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Abstract: In wireless sensor networks, the data collected by sensors are usually forwarded to the
sink through multi-hop forwarding. However, multi-hop forwarding can be inefficient due to the
energy hole problem and high communications overhead. Moreover, when the monitored area is
large and the number of sensors is small, sensors cannot send the data via multi-hop forwarding
due to the lack of network connectivity. In order to address those problems of multi-hop forwarding,
in this paper, we consider a data collection scheme that uses mobile data collectors (MDCs), which
visit sensors and collect data from them. Due to the recent breakthroughs in wireless power transfer
technology, MDCs can also be used to recharge the sensors to keep them from draining their energy.
In MDC-based data-gathering schemes, a big challenge is how to find the MDCs’ traveling paths in a
balanced way, such that their energy consumption is minimized and the packet-delay constraint is
satisfied. Therefore, in this paper, we aim at finding the MDCs’ paths, taking energy efficiency and
delay constraints into account. We first define an optimization problem, named the delay-constrained
energy minimization (DCEM) problem, to find the paths for MDCs. An integer linear programming
problem is formulated to find the optimal solution. We also propose a two-phase path-selection
algorithm to efficiently solve the DCEM problem. Simulations are performed to compare the
performance of the proposed algorithms with two heuristics algorithms for the vehicle routing
problem under various scenarios. The simulation results show that the proposed algorithms can
outperform existing algorithms in terms of energy efficiency and packet delay.

Keywords: multiple mobile data collectors; data-gathering; energy constraint; delay constraint;
wireless power transfer

1. Introduction

Wireless sensor networks (WSNs) comprise sensor nodes that are deployed to sense physical or
environmental conditions for a diverse range of applications, including environmental monitoring,
industrial sensing, battlefield surveillance, critical response, and so forth [1]. Traditionally, the sensing
data are forwarded to a sink via multiple hops. However, it is known that multi-hop forwarding
leads to the energy-hole problem, where sensors near the sink consume much more energy, since
they forward more data packets than sensors farther from the sink [2]. Once these sensors run out of
battery power, other sensors can no longer reach the sink, and the network becomes disconnected and
decreases overall network lifetime. Moreover, multi-hop forwarding may incur high communications
overhead due to frequent information exchange among sensors, and data transmission is affected by
interference and collisions [3]. As a result, packet loss increases along with increases in the number
of hops.

To avoid these problems, the mobile data-gathering scheme has been explored in recent
years [4–16]. In such schemes, mobile data collectors (MDCs) (e.g., mobile sensors, robotic vehicles)
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roam in the network, collect data from sensors via short-range communications and bring the
data to the sink. By using MDCs for data collection, reliability in data delivery can be achieved,
and energy consumption in transmitting the data can be reduced significantly. However, MDC-based
data-gathering schemes can only slow down energy depletion of sensors, rather than prevent it.

In this paper, we consider using wireless power transfer technology to keep the WSN operational
without the risk of energy depletion. The wireless power transfer technology is mainly classified into
two categories: far-field [17–22] and near-field [23–25]. In the far-field or radiative technique, power is
transferred by beams of electromagnetic radiation. Recently, this technique has been used in stationary
wireless sensors networks in order to transfer power to sensor nodes [19–22]. In the near-field technique,
power is transferred by magnetic fields or by electric fields. For example, in [24], Kurs et al. showed that
wireless power transfer is feasible by using a technique called magnetic resonant coupling, i.e., electric
power can be transferred from one storage device to another device without wires. The near-field
technique has high power transfer efficiency at a shorter distance. In this work, the near-field technique
is considered, since we can exploit the mobility of MDCs, which can approach the sensors and achieve
high energy transfer efficiency, i.e., MDCs can recharge sensors to a certain energy level when they
visit them periodically, such that the WSN remains operational without the risk of energy depletion.

In MDC-based data-gathering schemes, minimizing movement energy is critical, since MDCs
consume most of their energy for movements. Balancing energy consumption is also important in
the case of multiple MDCs. For example, some MDCs may travel a longer distance, compared to
others, which results in unbalanced energy consumption and being unable to return to the sink.
Meanwhile, guaranteeing packet delivery delays is also crucial for achieving acceptable quality of
service in some applications. For example, the detection of critical events (e.g., intruder detection,
forest fire detection [26]) should be reported to the sink within a predetermined time interval.

There have been many studies on data gathering in WSNs using MDCs [4–16]. In addition,
some studies focused on energy replenishment in WSNs using MDCs [25,27–29]. However, most of
the previous studies did not consider important factors, such as the MDCs’ energy consumption for
movement, their limited battery capacity, their travel time and the recharging time of the sensors.
Moreover, none of them considered minimizing total energy, in cases of multiple MDCs, while meeting
packet delivery delay requirements.

Therefore, in this work, we focus on finding the MDCs’ paths that minimize total energy
consumption while satisfying delay and energy constraints. We first formulate an integer linear
programming (ILP) optimization problem. The objective of ILP formulation is to find the paths
for MDCs that minimize the total energy consumption while guaranteeing that packets should
reach the sink within a given deadline, and in each period, the energy consumption of each MDC
(including energy for wireless charging, moving and data reception) cannot exceed its energy capacity
limit; and every sensor should have residual energy above a minimum threshold at all times.

We note that finding the optimal paths for MDCs using the ILP is computationally expensive,
particularly when the number of MDCs or the number of sensors is large. Therefore, in this paper, we
propose efficient path selection algorithms that have two phases: clustering and group membership
adjustment. We propose two clustering algorithms, angle-based clustering (ABC) and angle-based
clustering with path-length ratio (ABC-PR), for partitioning the sensors into multiple groups. Then,
two group-membership adjustment algorithms, nearest node assignment (NNA) and node assignment
with maximal path-length decrease (MPD), are proposed to minimize the energy consumption of the
MDCs and meet constraints, including the packet delay and residual energy of the sensors.

In the proposed clustering algorithms, nodes are partitioned into different groups in such
a way that the travel distance of each MDC is close to that of the other MDCs. Then, in the group
membership-adjustment algorithms, the group that has the maximum travel distance is selected.
From this group, one node is reassigned to its clockwise adjacent group. Specifically, when finding
a node for reassignment, NNA selects the node that is the nearest to its clockwise adjacent group,
and MPD selects the node whose membership change reduces the path length the most.
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Simulations and analysis are conducted to evaluate the performance of the proposed algorithms
in various scenarios. The performance of the proposed algorithms is compared with two well-known
heuristic algorithms for the vehicle routing problem (VRP) and VRP variants. Simulation results show
that the proposed algorithms outperform existing approaches in terms of energy consumption and
delay. Simulation results also indicate that MPD with ABC-PR shows the best performance, compared
to others, and achieves a near-optimal solution.

The rest of the paper is organized as follows. In Section 2, we present an overview of existing
studies related to our work. Section 3 introduces general assumptions and the network model
considered in this study. In Section 4, the problem definition and problem formulation are presented.
In Section 5, we describe the proposed two-phase path-selection algorithm. Section 6 presents the
setup for simulation and performance analysis. Finally, we conclude the paper in Section 7.

2. Related Work

In this section, we present some existing studies that considered mobile data collectors for data
collection and recharging sensor nodes in WSNs and then compare those studies with our work.

Many recent studies have been conducted for data collection in WSNs using a single MDC with
different objectives [4–12]. For instance, three studies [6–8] focused on the minimization of packet delay
with meeting a given deadline. Specifically, Xing et al. [6] proposed a rendezvous-based data collection
scheme in which a group of nodes acts as rendezvous points to buffer and collect data received from
source nodes and deliver them to a mobile base station within a given time period. In [7], Kansal et al.
described a problem that assumes an MDC must traverse a given path within a predetermined
time interval, with the objective of controlling the speed of the MDC in order to maximize data
collection. A heuristic algorithm was proposed by Sugihara and Gupta [8], which considers both
timing constraints and sensor locations to reduce packet delay in a data mule scheduling problem.

Somasundara et al. [9] and Gu et al. [10] studied the scheduling problem of MDC to avoid data
loss at sensors due to buffer overflow. For instance, in [10], Gu et al. first partitioned the sensor nodes
into multiple groups, depending on their locations and data-generation rates. Then, in each group,
the MDC is scheduled to visit stationary sensors at a sufficient frequency to minimize buffer overflow.

In addition, Wang et al. [11] focused on the problem of maximizing network lifetime. They considered
a mobile sink for visiting some sensor nodes in the network and formulated a linear programming
optimization problem to determine the optimal path for the mobile sink in order to maximize
network lifetime.

However, those works use a single MDC to collect data from the entire area. The MDC will take
a long time to finish one tour when the size of the area is large. As a result, packet delay increases.
Thus, only one MDC may not be useful for delay-sensitive applications. To minimize packet delay,
this work uses multiple MDCs to collect data from sensors.

There are a number of studies that use multiple MDCs for data collection in WSNs [13–16].
For example, Keung et al. [14] and Aslanyan et al. [15] considered multiple MDCs for data collection
from source nodes. They assumed that MDCs have random mobility patterns. Because the MDCs have
random mobility, those schemes cannot estimate packet delay or the travel time of MDCs. Jea et al.
also proposed a multiple MDC-based data collection scheme [16]. The authors considered MDCs
that follow parallel straight lines for their movement and that collect data from sensors via multiple
hops. This scheme is suitable for uniformly-distributed sensor networks. However, that type of MDC
movement is not practical, because different obstacles may block the paths of the MDCs. In addition,
all of the listed studies considered MDCs only for data collection.

In contrast, our work considers multiple MDCs that not only collect data from the sensors, but also
replenish the energy in the sensors to keep the WSN operational without the risk of energy depletion.
Moreover, we focus on finding MDCs’ paths that minimize total energy consumption, with delay and
energy constraints for each MDC.
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There have been some studies that use MDCs to recharge sensor nodes’ batteries wirelessly
via wireless power transfer [25,27]. In those works, the collected data are forwarded to the sink
through multiple hops. For example, in [25], Xie et al. considered a mobile charging vehicle that
periodically recharges the sensor nodes’ batteries to keep the energy level of each sensor above a
minimum threshold. Peng et al. [27] developed a proof-of-concept prototype, and experiments were
performed on the prototype to estimate its energy replenishment performance in small-scale networks.
Although sensors’ energy was replenished in those works, a significant amount of sensor energy
was still wasted due to the multi-hop data transmissions. In our work, MDCs are used for energy
replenishment, as well as data collection when visiting sensors, bringing the collected data to the sink
within a predetermined time interval.

There are few works that consider MDCs for both collection and energy replenishment in
WSNs [28,29]. For example, Pan et al. [28] studied an energy replenishment and data collection
problem considering wireless charging, flow routing and data transmission constraints to determine
the specific sensors, which need to be recharged using a wireless charging vehicle, so that network
lifetime is maximized. However, those works did not consider delay requirements, which is important
for achieving an acceptable quality of service. In addition, travel time of an MDC, the time consumed
for recharging sensors and the MDC’s moving energy consumption were neglected in those works.

In contrast, we consider every possible energy consumption of the MDCs, which includes MDCs’
movement energy, energy consumption for receiving data from sensors and recharging the sensors.
Moreover, travel time and sojourn time of the MDCs at each sensor node are considered in our work.

There exist some similarities between our work and the vehicle routing problem (VRP) [30] with
its variants. The VRP is defined as finding routes for vehicles to deliver goods between a depot and
customers to minimize the vehicles’ total travel cost. Among different variants of VRP, our work
is related to VRP with time windows (VRPTW) [31]. In VRPTW, vehicles are scheduled to visit all
customers within a pre-defined time window. On the other hand, in this study, we consider both
energy and timing constraints for each MDC. We also compare the performance of our proposed
algorithms with two heuristic algorithms for VRP.

3. Network Model

In this section, we present the network model of the proposed scheme in detail. Figure 1 illustrates
the network model of our proposed scheme. The considered network consists of a number of stationary
sensors and a number of mobile data collectors. Sensors are deployed randomly in a circular area
around the sink, with radius R, and MDCs are used to collect data from sensors and to deliver the data
to the sink. In this paper, we denote N and K as the total numbers of sensors and MDCs, respectively.
It is assumed that the sensor positions are known a priori. Each sensor periodically generates data
and saves them in its buffer until an MDC visits it and collects the data. Besides, we assume that
the generated data over the WSN should periodically be delivered to the sink within time interval D.
Thus, each MDC needs to finish its tour within the deadline, D. Sensors are provided with a limited
battery and consume energy for operation. Thus, the WSN can only remain operational for a limited
amount of time. To keep the sensors from completely draining their energy and to keep the WSN alive,
MDCs periodically recharge the visited sensors to a certain energy level. Each sensor node (except the
sink) is visited by only one MDC. Each MDC starts its journey at the sink, and its speed is v. When it
arrives at a sensor node, say sensor i, it will spend time ti to charge the sensor node’s battery wirelessly
via wireless power transfer [24] and collects data from this sensor. After ti, the MDC leaves sensor i
and travels to the next sensor on its path. Moreover, let Q denote the battery capacity of each MDC,
which is fully charged at the beginning of the tour. When the MDC finishes visiting sensors, it brings
the collected data back to the sink. After that, the MDC battery will be replaced [25] to get it ready for
the next tour with a fully-charged battery.
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Figure 1. Network Model.

In this work, the energy model is the one referred to by Liu et al. [32]. Let eS denote the energy
consumption for sensing one bit of data. Furthermore, eT and eR denote the energy usage per bit of
transmission and reception electronics, respectively. The energy consumed by a transmission amplifier
for transmitting one bit is ρ lγ, where γ is the signal decline factor, and l is the distance between
transmitting and receiving nodes. Transmission energy etx and reception energy erx for one bit of data
can be calculated as:

etx = eT + ρlγ

erx = eR
(1)

4. Problem Definition and Formulation

From the given description of the considered network and corresponding model, in this section,
we define and formulate our problem.

4.1. Problem Definition

This work aims at finding paths for MDCs to minimize the total energy consumption while
satisfying delay and energy constraints. The problem of finding paths can be formally defined
as follows.

Definition 1. Delay-constrained energy minimization (DCEM): Find the MDCs’ paths that minimize the total
energy consumption of all MDCs with the delay constraints that packets should reach the sink within a given
deadline, D, the energy consumption of each MDC cannot exceed its energy capacity, Q, in each period, and
every sensor should have at least the minimum residual energy, emin, all of the time.

Note that DCEM is a more generalized problem than VRP [30]. Since the VRP is NP-hard [30],
DCEM is also NP-hard.

4.2. Problem Formulation

Now, we present an integer linear programming (ILP) formulation for DCEM. Definitions for
symbols used in the ILP formulation are presented in Table 1.
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Table 1. List of symbols. MDC, mobile data collector.

Symbol Definition

N Number of nodes
K Number of MDCs
V Set of nodes, V = {1, . . . , N}
M Set of MDCs, M = {1, . . . , K}
ti Sojourn time of MDC at sensor i, (s)

Ech
i Energy transfer rate from MDC to sensor i, (J/s)

Ek
Q Energy consumption of MDC k to charge visited sensors, (J)

Em Energy consumption of MDC to travel one meter, (J/m)
cij Travel distance from node i to node j, (m)

Ek
Mv Energy consumption of MDC k for moving, (J)

erx Energy consumption to receive one bit of data, (J/bit)
D Deadline of packet delay, (s)
r Data generation rate of a sensor, (bits/s)

Ek
rx Energy consumption of MDC k to receive data from visited sensors, (J)

Q Energy capacity of an MDC, (J)
v Speed of MDCs, (s)
η Energy transfer efficiency

emin Minimum residual energy of sensors, (J)
tij Travel time from node i to node j, (s)
Tk Time for one round journey of MDC k, (s)
eS Energy consumption to generate one bit of data, (J/bit)
etx Energy consumption to transmit one bit of data, (J/bit)
uk

i Number of nodes visited by MDC k up to node i

Let us assume that a network consists of a set of nodes, V = {1, . . . , N}, where the element 1
represents the sink, and a set of arcs, E = {(i, j) : i, j ∈ V, i 6= j}. Furthermore, let us define M as a set
of MDCs where M = {1, . . . , K}.

Let cij denote the travel distance (Euclidean distance) from node i to node j. We also define xk
ij as a

binary decision variable that becomes one if arc(i, j) is on the paths of the MDC k, k ∈ M, but becomes
zero otherwise. That is,

xk
ij =

{
1 if arc(i, j) is on path of MDC k. i, j ∈ V, k ∈ M

0 o/w
(2)

Furthermore, uk
i is defined as the number of nodes visited by MDC k up to node i. We also define

tij as the travel time between node i and node j. Recall that ti is the sojourn time of the MDC at node
i for charging and collecting data. Note that t1 represents the sojourn time of the MDC at the sink.
Each MDC spends a small amount of time, t1, at the sink to replace its own battery. Tk refers to the time
for one round journey of MDC k or the time for one period. Therefore, Tk can be calculated as follows:

Tk =
N

∑
i=1

N

∑
j=1

xk
ij(tij + ti)− t1, k = 1, . . . , K (3)

Let Em denote energy consumption by the MDC to travel one meter, and r is the data-generation
rate of a sensor (in bits per s). Furthermore, Ech

i denotes the energy transfer rate from the MDC to
sensor i. Recall that erx is the energy consumption to receive one bit of data. We define Ek

Q, Ek
Mv and

Ek
rx, respectively, as energy consumed by MDC k for wireless charging of visited sensors, its movement
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energy and the energy consumption to receive data from visited sensors during its one-round journey.
Therefore, in each period, the total energy consumption of MDC k (k ∈ M) can be calculated as follows:

Ek
Q + Ek

Mv + Ek
rx = Ech

i ti

N

∑
i=1

N

∑
j=2

xk
ij + Em

N

∑
i=1

N

∑
j=1

xk
ijcij + rerxD

N

∑
i=1

N

∑
j=2

xk
ij (4)

Each sensor consumes energy for generating data and transmitting buffered data to the MDC.
Recall that etx and eS represent the consumed energy for transmitting and generating one bit of data,
respectively. Furthermore, let η denote the energy transfer efficiency between the MDC and sensors.
Then, after generating the data, transmitting them to the MDC and energy replenishment, the residual
energy at sensor i by the end of a period is:

Ech
i ηti − rTkeS − rTketx, i = 2, . . . , N (5)

We replace Tk from Equation (3); then, Equation (5) can be rewritten as follows:

Ech
i ηti − r

( N

∑
i=1

N

∑
j=1

xk
ij(tij + ti)− t1

)
eS − r

( N

∑
i=1

N

∑
j=1

xk
ij(tij + ti)− t1

)
etx, i = 2, . . . , N (6)

Now, the ILP problem can be formulated as follows:

minimize Ech
i ti

K

∑
k=1

N

∑
i=1

N

∑
j=2

xk
ij + Em

K

∑
k=1

N

∑
i=1

N

∑
j=1

xk
ijcij + rerxD

K

∑
k=1

N

∑
i=1

N

∑
j=2

xk
ij (7)

subject to
N

∑
i=1

K

∑
k=1

xk
ij = 1, j ∈ V \ {1} (8)

N

∑
j=1

K

∑
k=1

xk
ij = 1, i ∈ V \ {1} (9)

N

∑
i=1

xk
ip −

N

∑
j=1

xk
pj = 0, k ∈ M, p ∈ V \ {1} (10)

N

∑
j=2

xk
1j = 1, k ∈ M (11)

N

∑
i=2

xk
i1 = 1, k ∈ M (12)

N

∑
i=1

N

∑
j=1

xk
ij(tij + ti)− t1 ≤ D, k ∈ M (13)

Ech
i ti

N

∑
i=1

N

∑
j=2

xk
ij + Em

N

∑
i=1

N

∑
j=1

xk
ijcij + rerxD

N

∑
i=1

N

∑
j=2

xk
ij ≤ Q, k ∈ M (14)

Ech
i ηti − r

( N

∑
i=1

N

∑
j=1

xk
ij(tij + ti)− t1

)
es − r

( N

∑
i=1

N

∑
j=1

xk
ij(tij + ti)− t1

)
etx ≥ emin, i ∈ V \ {1} (15)

uk
1 = 1, k ∈ M (16)

uk
i − uk

j + 1 ≤ (N − 1)(1− xk
ij), k ∈ M, i, j ∈ V \ {1} (17)
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The objective function for the formulation is represented by Equation (7). Recall that every MDC
consumes energy for wireless charging of visited sensors, its movement and receiving data from visited
sensors. In Equation (7), the first, second and third term represent the energy consumption by all
MDCs for wireless charging, moving and data reception, respectively. Therefore, Equation (7) presents
the total energy consumption of all MDCs. The objective is to minimize the total energy consumption
by finding optimal paths of MDCs.

Equations (8)–(17) represent constraints on the paths of the MDCs. More specifically,
Constraints (8) and (9) ensure that every node except the sink is visited exactly once by only one MDC.
For example, if MDC k arrives at node j (j ∈ V \ {1}) from node i, then xk

ij = 1. Since ∑N
i=1∑K

k=1 xk
ij = 1,

other MDCs from any other node cannot visit node j. Furthermore, when MDC k leaves node j, it only
goes to one node among the N nodes to satisfy Constraint (9).

Constraint (10) is the route continuity constraint, which ensures that once an MDC arrives at a
node, it must also leave that node. Specifically, if MDC k arrives at a node, say node p from node i,
then xk

ip = 1. Constraint (10) is satisfied whenever xk
pj = 1, i.e., MDC k leaves node p and travels to

another node j. Constraint (11) ensures that MDC k starts its tour from the sink to any other node, say
node j (i.e.,∑N

j=2 xk
1j = 1), and Constraint (12) ensures that MDC k returns to the sink from exactly one

node among the N nodes (i.e.,∑N
i=2 xk

i1 = 1). Recall that 1 represents the sink.
Constraint (13) is the delay constraint for each MDC. It ensures that time for one round journey

of MDC k (k ∈ M), which includes the travel and charge time of the MDC, cannot exceed the given
deadline, D. The time MDC k needs to finish a one-round journey is estimated in Equation (3).
Constraint (14) limits the maximum energy consumption of each MDC. More specifically, it ensures
that energy consumption by every MDC, which includes wireless charging, moving and data reception,
cannot exceed its energy capacity, Q. The total energy consumption of MDC k (k ∈ M) is calculated
in Equation (4). Constraint (15) ensures that at the end of the current period, every sensor has
the minimum residual energy, emin, after being recharged by the MDC and consuming energy for
generating and transmitting data. The residual energy of sensor i (i ∈ V \ {1}) at the end of a period is
presented in Equation (5).

Constraints (16) and (17) eliminate the sub-tours in the paths of the MDCs in a way similar
to Miller–Tucker–Zemlin (MTZ) sub-tour elimination of the traveling salesman problem (TSP) [33].
MTZ sub-tour elimination constraints eliminate a collection of the disjoint sub-tour that together
satisfies Constraints (8)–(15). Recall that uk

i is the number of nodes visited by MDC k up to node i.
Constraint (16) sets the value of uk

i for the sink (i = 1) to be one, i.e., uk
1 = 1, and Constraint (17)

ensures that uk
j ≥ uk

i + 1, when xk
ij = 1. Thus, Constraints (16) and (17) together prohibit the formation

of any sub-tour within nodes in V \ {1}.

4.3. Alternative Objectives

In this work, we focus on minimizing the total energy consumption. Depending on the
requirements, alternative objectives can be considered. For example, the travel distance can be a
main concern in some cases. Then, the problem can be defined as minimizing the total distance
traveled by all MDCs and satisfying the delay and energy constraints. That is,

minimize
N

∑
i=1

N

∑
j=1

K

∑
k=1

cijxk
ij (18)

Meanwhile, in some applications, mainly packet delay needs to be considered. In such a case,
the objective can be minimizing the maximum tour time of the MDCs. Since data delivery relies on
the physical movement of the MDCs, packet delay can be reduced by minimizing their tour time.
Let τ denote the maximum time from among the MDCs to finish one round journey. Thus, the problem
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can also be expressed as follows: minimize the maximum tour time of MDCs, τ, while satisfying the
delay and energy constraints. That is,

minimize τ (19)

subject to
N

∑
i=1

N

∑
j=1

xk
ij(tij + ti)− t1 ≤ τ, k ∈ M (20)

τ ≤ D (21)

In this case, delay Constraint (13) is replaced with Constraints (20) and (21). More specifically,
Constraint (20) ensures that the travel time and charging time of every MDC cannot exceed the
maximum tour time, τ. Constraint (21) ensures that the maximum time an MDC needs to finish a
one-round journey cannot exceed the given deadline, D.

5. Path Selection Algorithm with Delay and Energy Constraints

To find the optimal solution for the DCEM problem, the proposed ILP formulation can be solved
using available optimization tools. However, it requires highly expensive computation and a long
execution time when the number of MDCs or the number of sensors is large. Therefore, in this work, we
propose efficient two-phase path-selection algorithms with delay and energy constraints. In Phase 1,
clustering is performed to partition the sensors into several groups, and in Phase 2, the membership
of each group is adjusted in order to meet the constraints and minimize the travel distances of
MDCs. This paper proposes two clustering algorithms, angle-based clustering (ABC) and angle-based
clustering with path-length ratio (ABC-PR). Then, two group membership-adjustment algorithms,
nearest node assignment (NNA) and node assignment with maximal path-length decrease (MPD),
are proposed. We first present the clustering algorithms. Then, two group membership-adjustment
algorithms are described.

5.1. Clustering Algorithms

In our scheme, the sensor nodes are partitioned into K groups, where K is the number of MDCs
used in the network. The generated data should be delivered to the sink within a given deadline, D,
and the energy consumption of each MDC cannot exceed its energy capacity, Q. Thus, each MDC
needs to finish its tour within delay constraint D and energy constraint Q. In order to satisfy the
deadlines, it is desirable for MDCs to have a tour where the length is close to other MDCs, so that each
MDC can meet the deadlines. Therefore, we propose the ABC and ABC-PR algorithms. The objective
of ABC and ABC-PR is to divide the sensor nodes into K groups such that the travel distance of each
MDC is close to the distance of the other MDCs.

5.1.1. Angle-Based Clustering

The main idea of the ABC algorithm is simple. ABC first divides the entire circular area into K
sectors with equal angles, and the nodes located in the same sector belong to the same group. Then,
the group (sector) angle is increased or decreased to transfer some nodes from one group to another.
This process is repeated between two adjacent groups in a cyclic pattern in order to balance the travel
distances of the MDCs with each other.

Figure 2 illustrates node grouping based on ABC. In Figure 2, the sink is located at the center of
the area. Let θi denote the angle of group i, (i = 1, . . . , K), and assume there are four MDCs, i.e., K = 4.
Therefore, in the example in Figure 2a, the area is divided into four sectors such that θ1 = θ2 = θ3 = θ4.
The nodes located in the same sector are considered as the same group members, and the sink is
included in every group. In each group, a minimum spanning tree (MST) is built over the nodes, where
each tree is rooted at the sink, as shown in Figure 2a. Then, the length for the MST of each group is
estimated. Let us define Li and Lavg as the length of the MST of group i (i = 1, . . . , K) and the average
length of the MSTs in all groups, respectively. Furthermore, ζ represents a small positive constant.
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If the difference between Lavg and Li (i = 1, . . . , K) is less than or equal to ζ, we obtain the nodes for
K groups. Otherwise, the MST length of the two groups is compared cyclically. Specifically, ABC
compares the MST length of group i with i + 1, group i + 1 with i + 2 and group K with i. Let α

denote a rotation angle, and α < π
K . In every comparison, if Li > Li+1, θi is decreased by α and θi+1 is

increased by α. Otherwise, it is vice versa.
In the example in Figure 2a, L1 < L2. Therefore, θ1 is increased by rotation angle α, and θ2 is

decreased by α, as shown in Figure 2b. As a result, Node 6 becomes a member of Group 1 instead
of Group 2. The MST lengths for both groups are newly estimated with the addition of Node 6 in
Group 1 and the exclusion of Node 6 from Group 2. After one iteration, nodes in the four groups are
shown in Figure 2c. The new Lavg is estimated, and the difference between Lavg and Li (i = 1, . . . , K)
is examined. If the difference is greater than ζ, the next iteration begins. Let β denote a positive
constant, and β < 1. For the next iteration, α is set to βα, and the same process is applied. This process
is repeated until the difference between Lavg and Li is either less than or equal to ζ or α is less than
or equal to the threshold value, ε, where ε ≤ 1. Figure 2d shows the final node groups obtained
from ABC. The clustering algorithm is presented in Algorithm 1 (see Appendix A for the detailed
clustering algorithm). In Algorithm 1, when ABC is used, ω is obtained from Algorithm 2.

(a) (b)

(c) (d)

Figure 2. An example of angle-based clustering: (a) initial partitioning of the area and the minimum
spanning tree (MST) of the sensors; (b) α rotation between Group 1 and Group 2; (c) nodes in the four
groups after the first iteration; and (d) the final node groups.
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Algorithm 1 Clustering algorithm.
Input: V, M, α, ζ, β

V: Set of sensors . V = {1, 2, ..., N}
M: Set of groups or MDCs . M = {1, 2, ..., K}
α: Rotation angle . α < π

K

ζ: Small positive constant . ζ ≥ 1

β: Positive constant . 0 < β < 1

Output: f inΩK = {N1, N2, ..., NK} . Set of nodes for K groups

1: Initialization;
2: Ni = Set of nodes of group i, i ∈ M;
3: Divide the area into K sectors where θ1 = θ2 =. . . = θK = 2π

K and curΩK = {N1, N2, ..., NK};
4: For i = 1, . . . , K, calculate minimum spanning tree (MST) length Li and average length of all

MSTs Lavg;
5: if |Li − Lavg| > ζ then . for i ∈ M
6: for each (Gi%K) group and (Gi+1%K) group do
7: use ABC or ABC-PR to update ω;
8: update θi and θi+1 to θi −ω and θi+1 + ω, respectively;
9: update Li and Li+1 using Ni, Ni+1, θi, θi+1;

10: end for
11: end if
12: Calculate new Lavg;
13: if |Li − Lavg| > ζ then . for i ∈ M
14: update α to βα;
15: goto 6;
16: else
17: f inΩK = curΩK;
18: exit;
19: end if

Algorithm 2 Angle-based clustering (ABC).

1: function ABC(Li,Li+1,α)
2: if Li > Li+1 then
3: ω = α;
4: else if Li < Li+1 then
5: ω = −α;
6: else
7: ω = 0;
8: end if
9: return ω

10: end function

5.1.2. Angle-Based Clustering with Path-Length Ratio

In ABC, θi is increased or decreased by rotation angle α, which remains the same for one iteration.
For the second iteration, α is set to βα, and so on. Note that in ABC, the value of the rotation angle does
not reflect the path lengths of the groups. As a result, when the ABC algorithm is used, travel distance
for MDCs remains unbalanced, and an MDC may travel a longer distance, compared to the others.
In order to address the problem of ABC, ABC-PR first estimates the path-length ratio to determine
how much angular rotation is needed to balance the travel distances of the MDCs between two groups.
After that, actual rotation angle α

′
is calculated based on the path-length ratio and rotation angle α.

More specifically, in the MST length comparison between groups i and i + 1, actual rotation angle α
′

is set to max(Li ,Li+1)
Li+Li+1

α. When Li > Li+1, ABC-PR decreases α
′

from θi, and increases α
′

to θi+1. On the

other hand, if Li < Li+1, θi and θi+1 are increased and decreased by α
′
, respectively. The estimation of

α
′

in ABC-PR is presented in Algorithm 3.
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Now, we estimate the time complexity of the clustering algorithm for one iteration. In the
clustering algorithms, the MST lengths of node groups are estimated. The maximum number of nodes
in each group is N, and the time complexity for finding MST is O(N2). The number of calculations
for the rest is constant. Therefore, the time complexity of the clustering algorithms can be expressed
as O(N2).

Algorithm 3 Angle-based clustering with path-length ratio (ABC-PR).

1: function ABCPR(Li,Li+1,α)
2: α

′
=

max(Li ,Li+1)
Li+Li+1

α . Calculate α
′

3: if Li > Li+1 then
4: ω = α

′
;

5: else if Li < Li+1 then
6: ω = −α

′
;

7: else
8: ω = 0;
9: end if

10: return ω
11: end function

5.2. Group Membership-Adjustment Algorithms

We obtained K sensor groups from the clustering algorithms, and each MDC is assigned
to a group for collecting data and charging the sensor nodes’ batteries. In order to meet the
constraints of each MDC and minimize the total travel distance of the MDCs, we propose two group
membership-adjustment algorithms: nearest node assignment and node assignment with maximal
path-length decrease.

5.2.1. Nearest Node Assignment

In the NNA algorithm, an MDC’s path for a group is first determined by the twice around
the tree heuristic algorithm of TSP [34]. The borderline between a group and its clockwise adjacent
group is defined as the slant. NNA selects the group that has the maximum travel distance among
all of the groups. From this group, the node that is nearest to the slant is assigned to its clockwise
adjacent group in order to reduce the travel distance of the group with maximum travel distance.
The process is repeated to achieve the minimum travel distance, while each MDC satisfies delay and
energy constraints. More specifically, let us define b as the number of rounds, and each round consists
of S steps. We also define Gi as a group with the maximum travel distance of MDC, and Gi−1 is its
clockwise adjacent group. Let MDCi and MDCi−1 denote the MDCs for Gi and Gi−1, respectively.
Furthermore, let us assume that Ni and Ni−1 are sets of nodes in Gi and Gi−1, respectively. Let h denote
a node in Ni that is nearest to the slant. Therefore, h is re-assigned from Ni to Ni−1, and find the new
path for both MDCs. This process is repeated S times. Among the S steps, NNA select the paths for
MDCs that lead to minimizing the total travel distance while meeting delay and energy constraints for
each MDC. Then, the next round begins, and the process is repeated until no further decrease in the
total travel distance can be achieved.

Figure 3 illustrates the node assignment process of the proposed algorithm. In the example
in Figure 3a, nodes are partitioned into four groups using the clustering algorithm. In each group,
an MDC is employed to collect data and recharge sensor nodes’ batteries. The path of each MDC is
obtained by using the twice around the tree heuristic algorithm of TSP, and the path length is estimated.
As shown in an example in Figure 3a, MDC3 has the maximum travel distance and node set of Group 3,
N3 = {7,8,9,10}. From N3, Node 7 is chosen for reassignment from Group 3 to Group 2, since Node
7 is nearest to the slant. Therefore, Node 7 is removed from N3 and added to N2, i.e., N2 = {5,6,7}
and N3 = {8,9,10}. New paths of MDC2 and MDC3 are formed with the current nodes of each group,
as shown in Figure 3b. The group membership-adjustment algorithm is presented in Algorithm 4



Sensors 2017, 17, 742 13 of 23

(see Appendix B for the detailed group membership-adjustment algorithm). In Algorithm 4, when
NNA is used, h is obtained from Algorithm 5.

(a) (b) (c)

Figure 3. An example of group membership-adjustment algorithms: (a) initial route of MDCs,
(b) nearest node assignment and (c) node assignment with maximal path-length decrease.

Algorithm 4 Group membership-adjustment algorithm.
Input: M, f inΩK, D, Q, P

M: Set of groups or MDCs . M = {1, 2, ..., K}
f inΩK: Set of nodes for K groups . f inΩK = {N1, N2, ..., NK}
D: Deadline for delay

Q: Energy capacity of MDC

P: Minimum residual energy of sensor

Output: R = {R1, R2, ..., RK} . Set of paths for K MDCs

1: Initialization;
2: for each group do
3: use TSP heuristics to find path of MDCi, Ri;
4: calculate di, Ti, Ei, Pi; . di: travel distance of MDCi, Ti: travel time of MDCi, Ei: energy

consumption of MDCi, Pi: residual energy of sensor
5: end for
6: while Ztemp ≥ Zcur do
7: update Ztemp to Zcur and update R to Rcur;
8: increment b; . b = no. of rounds
9: while s ≤ S do . S = no. of steps

10: find group i, which has the maximum travel distance of MDC;
11: use NNA or MPD to find node h, which will be re-assigned;
12: remove h from Ni and add h to Ni−1;
13: find new Ri, Ri−1 ;
14: calculate new di, Ti, Ei and Pi;
15: calculate new di−1, Ti−1, Ei−1 and Pi−1;
16: calculate total travel distance Z;
17: end while
18: Rcur = set of MDCs’ paths with min(Z) and {Ti ≤ D && Ei ≤ Q && Pi ≥ P};
19: update Zcur to min(Z);
20: end while
21: return R as the output.
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Algorithm 5 Nearest node assignment (NNA).

1: function NNA(Ni, slant)
2: h = node in Ni nearest to slant;
3: return h
4: end function

Algorithm 6 Node assignment with maximal path-length decrease (MPD).

1: function MPD(Ni, Ni−1)
2: for each h ∈ Ni do
3: tempNi = ∅; tempNi−1 = ∅;
4: tempNi = Ni \ {h}; tempNi−1 = Ni−1 ∪ {h}; . examines every node membership change

from Ni to Ni−1
5: Ri = tspHeuristic(tempNi); . find Ri using tempNi
6: Ri−1 = tspHeuristic(tempNi−1); . find Ri−1 using tempNi−1
7: Calculate Y = di + di−1; . Y: travel distance of MDCi and MDCi−1
8: end for
9: h = node in Ni whose membership change gives min(Y);

10: return h
11: end function

5.2.2. Node Assignment with Maximal Path-Length Decrease

In NNA, from all nodes in Ni, the node that is nearest to the slant is chosen for reassignment
to the new group. However, such a simple strategy may not result in the greatest travel distance
reduction. Moreover, there are cases where the newly assigned node is far away from the current
nodes of Gi−1. In such a case, the path length of MDCi−1 may increase significantly. In order to
address the problem of NNA algorithm, MPD first evaluates the path lengths of MDCi and MDCi−1
by considering every possible node membership change from Ni to Ni−1. Then, the node is selected
from Ni, whose membership change reduces the path length of both MDCs the most.

Let us define di and di−1 as the travel distances of MDCi and MDCi−1, respectively. Furthermore,
let Y = di + di−1. In MPD, each node is assigned from Ni to Ni−1 sequentially, and Y is estimated in
every case. Let h denote a node in Ni whose membership change gives the minimum Y. Therefore, h is
actually reassigned to Ni−1, and the other nodes remain in Ni. As shown in the example in Figure 3c,
Node 8’s membership changes from Group 3 to Group 2 since the minimum Y can be achieved. The rest
of the steps are similar to NNA. In Algorithm 4, when MPD is used, h is obtained from Algorithm 6.

Now, we compute the time complexity of the group membership-adjustment algorithm for one
round. In the group membership-adjustment algorithm, the TSP heuristic algorithm is applied to find
the MDCs’ paths. The time complexity for finding the paths for MDCs is O(N2 log2 N). Therefore, the
time complexity of the group membership-adjustment algorithm when the NNA algorithm is used
can be expressed as O(N2 log2 N). Since MPD examines every assignment change from one group to
another, the time complexity of the group membership-adjustment algorithm in the case of MPD is
O(N3 log2 N).

6. Performance Study

In this section, we analyze the performance of the proposed algorithms. This paper proposes two
group membership-adjustment algorithms, NNA and MPD. Furthermore, two clustering algorithms
(ABC and ABC-PR) are proposed. Therefore, four combinations of the proposed algorithms are
evaluated in the simulations:

• NNA with ABC
• NNA with ABC-PR
• MPD with ABC
• MPD with ABC-PR
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We compare the performance of the proposed algorithms with two heuristic algorithms for VRP
and VRPTW: vertex relocation (VR) [35] and generalized assignment (GA) [36]. We first present the
simulation parameters and performance metrics and then discuss the performance results under
various scenarios.

6.1. Simulation Setup

Sensor nodes are randomly deployed in a circular area with a radius of 500 m, where the sink is
placed at the center of the region. Each sensor generates a data packet every two seconds and stores
the packet in its buffer until an MDC collects it. When an MDC arrives at a sensor node, it will spend
two seconds charging the sensor node’s battery and then collects data from this sensor. The energy
transfer rate from MDC to sensor is 5 J/s [25]. Based on the study in [24], energy transfer efficiency η

and the distance between MDC and sensors to be charged are assumed to be 40% and 2 m, respectively.
The energy capacity of the MDC is Q = 50 KJ [28]. In addition, we adopt the following parameter
values for the energy consumption model: γ = 2, ρ = 10(pJ/bit/m2) and eT = eR = eS = 50 nJ/bit [32].
We assume that an MDC consumes 8.27 joules to travel one meter (or 0.21 J/inch) [37]. Major simulation
parameters are summarized in Table 2.

Table 2. Simulation parameters. Bold numbers represent default values.

Parameter Value

Radius of circular area (R) {400 500 600 700 800} m
Number of MDCs (K) {2 3 4 5 6 7}

Number of sensors (N) {20 40 60 80 100 120}
Data generation rate of sensor (r) 0.5 packet/s

Packet size 64 bytes or 512 bits
Speed of MDCs (v) 5 m/s

Number of steps (S) 20
Energy transfer efficiency (η) 40%

Sojourn time of MDC or charging time of sensor i (ti) 2 s
Deadline of packet delay (D) 800 s
Energy capacity of MDC (Q) 50 KJ

Energy transfer rate from MDC to sensor i (Ech
i ) 5 J/s

Energy consumption of MDC to travel one meter (Em) 8.27 J/m
Energy consumption for generating one bit of data (eS) 50 nJ/bit

Energy usage per bit of transmission electronics (eT) 50 nJ/bit
Energy usage per bit of reception electronics (eR) 50 nJ/bit

In order to obtain fair results, we performed the simulations with five different seed values and
took the average value. The GNU Linear Programming Kit [38] is used to solve the ILP problem.
The simulator has been built using the Java language. Three performance metrics are used to evaluate
the performance of algorithms:

• total energy consumption: total energy consumed by all MDCs to finish one tour
• maximum energy consumption: the maximum energy consumed among MDCs to finish one tour
• maximum travel time: the maximum travel time among MDCs to finish one tour

6.2. Performance Analysis in Small-Scale Scenarios

We first compare the performance of the proposed algorithms with the optimal result obtained by
solving the ILP formulation and VR [35] and GA [36] algorithms. The execution time to achieve the
optimal solution increases exponentially with the number of MDCs. Thus, we consider small-scale
network scenarios when comparing the performance of the proposed algorithms with the optimal
solution. In this subsection, we consider 15 sensor nodes with three and four MDCs to obtain the
optimal solution from the ILP formulation. Other parameters remain unchanged. Figures 4 and 5
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illustrate the performance of the considered schemes. The deadline for packet delay is set to 350 s and
280 s when the number of MDCs is three and four, respectively. Since MDCs collect data and deliver
the collected data to the sink, each MDC needs to finish its tour within the given deadline to satisfy the
delay requirement.

Figures 4a and 5a show the total energy consumed by all MDCs under different schemes when
the number of MDCs is three and four, respectively. The maximum energy consumption and the
maximum travel time of MDCs are also presented in Figures 4 and 5.

As shown in Figures 4 and 5, the solution from the ILP always exhibits the lowest total energy and
the lowest travel time of MDCs, since it can find the optimal paths for all MDCs. Among the proposed
algorithms, MPD performs better than NNA. In particular, MPD/ABC-PR shows the best performance,
except for the optimal solution. The reason is that ABC-PR estimates the path-length ratio to determine
how much angular rotation is needed between two groups to balance the travel distance of the MDCs
and then calculates the actual rotation angle from the path-length ratio and rotation angle. Therefore,
the differences in the travel distances of MDCs tend to be small, which results in a more balanced
energy consumption. As seen in Figures 4b and 5b, the gap between maximum energy values with
MPD/ABC-PR and the optimal solution is quite small. The maximum energy consumed by MDCs
with MPD/ABC-PR is only 3% and 1% higher than the optimal solution when the number of MDCs is
three and four, respectively.
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Figure 4. Performance of different algorithms for 15 nodes and three MDCs. (a) Total energy
consumption of MDCs; (b) Maximum energy consumption of MDCs; (c) Maximum traveling time
of MDCs.
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Figure 5. Performance of different algorithms for 15 nodes and four MDCs. (a) Total energy
consumption of MDCs; (b) Maximum energy consumption of MDCs; (c) Maximum traveling time
of MDCs.

For the group membership-adjustment algorithms, the group that has the maximum travel
distance is chosen to reduce travel distance, and from this group, a node is reassigned to a neighboring
group. MPD selects the node, such that the maximum travel distance reduction can be achieved. On the
other hand, NNA selects the node that is nearest to the slant. In some cases, the newly assigned node
is far from the current nodes in the group, and the travel distance of the MDCs can increase. Therefore,
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in Figures 4a and 5a, the total energy consumption in NNA is higher than MPD. For example, when
the number of MDCs is three, under ABC-PR, the total energy consumption of MPD and NNA is about
5% and 9% higher than the optimal solution, respectively.

In addition, as shown in Figures 4 and 5, GA shows the highest maximum energy and travel
time among the algorithms. Moreover, under GA, the total energy consumed by all MDCs is much
higher than the others. Under GA, the difference between the longest and shortest paths for MDCs
is high, which results in unbalanced energy consumption. Due to unbalanced paths of the MDCs,
each MDC cannot satisfy the delay requirement, as shown in Figures 4c and 5c. VR also shows high
energy consumption, and the travel time of MDCs compared to all variants of the proposed algorithms
when the number of MDCs is four and does not satisfy the delay requirement either. In both cases,
all variants of our proposed algorithms can meet the delay requirement for each MDC. For example,
when the number of MDCs is four, under ABC-PR, the maximum travel time of MPD and NNA is
about 38 s (13%) and 30 s (10%) lower than VR, respectively.

6.3. Performance Analysis by Changing Network Parameters

In this subsection, we compare the performance of the proposed algorithms, VR and GA, under
different numbers of MDCs, sensors and different area radii. Note that we do not evaluate the
performance of the ILP solution, since it takes a large amount of time to find the solution of the
ILP formulation, particularly when the number of MDCs is large. Furthermore, when we collected
the results by changing network parameters, in all simulations, the proposed algorithms terminated
within three rounds. Since each round consists of 20 iterations (or steps), the algorithms performed
60 iterations to find the solution for the DCEM problem.

6.3.1. Effects of the Number of MDCs

We compare the network performance of the considered algorithms for different numbers of
MDCs, which change from 2 to 7. As seen in Figure 6a, the total energy consumption of MDCs is higher
when there are more MDCs. As shown in Figure 6a, four variants of our proposed algorithms always
exhibit a lower total energy than VR and GA over different numbers of MDCs. For instance, when the
number of MDCs is four, MPD/ABC-PR uses 10% and 8% less energy than GA and VR, respectively.
This is because, in the proposed algorithms, nodes are partitioned into multiple groups using clustering
in such a way that the travel distance of each MDC is close to the other MDCs. Moreover, in the group
membership-adjustment algorithms, path length is further reduced to achieve the minimum total
travel distance of MDCs while satisfying delay and energy constraints. Due to two-phase path-length
balancing and minimization, MPD/ABC-PR can achieve lower energy than the others.

Figure 6b compares the maximum energy consumed among the MDCs under the algorithms.
As shown in Figure 6b, the maximum energy consumed by MDCs tends to decrease when the number
of MDCs increases. In addition, all variants of the proposed algorithms have lower maximum energy
than VR and GA. In particular, MPD/ABC-PR consistently shows the lowest maximum energy,
compared to the others. For example, when the number of MDCs is five, the maximum energy
consumed among MDCs to finish one tour is about 13,700 joules under MPD/ABC-PR, compared to
16,013 joules and 16,600 joules in the cases of VR and GA, respectively. The reason is that in VR and
GA, the paths for MDCs are unbalanced, and an MDC travels a long path, compared to others, which
results in unbalanced energy consumption.

Figure 6c shows the maximum travel time of MDCs in the considered schemes. As shown in the
Figure 6c, when the number of MDCs increases, the maximum travel time of MDCs decreases, since the
distance traveled by each MDC decreases. Moreover, the two VRP heuristic algorithms always exhibit
a longer maximum travel time than the others and do not satisfy the deadline for packet delay when
the number of MDCs is two. In contrast, four variants of our proposed algorithms can meet the delay
requirements in all cases.
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Figure 6. Effects of the number of MDCs: (a) effects on total energy consumption of MDCs; (b) effects
on maximum energy consumption of MDCs and (c) effects on maximum travel time of MDCs.

6.3.2. Effects of the Number of Sensors

The effects of the number of sensors on network performance are examined for all variants
of the proposed algorithm and the VR and GA algorithms. The number of sensors is set to
{20, 40, 60, 80, 100, 120}, while other parameters remain unchanged. Figure 7a shows that the energy
consumption of algorithms consistently increases as the number of sensors grows, since each MDC
needs to visit more sensors. Moreover, as in the previous subsection, four variants of the proposed
algorithms always show a lower total energy consumption than VR and GA over the variations in the
number of sensors. In addition, we can see from Figure 7a that the gap between energy values of the
two heuristic algorithms and our proposed algorithms is greater when the number of sensors varies
between 40 and 80. For example, when the number of sensors is 60, the total energy consumption
under MPD/ABC-PR is 59,653.26 joules, which is much lower than the consumed energy of GA
(65,162.88 joules) and VR (64,875.77 joules).
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Figure 7. Effects of the number of sensors: (a) effects on total energy consumption of MDCs; (b) effects
on maximum energy consumption of MDCs and (c) effects on maximum travel time of MDCs.

In terms of the maximum energy consumption of MDCs, Figure 7b illustrates that the maximum
energy consumed by MDCs in the considered algorithms tends to increase, and MPD/ABC-PR can
achieve the lowest maximum energy consumption among the considered algorithms. This result is
due to the following reasons. In ABC-PR, we balance the travel distance of MDCs as much as possible.
After that, in MPD, the group having the maximum travel distance is chosen to further reduce path
length. This results in the lowest energy consumption, since the MDCs consume most of their energy
for movement.

As seen in Figure 7c, four variants of our algorithms always exhibit a lower maximum travel
time than the other two algorithms. Furthermore, as shown in Figure 7c, when the same clustering
algorithm is used, MPD has a lower maximum travel time than NNA. The reason is that, under NNA,
the node that is closest to the slant is chosen for reassignment. This assignment change may not
result in the lowest travel distance for MDC. In contrast, MPD first examines every assignment change



Sensors 2017, 17, 742 19 of 23

and then selects the node for the actual assignment that reduces the path length by the maximum
amount. Thus, MPD shows better performance compared to NNA. For example, when the number of
sensors is 80, under ABC-PR, the maximum travel time of MPD and NNA is about 14% and 11% lower
than GA, respectively.

6.3.3. Effects of Area Radii

In this subsection, we analyze the effects of area radii on the network performance. Radii of
the circular area are varied between 400 m and 800 m. In this case, we consider the number of
sensors and the number of MDCs to be 80 and five, respectively. Other parameters are kept constant.
Figure 8a shows that total energy consumption rises with an increased radius. Moreover, the energy
consumption of the proposed algorithm is similar to others. This result is due to the following reasons.
When the same number of sensors is considered with an increased area, MPD and NNA may select
similar nodes for reassignment, which results in similar energy consumption under all of the proposed
algorithms.

Figure 8b,c show the variation in maximum energy and maximum travel time of the algorithms
over different values for the radius. As can be seen from Figure 8b,c, the gap between the results
of the two heuristic algorithms and our proposed algorithms tend to increase as area radii increase.
For example, when area radius is set to 700 m, the maximum energy consumption of MPD/ABC-PR is
about 4660 joules and 4400 joules lower than GA and VR, respectively. This is due to the following
reasons. When the radius increases and the number of nodes is unchanged, distance among the nodes
also increases, since nodes are deployed randomly in a circular area. GA and VR both only focus on
minimizing total travel distance of the MDCs while finding paths for them. In contrast, our proposed
algorithms find the MDCs’ paths in a balanced way with the minimum total travel distance. This leads
to the increased gap between the heuristic algorithms and our proposed algorithms.
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Figure 8. Effects of area radii: (a) effects on total energy consumption of MDCs; (b) effects on maximum
energy consumption of MDCs and (c) effects on maximum travel time of MDCs.

7. Conclusions

This paper considered a data collection scheme in which we use multiple MDCs to collect data
from the sensors. In addition, MDCs also recharges the visited sensors to keep the WSN operational
without the risk of energy depletion. In this paper, an optimization problem called DCEM was defined
that finds the paths for MDCs in order to minimize the energy consumption considering delay and
energy constraints.

We proposed the ILP optimization formulation to find the optimal solution for the DCEM problem.
Furthermore, a two-phase path-selection algorithm was proposed to efficiently solve the DCEM
problem. In the path-selection algorithm, clustering was performed in Phase 1 to partition the sensors
into multiple groups, and in Phase 2, the membership of each group was adjusted to meet the
constraints and minimize the energy consumption of MDCs. Simulations were conducted to evaluate
the performance of the proposed algorithms in various scenarios. The performance of the proposed
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algorithms was compared with two heuristic algorithms for VRP. Simulation results showed that the
proposed algorithms can achieve lower energy consumption while guaranteeing data delivery.
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Appendix A. Clustering Algorithm.

Input: V, M, α, ζ, β, ε
V: Set of sensors . V = {1, 2, ..., N}
M: Set of groups or MDCs . M = {1, 2, ..., K}
α: Rotation angle . α < π

K
ζ: Small positive constant . ζ ≥ 1
β: Positive constant . 0 < β < 1
ε: Threshold value . ε ≤ 1
Output: f inΩK = {N1, N2, ..., NK} . Set of nodes for K groups

1: f inΩK = {∅}; curΩK = {∅};
2: Ni = Set of nodes of group i, i ∈ M;
3: Divide the area into K sectors where θ1 = θ2 =. . . = θK = 2π

K and curΩK = {N1, N2, ..., NK};
4: For i = 1, . . . , K, calculate minimum spanning tree (MST) length Li and average length of all MSTs Lavg;
5: if |Li − Lavg| > ζ then . for i ∈ M
6: for each (Gi%K) group and (Gi+1%K) group do
7: if ABC to be used then
8: ω = ABC(Li, Li+1, α);
9: θi = θi −ω ; θi+1 = θi+1 + ω; . New θi and θi+1 based on α

10: else if ABC-PR to be used then
11: ω = ABCPR(Li, Li+1, α);
12: θi = θi −ω ; θi+1 = θi+1 + ω; . New θi and θi+1 based on α

′

13: end if
14: Li = calcDist(Ni, Ni+1, θi, θi+1);
15: Li+1 = calcDist(Ni, Ni+1, θi, θi+1);
16: end for
17: end if
18: Calculate new Lavg;
19: if |Li − Lavg| > ζ then . for i ∈ M
20: if α > ε then
21: α = βα;
22: goto 6;
23: else
24: f inΩK = curΩK ;
25: exit;
26: end if
27: else
28: f inΩK = curΩK ;
29: exit;
30: end if
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Appendix B. Group Membership-Adjustment Algorithm.

Input: M, f inΩK, D, Q, P, S

M: Set of groups or MDCs . M = {1, 2, ..., K}
f inΩK: Set of nodes for K groups . f inΩK = {N1, N2, ..., NK}
D: Deadline for delay

Q: Energy capacity of MDC

P: Minimum residual energy of sensor

S: Number of steps

Output: R = {R1, R2, ..., RK} . Set of paths for K MDCs

1: R = {∅}; R[b] = {∅}; Rcur = {∅}; Zcur = 0; Ztemp = 0; b = 0;
2: Ni = Set of nodes of group i, i ∈ M;
3: Ri = Path of MDCi, i ∈ M;
4: for each i ∈ M do
5: Ri = tspHeuristic(Ni); . using twice around the tree heuristic, find Ri for MDCi
6: Calculate di, Ti, Ei, Pi; . di: travel distance of MDCi, Ti: travel time of MDCi, Ei: energy

consumption of MDCi, Pi: residual energy of sensor
7: end for
8: while Ztemp ≥ Zcur do
9: Ztemp = Zcur, R = Rcur;

10: b = b + 1 . b= no. of rounds
11: while s ≤ S do . S= no. of steps
12: Gi = arg max

i
di; . find group i from K groups with maximum travel distance of MDC

13: slant = borderline between Gi and Gi−1 . Gi−1= clockwise adjacent group of Gi
14: if NNA to be used then
15: h = NNA(Ni, slant);
16: else if MPD to be used then
17: h = MPD(Ni, Ni−1);
18: end if
19: Ni = Ni \ {h}; . remove h from Ni
20: Ri = tspHeuristic(Ni); . find new Ri excluding h
21: Calculate new di, Ti, Ei and Pi;
22: Ni−1 = Ni−1 ∪ {h}; . add h to Ni−1
23: Ri−1 = tspHeuristic(Ni−1); . find new Ri−1 including h from Ni
24: Calculate new di−1, Ti−1, Ei−1 and Pi−1.
25: Calculate Z = ∑K

i=1di; . Z: total travel distance of K MDCs
26: end while
27: R[b] = set of MDCs’ paths with min(Z) and {Ti ≤ D && Ei ≤ Q && Pi ≥ P}; . from S steps,

path set for MDCs that leads to minimum Z and satisfy constraints
28: Zcur = min(Z) , Rcur = R[b]
29: if b = 1 then
30: Ztemp = Zcur ;
31: end if
32: end while
33: Return R as the output.
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