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Abstract: This research features parameterized depth edge detection using structured light imaging 

that exploits a single color stripes pattern and an associated binary stripes pattern. By parameterized 

depth edge detection, we refer to the detection of all depth edges in a given range of distances with 

depth difference greater or equal to a specific value. While previous research has not properly dealt 

with shadow regions, which result in double edges, we effectively remove shadow regions using 

statistical learning through effective identification of color stripes in the structured light images. We 

also provide a much simpler control of involved parameters. We have compared the depth edge 

filtering performance of our method with that of the state-of-the-art method and depth edge 

detection from the Kinect depth map. Experimental results clearly show that our method finds the 

desired depth edges most correctly while the other methods cannot. 
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1. Introduction 

The goal of this work, as illustrated in Figure 1, is to accurately find all depth edges that have 

the minimum depth difference, 𝑟𝑚𝑖𝑛 , in the specified range of distances, [𝑎𝑚𝑖𝑛,  𝑎𝑚𝑎𝑥],  from the 

camera/projector. We call this “depth edge filtering”. We propose a structured light based framework 

that employs a single color pattern of vertical stripes with an associated binary pattern. Due to the 

accurate control of the parameters involved, the proposed method can be employed for applications 

where detection of object shape is essential—for example, when a robot manipulator needs to grasp 

an unknown object by identifying inner parts with a certain depth difference. 

There has been a considerable amount of research on structured light imaging in the literature 

[1–5]. Here, we only mention some recent works to note. Barone et al. [1] presented a coded structured 

light technique for surface reconstruction using a small set of stripe patterns. They coded stripes in 

De Bruijn sequence and decomposed color stripes to binary stripes so that they can take advantage 

of using a monochromatic camera. Ramirez et al. provided a method [2] to extract correspondences 

of static objects through structured light projection based on De Bruijn sequence. To improve the 

quality of depth map, Shen et al. presented a scenario [3] for depth completion and denoising. Most 

works have aimed at surface reconstruction and there have been a few works for the purpose of depth 

edge filtering. One notable technique was presented to create a depth edge map for nonphotorealistic 

rendering [6]. They capture a sequence of images in which different light sources illuminate the scene 

from various positions. Then, they use shadows in each image to assemble a depth edge map. 

However, this technique is incapable of the control of parameters such as range of distances from the 

camera/projector and depth difference. 
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A while ago, in [7,8], similar control of parameterizing structured light imaging was presented. 

They employed structured light with a pattern comprising black and white horizontal stripes of equal 

width, and detected depth edges with depth difference 𝑟 ≥ 𝑟𝑚𝑖𝑛 in a specified range of distances. 

Since the exact amount of pattern offset along depth discontinuities in the captured image can be 

related to the depth value from the camera, they detected depth edges by finding detectable pattern 

offset through thresholding of Gabor amplitude. They automatically computed the width of stripe 

by relating it with the amount of pattern offset. 

A major drawback of the previous methods is that they did not address the issue of shadow 

region. Regions that the projector light cannot reach create shadow regions and result in double 

edges. Figure 1d shows the result of the method in [8] for the given parameters where, in the shadow 

regions, double edges and missing edges appear. Furthermore, due to the use of simple black and 

white stripes, the exact amount pattern offset may not be measurable depending on the object location 

from the camera. This deficiency requires additionally employing several structured lights with 

width of stripe doubled, tripled, etc. 

 

 

(a) (b) (c) 

   
(d) (e) (f) 

Figure 1. Depth edges, which have the minimum depth difference of 5 cm in the specified range of 

distances [130 cm, 190 cm] from the projector/camera, are detected in (a). The camera’s view is shown 

in (b). Depth edge filtering results are presented for (c) ground truth; (d) method in [8]; (e) Kinect, 

and (f) our method. 

In this work, we present an accurate control of depth edge filtering by overcoming the 

disadvantages of the previous works [7,8]. We provide an overview of our method in Figure 2. We 

opt to use a single color pattern of vertical stripes with an associated binary pattern as shown in 

Section 3. The use of the binary pattern helps with recovering the original color of the color stripes 

accurately. We give the details in Section 3. Given the input parameters, [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥] and 𝑟𝑚𝑖𝑛 , 

stripe width, 𝑤, is automatically computed to create the structured light patterns necessary to detect 

depth edges having depth difference greater or equal to 𝑟𝑚𝑖𝑛. We capture structured light images by 

projecting the structured light patterns on the scene. We first recover the original color of the color 

stripes in the structured light images in order not to be affected by the textures on the scene. Then, 

for each region of homogeneous color, we use a Support Vector Machine (SVM) classifier to decide 

whether a given region is from shadow or not. After that, we obtain color stripes pattern images by 

filling in shadow regions using the color stripes that otherwise have been projected there. We finally 

apply Gabor filtering to the pattern images to produce the depth edges with depth difference greater 

or equal to 𝑟𝑚𝑖𝑛. 

We have compared the depth edge filtering performance of our method with that of [8] and the 

Kinect sensor. Experimental results clearly show that our method finds the desired depth edges most 

correctly while the other methods cannot. The main contribution of our work lies in an accurate 

𝑟𝑚𝑖𝑛  Input = 5cm

[𝑎𝑚𝑖𝑛 , 𝑎𝑚𝑎𝑥 ] = [130𝑐𝑚, 190𝑐𝑚] 
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control of depth edge filtering using a novel method of effective identification of color stripes and 

shadow removal in the structured light image. 

 

Figure 2. An overview of our method. 

2. Parameterized Structured Light Imaging  

By parameterized structured light imaging, we refer to the technologies using structured light 

imaging that can control associated parameters. To the best of our knowledge, Park et al.’s work [7] 

was the first of its kind. In our case, the controlled parameters are the minimum depth difference, 

𝑟𝑚𝑖𝑛, a target range of distances, [𝑎𝑚𝑖𝑛,  𝑎𝑚𝑎𝑥], and the width of stripe, 𝑤. The basic idea in [7] to 

detect depth edges is to exploit pattern offset along depth discontinuities. To detect depth 

discontinuities, they consecutively project a white light and structured light onto the scene and 

extract a binary pattern image by differencing the white light and structured light images. This 

differencing effectively removes texture edges. After removal of texture edges, they basically detected 

the locations where pattern offset occurs to produce depth edges. In contrast, we achieve the effect of 

texture edge removal by recovering the original color stripes in the color structured image. Details 

will be given in the next section. 

The control of parameters developed in [7] can be seen in Figure 3a where 𝑎𝑚𝑎𝑥 and 𝑟𝑚𝑖𝑛 are 

given as the input parameters; then, the width, 𝑤 , and 𝑎𝑚𝑖𝑛  are determined. However, it was 

awkward that 𝑎𝑚𝑖𝑛 is found at a later step from other parameters. A substantial improvement over 

this method was made in [8] so that [𝑎𝑚𝑖𝑛,  𝑎𝑚𝑎𝑥] and 𝑟𝑚𝑖𝑛 are given as the input parameters. Given 

the input parameters, the method provides the width of stripes, 𝑤, and number of structured light 

images, 𝑛 as shown in Figure 3b. They also showed its application to the detection of silhouette 

information for visual hull reconstruction [9]. In our work, we achieve much simpler control of the 

key parameters by employing a color pattern as can be seen in Figure 3c. While the methods in [7,8] 

need several structured light images, we use a single color pattern and an associated binary pattern. 

   
(a) (b) (c) 

Figure 3. Control of key parameters: (a) method in [7]; (b) method in [8]; (c) our method. 
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To better describe our method, let us revisit the key Equation (1) for the modelled imaging 

geometry of a camera, projector and object in [7,8]. This Equation can easily be derived from the 

geometry in Figure 4 using similar triangles: 

∆𝑒𝑥𝑎𝑐𝑡= 𝑓𝑑 (
1

𝑎
−

1

𝑏
) =

𝑓𝑑𝑟

𝑎(𝑎 + 𝑟)
. (1) 

Here, 𝑎, 𝑏 and 𝑓 are the distances of object locations A and B from the projector/camera and 

virtual image plane from the camera, respectively. ∆𝑒𝑥𝑎𝑐𝑡 denotes the exact amount of pattern offset 

when the depth difference of object locations A and B is 𝑟. 

 

 

(a) (b) 

Figure 4. Imaging geometry and pattern offset: (a) side view of image geometry; (b) ∆𝑒𝑥𝑎𝑐𝑡  vs. 

∆𝑣𝑖𝑠𝑖𝑏𝑙𝑒 . 

Since, in [7,8], they used simple black and white stripes with equal width, ∆𝑒𝑥𝑎𝑐𝑡 may not be 

measurable depending on the object location from the camera. The observable amount of pattern 

offset, ∆𝑣𝑖𝑠𝑖𝑏𝑙𝑒, is periodic as the distance of object location from the camera is increased or decreased. 

With r and d fixed, the relation between ∆𝑒𝑥𝑎𝑐𝑡 and a depicts that there are ranges of distances where 

detection of depth edges is difficult due to the lack of visible offset even though ∆𝑒𝑥𝑎𝑐𝑡 is significant. 

Refer to Figure 5. They have set the minimum amount of pattern offset that is needed to reliably 

detect depth edges to 2𝑤 3⁄ . In order to extend the detectable range, additional structured lights with 

width of stripe 2𝑤, 4𝑤, etc. are employed to fill the gap of ∆𝑒𝑥𝑎𝑐𝑡 in Figure 5, and the corresponding 

range, 𝑎, of object locations is extended. In contrast, because we use color stripes pattern, ∆𝑒𝑥𝑎𝑐𝑡 is 

equivalent to ∆𝑣𝑖𝑠𝑖𝑏𝑙𝑒. Thus, there is no need to employ several pattern images. 

 

Figure 5. Pattern offset ∆𝑒𝑥𝑎𝑐𝑡vs. detectable range [𝑎𝑚𝑖𝑛,  𝑎𝑚𝑎𝑥]. 

3. Use of Color Stripes Pattern 

We opt to use color stripe patterns by which we can extend the range of distances by filling in the 

gap of ∆𝑒𝑥𝑎𝑐𝑡 in Figure 5. We consider a discrete spatial multiplexing method as a proper choice [10] 

because it shows negligible errors and only a simple matching algorithm is needed. We employ four 
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colors: red, cyan, yellow and white. We also make use of two versions for each color: bright and dark. 

That is, their RGB (Red, Green and Blue) values are [L,0,0], [0,L,L], [L,L,0], and [L,L,L], L = 255 or 128, 

where L denotes lightness intensity. To create a color pattern, we exploit De Brujin sequences [11] of 

length 3, that is, any sequence of three color stripes is unique in a neighborhood. This property helps 

identify each stripe in the image captured by the camera. 

Additionally, we use an associated binary stripes of which RGB values can be represented as 

[L,L,L], L = 255 or 128. That is, we also make use of bright (L = 255) and dark (L = 128) versions for binary 

stipes. We have designed the stripe patterns so that in both color stripes and binary stripes, bright and 

dark stripes appear alternately. The color stripes are associated with the binary stripes so that bright 

stripes in the color pattern correspond to dark stripes in the binary pattern. Refer to Figure 6. This 

setting indeed greatly facilitates the solution when recovering the original color of color stripes in the 

color structured light image by referencing the lightness of binary stripes in the binary structured 

light image. 

  
(a) (b) 

Figure 6. Color stripes pattern with an associated binary pattern: (a) color pattern; (b) binary pattern. 

The most attractive advantage of employing color stripes pattern of De Bruijin sequence is that 

∆𝑒𝑥𝑎𝑐𝑡 is the same as the amount of visible pattern offset ∆𝑣𝑖𝑠𝑖𝑏𝑙𝑒. We can safely set the minimum 

amount of pattern offset necessary for detecting depth edges to 𝑤 2⁄ . In addition, 2𝑤 3⁄  was used in 

[7,8]. Thus, the width of stripe width, 𝑤, is computed using Equation (2) [8]:  

𝑤 =
2𝑓𝑑𝑟𝑚𝑖𝑛

(𝑎𝑚𝑎𝑥 + 𝑟𝑚𝑖𝑛)(𝑎𝑚𝑎𝑥 + 2𝑟𝑚𝑖𝑛)
. (2) 

4. Recovery of the Original Color of Stripes 

The problem of recovering the original color of color stripes in the structured light image is to 

determine the lightness L in each color channel. We exploit the associated binary image as reference 

to avoid decision errors. Figure 7 shows the procedure of recovering the original color of color stripes. 

The procedure consists of two steps. For every pixel in the color structured image, we first decide 

whether it comes from a bright (L = 256) color stripe or dark (L = 128) color stripe. Then, we recover 

the value of L in each color channel.  

Let us denote a pixel in the color structured light image and its corresponding pixel in the binary 

structure light images, C and B, respectively. 𝐶𝑖 and 𝐵𝑖, 𝑖 = 𝑟, 𝑔, 𝑏, represent their RGB values. Since 

bright stripes in the color pattern correspond to dark stripes in the binary pattern, it is very likely that 

a pixel from a bright color stripe appears brighter than its corresponding pixel from the binary stripe 

when they are projected onto the scene. Thus, in most cases, we can make a correct decision simply 

by comparing the max value of 𝐶𝑖 with the max value of 𝐵𝑖, 𝑖 = 𝑟, 𝑔, 𝑏. However, since RGB values 

of stripes in the captured images are affected by the object surface color, we may have decision errors, 

especially for pixels on the object surface that have high values in one channel. For example, when 

object surface color is pure blue [0,0,255] and color stripe is bright red [255,0,0], the RGB values of a 

pixel on the object surface in the color and binary structured images can appear as [200,5,200] and 

[100,100,205], respectively. In this case, only comparison of max channel value gives a wrong answer. 



Sensors 2017, 17, 758 6 of 12 

 

Hence, we employ an additional criterion that compares the average value of all three channels. 

Through numerous experiments, we have confirmed that this simple scheme achieves correct pixel 

classification into bright or dark ones. 

 

Figure 7. Flow of recovering the original color of color stripes. 

Next, we decide the value of each channel, L. Luminance and ambient reflected light can vary in 

different situations. We take an adaptive thresholding scheme to make a decision. In case of a pixel in 

bright color stripes, 𝐶𝑖 ∈ {0, 255}  and 𝐵𝑖 = 128.  We decide that if 𝐶𝑖 − 𝐵𝑖 > 𝑡ℎ𝑟𝐵,  then 𝐶𝑖 =  255 ; 

otherwise, 𝐶𝑖 = 0. 𝑡ℎ𝑟𝐵 is determined as Equation (3) and 𝑠 is computed from training samples: 

𝑡ℎ𝑟𝐵 = 𝑠 ∙ max
𝑖=𝑟,𝑔,𝑏

{𝐶𝑖 − 𝐵𝑖}. (3) 

In the case of a pixel in dark color stripes,  𝐶𝑖 ∈ {0, 128}  and Bi = 255.  We decide that if  

𝐵𝑖 − 2𝐶𝑖 < 𝑡ℎ𝑟𝐷, then 𝐶𝑖 = 128. Otherwise, 𝐶𝑖 = 0. 𝑡ℎ𝑟𝐷 is computed as Equation (4), and 𝑏 and 𝑡 

are estimated from training samples:  

𝑡ℎ𝑟𝐷 = −2𝑏 + 𝑡 ∙ min
𝑖=𝑟,𝑔,𝑏

{𝐵𝑖 − 2𝐶𝑖}. (4) 

We set a bias 𝑏 to ensure that most of the time 𝑡ℎ𝑟𝐷 is positive. This is necessary to deal with 

any positive {𝐵𝑖 − 2𝐶𝑖} close to min{𝐵𝑖 − 2𝐶𝑖} when min{𝐵𝑖 − 2𝐶𝑖} is negative. 

The relationship between the original color and captured color is nonlinear. We seek to use a 

simple statistical method to determine parameters, 𝑠, 𝑏 and 𝑡. We collect a series of images. Each 

set is comprised of three images, 𝑀𝑏, 𝑀𝑔 and 𝑀𝑤, that are captured by projecting black [0,0,0], gray 

[128,128,128] and white [255,255,255] lights, respectively. 𝑀𝑏, 𝑀𝑔 and 𝑀𝑤 can be viewed as three 

image matrices that experimentally simulate the observed black, gray and white color. Note that we 

took every image in the same ambient environment. Usually, the more training samples we collect, 

the more representative parameters we can get. However, hundreds of samples are sufficient for our 

estimation in practice. We use multifarious objects in different shapes and with various textures to 

build scenes. We estimate 𝑠 as follows: 

𝑠 =
1

𝑁
∑min{

minimum(𝑀𝑤𝑖 − 𝑀𝑔𝑖)

maximum(𝑀𝑤𝑖 − 𝑀𝑔𝑖)
}

𝑖

. (5) 

N is the number of sets, minimum(∙) and maximum(∙) are element-wise functions and 𝑖 means the 

ith set. In bright stripes, we already know that 𝐶𝑖 − 𝐵𝑖  should be 127 when the channel value is 

assigned 255 in patterns. Equation (5) is a sampling process about the relationship between the 
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maximum and minimum of 𝐶𝑖 − 𝐵𝑖 when projected on the scene. 𝑡ℎ𝑟𝐵 gives the smallest 𝐶𝑖 − 𝐵𝑖. If 

𝐶𝑖 − 𝐵𝑖 is greater than 𝑡ℎ𝑟𝐵 in any channel, we like to believe its value is 255. 

We initially model 𝑡ℎ𝑟𝐷 as 𝑡 ∙ min
𝑖=𝑟,𝑔,𝑏

{𝐵𝑖 − 2𝐶𝑖} as in Equation (6). This model shares the idea 

behind Equation (3). It makes 𝑡 ∙ min{𝐵𝑖 − 2𝐶𝑖} become the smallest value that min{𝐵𝑖 − 2𝐶𝑖} could 

be. However in dark stripes, 𝐵𝑖 − 2𝐶𝑖 is close to zero. Simply scaling does not affect its sign, which 

might lead to an inappropriate decision. In order to alleviate external interference, we slightly adjust 

the threshold model above according to min{𝐵𝑖 − 2𝐶𝑖} . We increase the threshold when  

min{𝐵𝑖 − 2𝐶𝑖} is rather large or decrease it otherwise. Since 𝑀𝑏, 𝑀𝑔 and 𝑀𝑤 are observed lightness 

values of L = 0, 128 and 255, respectively, 𝑀𝑔𝑖
′ =

𝑀𝑤𝑖−𝑀𝑏𝑖

2
 is an estimation of 𝑀𝑔𝑖. Thus, we adjust the 

threshold value based on the difference between 𝑀𝑔𝑖  and 𝑀𝑔𝑖
′ . Hence, we approximate 𝑏  as in 

Equation (7). The threshold for dark stripes is altered slightly in terms of the sign of min{𝐵𝑖 − 2𝐶𝑖}. 

𝑠 = 0.65, 𝑡 = 0.47 and 𝑏 = 50 were used in our experiments: 

𝑡 =
1

𝑁
∑

minimum(|𝑀𝑤𝑖 − 2𝑀𝑔𝑖|)

mean(|𝑀𝑤𝑖 − 2𝑀𝑔𝑖|)𝑖

, (6) 

𝑏 =
1

𝑁
∑ max{𝑀𝑔𝑖 − 𝑀𝑔𝑖

′ }𝑖 . (7) 

Lastly, we check whether the recovered color is one of the four colors we adopt to use. If not, we 

change it to the most probable color in four. We achieve this in two steps: (1) compare recovered color 

with four default colors to see how many channels match; (2) among the colors having the most 

matching channels, choose the color with minimum threshold difference over mismatching channels. 

Figure 8 shows an experimental result on the recovery of the original color of color stripes. In  

Figure 8b, the gray and green areas in the lower part and the noisy areas around main objects 

correspond to shadow regions. Because shadow regions are colorless, color assignment is 

meaningless. As previously stated, we can ignore texture edges on object surfaces by considering the 

original color of color stripes. 

  
(a) (b) 

Figure 8. Recovery of the original color of color stripes: (a) image captured by the camera;  

(b) recovered color stripes. 

Although empirically determined parameters are used, the whole thing works pretty well in 

non-shadow regions. However, recovered color is meaningless in shadow regions where stripe 

patterns are totally lost. We detect shadow regions and extend color stripes there that otherwise 

would have been projected. Details follow in the next section. 

5. Removal of Shadow Regions 

In structured light imaging, shadows are created in regions that the projector light cannot reach. 

In shadow regions, stripe patterns are totally lost, and parameter controlled depth edge detection is 

not possible there. In order to prevent double edges and missing edges in shadow regions, we 

proactively identify shadow regions and extend color stripes that otherwise have been projected. 

There has been research on natural shadow removal [12,13]. Although their works do not deal 

with the exactly same scene as ours, some conclusions are valuable. When a region becomes shaded, 

it becomes darker and less textured. It indicates that colors and textures are important tools to detect 

shadow regions. After we have recovered the original color of the projected stripes, we divide a 
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recovered color image into simply connected regions of homogeneous color and make a region-based 

decision whether a given region is from shadow or not. We employ the following features. 

5.1. Color Feature 

We convert recovered color into Lab space and build color histogram. As provided by  

Guo et al. [12], we set 21 bins in each channel. All the histograms are normalized by the region area. 

Eliminating parts of non-shadow regions by thresholding of the L channel beforehand saves a great 

deal of time on training and clustering data. 

5.2. Texture Feature 

Textons, a concept stated in [10], can help us build a texture histogram. They construct a series 

of filters that are derived from a normal 2D Gaussian filter. We apply their filter bank to a large 

number of experimental images and categorize the data using a 𝑘 -means algorithm to form 𝑘 

clusters whose mean points are called textons. Every pixel is clustered around its closest texton. 

Texture histograms are also normalized by the region area. 

5.3. Angle Feature 

Shadow is colorless. We look at each pixel in a color pattern image and its corresponding pixel 

in a binary pattern image in the RGB space. Let us denote them by 𝐶 and 𝐵, respectively. We form 

two vectors, 𝑂𝐶⃗⃗⃗⃗  ⃗ and 𝑂𝐵⃗⃗ ⃗⃗  ⃗, from the origin to 𝐶 and 𝐵. The angle between 𝑂𝐵⃗⃗ ⃗⃗  ⃗ and 𝑂𝐶⃗⃗⃗⃗  ⃗ should be 

small for a pixel in shadow. Shadow probability can be estimated using the cosine value of this angle; 

however, this angle feature alone is not enough to correctly classify shadow regions. 

5.4. Classifier Training 

We use color, texture, and angle features together as in Figure 9 to train an SVM classifier. We 

number all four colors with two different lightness values so that every pixel is marked as an integer 

between 1 and 8. We could easily segment the recovered color stripe regions into scraps and cluster it 

into shadow or non-shadow regions. Each scrap is a training example. We sampled roughly 3000 

examples in our experiments. Because the camera is on the upper left side of the projector in our 

experiments, the shadows must be caused by the left or the top side of objects. This prior helps learn 

where to find shadow regions in which we extend stripes. Figure 10 shows that shadow regions are 

accurately detected using our method. Generally, we fill each shadow region with the region above it. 

As for those shadow regions on the top position, we choose the regions on the right side to replace them. 

 

Figure 9. Feature vector used to identify shadow regions. 

   

(a) (b) (c) 

Figure 10. Detection of shadow regions: (a) camera’s view of the scene; (b) cosine value of angle 

between 𝑂𝐵⃗⃗ ⃗⃗  ⃗ and 𝑂𝐶⃗⃗⃗⃗  ⃗; (c) shadow regions detected using the feature vector in Figure 9. 



Sensors 2017, 17, 758 9 of 12 

 

6. Depth Edge Detection 

We use Gabor filtering for depth edge detection as in [7,8]. They applied Gabor filtering to black 

and white stripe patterns to find where the spatial frequency of the stripe pattern breaks. Because 

depth edge detection using Gabor filtering can only be applied to a binary pattern, we consider bright 

stripes patterns and dark stripes patterns separately to create binary patterns as can be seen in  

Figure 11c,d, respectively. Along the depth edge in Figure 11, the upper stripe is supposed to have a 

different color from the lower one. Then, we exploit color information to detect potential depth edge 

locations by applying Gabor filtering to binary pattern images where binary stripes for each color are 

deleted in turn. Note that, as long as there are pattern offsets in the original color pattern image, the 

amount of offset in the binary patterns, which are obtained by deleting the binary stripe for each 

color, becomes larger than the original offset amount. This makes the response of Gabor filtering 

more vivid to changes in periodic patterns. Similar to the previous work [7], we additionally make 

use of texture edges to improve localization of depth edges. In order to get texture edges, we 

synthesize a gray scale image of the scene without stripe patterns simply by averaging max channel 

value of color pattern image and binary pattern image for each pixel. Figure 11 illustrates the process 

of detecting depth edges of which the offset amount is 1.78𝑤. A Gabor filter of size 2𝑤 × 2𝑤 is used. 

Figure 11e,f shows the pattern without dark cyan and gray stripes, respectively. Figure 11g,h is their 

responses of Gabor filter which have been binarized. The regions of low Gabor amplitude, shown in 

black, indicate locations of potential depth edges. We process the bright stripes pattern in the same 

way. Figure 11i,p,q,r includes all the possible combinations of colors along the edges. Thus, the union 

of them yields depth edges. We simply apply thinning operation to the result of the union in order 

to get the skeleton. 

 

Figure 11. The process of detecting depth edges from the recovered color stripes in a shadow region: 

(a) color stripe pattern image; (b) recovered color stripes in the shadow region (a); (c) binary pattern 

for dark stripes; (d) binary pattern for bright stripes; (e) partial pattern without dark cyan stripes;  

(f) partial pattern without gray stripes; (g) Gabor response from (d); (h) Gabor response from (e);  

(i) depth edges between dark cyan and gray stripes; (j) partial pattern without white stripes;  

(k) partial pattern without cyan stripes; (l) partial pattern without red stripes; (m) Gabor response 

from (j); (n) Gabor response from (k); (o) Gabor response from (l); (p) depth edges between cyan and 

white stripes; (q) depth edges between red and cyan stripes; (r) depth edges between red and white 

stripes; and (s) depth edges detected as the union of (i), (p), (q) and (r). 
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7. Experimental Results 

We have coded our method in Matlab (2015b, MathWorks, Natick, MA, USA) and the codes 

have not been optimized. We have used 2.9 GHz Intel Core i5 CPU, 8GB 1867 MHz DDR3 memory 

(Santa Clara, CA, USA) and Intel Graphics ( Iris Graphics 6100, Santa Clara, CA, USA). Figure 12 

shows an example of experimental results. We have compared the performance of our method with 

those of the previous method [8] and using the Kinect sensor. To produce depth edges from a Kinect 

depth map, for every pixel, we scan depth values in its circular region of radius 5, and output the 

pixel if any pixel within its circle has depth difference of 𝑟 ≥ 𝑟𝑚𝑖𝑛. The result clearly shows that our 

method finds the depth edges most correctly for the given parameters while the other methods 

cannot. Figure 12e shows the result of depth edge detection from the Kinect depth map where straight 

depth edge segments are not detected as straight. This is because depth values provided by the Kinect 

sensor along depth edges are not accurate due to interpolation. Irrespective of false positives or false 

negatives, there are two main causes: inaccurate color recovery and stripes will result in false edges. 

However, color recovery errors are well contained because we check on the De Bruijn constraint when 

identifying the original color of stripes. When a shadow region is not detected, false positives occur. 

On the other hand, when some non-shadow regions are treated as shadow near boundaries, incorrect 

depth edges are produced. Table 1 lists computation time for each step of our method shown in 

Figure 2. 

 

 

(a) (b) (c) 

   

(d) (e) (f) 

Figure 12. Depth edge filtering results for 𝑟 ≥ 5 cm: (a) experimental setup; (b) front view; (c) ground 

truth; (d) method in [8]; (e) Kinect; (f) our method. 

Table 1. Computation time. 

Image Size 1280 × 800 720 × 576 

Recover color stripes 54.35 s 39.50 s 

Detect shadow regions 4.10 s 2.12 s 

Extend color stripes in the shadow regions 4.94 s 3.45 s 

Depth edges detection 5.87 s 3.99 s 

Total 69.26 s 49.06 s 

Figure 13 depicts an additional experimental result where we find depth edges that satisfy the 

depth constraint of 𝑟𝑚𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥. We can achieve this by two consecutive applications of Gabor 

filtering to the pattern images: The first and second Gabor filter yield depth edges with 𝑟 ≥ 𝑟𝑚𝑖𝑛 and 

𝑟 ≥ 𝑟𝑚𝑎𝑥, respectively, and we remove the depth edges with 𝑟 ≥ 𝑟𝑚𝑎𝑥. We can see that our method 

outperforms the others. While we have provided raw experimental results without any 

postprocessing operations, the result could be easily enhanced by employing simple using 

morphological operations. 

𝑟𝑚𝑖𝑛  Input = 5cm

[𝑎𝑚𝑖𝑛 , 𝑎𝑚𝑎𝑥 ] = [140𝑐𝑚, 200𝑐𝑚] 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 13. Depth band-pass filtering results for 4 cm ≤ 𝑟 ≤  9 cm: (a) experimental setup; (b) front 

view; (c) ground truth; (d) method in [8]; (e) Kinect; (f) our method. 

8. Conclusions 

We have presented a novel method that accurately controls depth edge filtering of the input 

scene using a color stripes pattern. For accuracy, we employed an associated binary pattern. Our 

method can be used for active sensing of specific 3D information about the scene. We think that if a 

task is to find accurate depth edges, our method provides a better solution. Further research is in 

progress to use the proposed method to create a sketch of 3D reconstruction by compiling depth 

edges with various depth differences. 
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