
AO images. The variance of each degraded image is calculated using Equation (5). The size of the
binary-star AO image is 132× 121 pixels.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Nine frames of binary-star images by an AO system and their variances. (a) Frame 1 with
variance S2

1 = 536.34; (b) Frame 2 with variance S2
2 = 518.06; (c) Frame 3 with variance S2

3 = 566.23;
(d) Frame 4 with variance S2

4 = 495.07; (e) Frame 5 with variance S2
5 = 552.10; (f) Frame 6 with variance

S2
6 = 545.26; (g) Frame 7 with variance S2

7 = 336.34; (h) Frame 8 with variance S2
8 = 522.95; (i) Frame 9

with variance S2
9 = 530.72.

The variance value for each observed AO image is given in the caption of Figure 3. The variance
values show that most of the variance values for the images are close to each other, and their values
are between 500 and 570. While affected by Gaussian noise, the variance of the 3rd frame is 566.23,
which is higher than the others. The variance of the 7th frame is influenced by the PSF blurring effect
and it is 336.34, so its value is much lower than that of the other images. Therefore, the 3rd and 7th
frames should be eliminated for estimation purposes.

To test the performance of our proposed algorithm, image restoration experiments were carried
out, and the selected AO images for the experiments were shown in Figure 3 (Frames 1, 2, 4, 5, 6, 8,
9 were selected in the experiment). We choose β = 1.23, and the parameter for the regularization
function is ξ = 1.35 with 300 iterations. Figure 4 shows the restoration results on degraded AO
images based on five algorithms. Figure 4a is the restored image based on the ML-EM algorithm
with ENMSE = 0.0413 and EFWHM = 5.73; Figure 4b is the restored image based on the CPF-adaptive
algorithm with ENMSE = 0.0386 and EFWHM = 5.97; Figure 4c is the restored image based on the
RT-IEM algorithm with ENMSE = 0.0363 and EFWHM = 5.99; Figure 4d is the restored image based on
the VBBD-TV algorithm with ENMSE = 0.0358 and EFWHM = 5.87; and Figure 4e is the restored image
based on our algorithm with ENMSE = 0.0301 and EorFWHM = 6.13. The total number of iteration is 200,



Sensors 2017, 17, 785 15 of 19

and the restoration results are very close to the diffraction limit of the 1.2 m AO telescope. Figure 4f is
the estimation of the PSF based on our algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 4. The restoration results comparison on multi-frames binary-star AO images. (a) restored
image by the ML-EM algorithm; (b) restored image by the CPF-adaptive algorithm; (c) restored image
by the RT-IEM algorithm; (d) restored image by the VBBD-TV algorithm; (e) restored image by our
algorithm; (f) estimated PSF by our algorithm.

In order to verify our algorithm, we compare our algorithm with four other algorithms (the
ML-EM, CPF-adaptive, RT-IEM, and VBBD-TV algorithms) for the binary-star images, and the
objective evaluation criteria for the experimental results are measured by ENMSE, EFWHM, and the
computation time, which are shown in Table 3, and the number of iterations for the five algorithms
is 300.

Table 3. The ENMSE, EFWHM, and the computation time comparison for the five algorithms for
binary-star images restoration (iteration number is 300).

Algorithms ENMSE EFWHM (pixel) Computation Time (s)

ML-EM 0.0252 6.27 9.872
CPF-adaptive 0.0213 6.46 12.196

RT-IEM 0.0210 6.51 10.983
VBBD-TV 0.0221 6.48 8.624

Our algorithm 0.0204 6.69 12.257

Comparing with the ML-EM, CPF-adaptive, RT-IEM, and VBBD-TV algorithms, we can see that
the ENMSE measures from our algorithm are decreased by 19%, 4.2%, 2.8%, and 7.7%, respectively. It is
shown in Table 3 that our algorithm can obtain a EFWHM, which is closer to the diffraction limit of
the AO system and can obtain lower ENMSE measures. Therefore, our proposed method can restore
binary-star degraded images effectively where the degradation was due to the effect of atmospheric
turbulence acting on the optical telescope. The computation load of our method is slightly higher
than the other four restoration algorithms, and we plan to further improve the performance of our
algorithm in the future.
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Moreover, the ENMSE and EFWHM measures of the best restored images by the five algorithms are
compared in Figure 5. The ENMSE measure versus the iteration number for the five algorithms on the
binary-star AO images are plotted in Figure 5a. Figure 5b is the EFWHM results for the five restoration
algorithms. It can be seen from Figure 5b that our algorithm has EFWHM values that are close to the
diffraction limit of the AO system when applied to binary-star images. This shows that our restoration
algorithm can effectively restore the degraded AO images.
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Figure 5. The restoration comparisons on ENMSE and EFWHM measures versus the iteration number for
the five methods. (a) ENMSE versus the iteration number of the five algorithms; (b) EFWHM versus the
iteration number of the five algorithms.

4.3. Sensitivity Analysis

Sensitivity analysis is the study of how the uncertainty in the output of a model can be portioned
to different sources of variation in the model inputs [31]. In order to evaluate the benefits of using
the proposed PSF initial estimation, the computation of the sensitivity indices of a PSF model was
performed. In an AO image restoration process, we initialize the restoration algorithm with a perfect
PSF. In this work, extensive simulations are performed to test the behaviour of the proposed PSF
estimation. In a realistic case, the degraded AO image is affected by the turbulence effect, the photon,
and detector noise. We assume that the dominant noise is the photon noise. The simulation conditions
are the followings: the simulation is performed on three different photon noise levels varying in:
103 photons, 105 photons, and 107 photons; and the angle θ varies from 1 arcsec for the minimum
value to 21 arcsec for the maximum value. Figure 6 shows the error on the estimation of the PSF model
in the case of a noise free image, and in the cases of photon noises with 103, 105, and 107 photons in
the whole image, respectively. We plot in Figure 6 the errors which are given in percentages on the
magnitude estimation of star images using an isoplanatic deconvolution process. In the case of an
isoplanatic deconvolution, the PSF is constant in the whole field of view [21]. For a given noise level,
a limit angle θ can be defined below when the error is lower than the noise error. The lower the noise
level, the greater the limit angle (see Figure 6). For instance, the error becomes greater than the noise
error in the case of 103 photons for angle θ ≥ 7. This limit angle can be used to define an isoplanatic
angle for our AO image restoration method.

Furthermore, we perform a sensitivity analysis on the PSF starting values for our proposed AO
image restoration algorithm. To validate the sensitivity behaviour of the PSF model, the experiment is
performed and the conditions are:

• Noise root mean square (RMS) changes from one percent for the minimum value of the image to
20 percent for the maximum value for the image;

• Fifty noise realizations are calculated for each RMS noise value;
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• The simulation is performed on three different sub-images varying in size: a 64 × 64 pixels
central region of the image, a 128 × 128 pixels central region of the image, and the whole
256× 256 pixels image.
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Figure 6. Error on the estimation of the PSF model in the case of a noise free image, and in the cases of
photon noises with 103, 105, and 107 photons in the whole image, respectively.

Figure 7 shows the RMS error on the estimation of the initial PSF values for different levels of
noise and varying data size. It indicates that the initial value of our PSF estimation is useful to provide
less sensitive final PSF estimation in our proposed restoration algorithm. This simulation shows
that the PSF estimator exhibits a lower sensitivity to noises, which opens the way to its use for real
AO images.
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Figure 7. RMS error on estimation of the PSF initial value for different noise levels (in percentage).

5. Conclusions

This paper presents a novel adaptive optics images restoration algorithm based on our frame
selection method and the PSF model for the turbulence effect. There are two main contributions in this
paper. The proposed frame selection method provides a reasonable criterion to evaluate the quality
of a degraded AO image based on the variance of the image. We also propose a PSF reconstruction
method for AO images, which can accurately estimate the PSF model in a blind deconvolution
process using the initial estimate value. A theoretical expression of the PSF is derived. According
to the Poisson distribution model for establishing a joint log-likelihood function for the multi-frame
AO images, the proposed algorithm for the maximum likelihood estimator is used for the object
image and the PSF estimation for each frame. A series of experiments were carried out to verify the
effectiveness of the proposed algorithm and show its superiority over the current state-of-the-art
blind deconvolution methods. The comparisons with the ML-EM, CPF-adaptive, RT-IEM, and
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VBBD-TV methods also indicate that our proposed algorithm is competitive on AO image restoration.
Future works should focus on reducing the computation time by employing parallel computing.
Our proposed algorithm can be used for restoring observed AO images, and it has the potential for
real applications.
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