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Abstract: Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as 
resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in 
UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable 
for use in UWSNs because of the underwater propagation problems. Hence, some localization 
algorithms based on the precise time synchronization between sensor nodes that have been 
proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-
Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two 
phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we 
address a time synchronization-free localization scheme based on the Particle Swarm Optimization 
(PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we 
propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor 
nodes which cannot obtain the location information through the first phase. In the second phase, 
sensor nodes which are localized in the first phase act as the new anchor nodes to help realize 
localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the 
location information without any other anchor nodes. Besides, to improve the precision of the range-
free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is 
updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio 
without time synchronization. 

Keywords: underwater sensor networks; synchronization-free; range-free; particle swarm optimization 

 

1. Introduction 

Underwater Sensor Networks (UWSNs) are usually composed of some autonomous and 
individual sensor nodes [1], which can sense data, perform intelligent computations, and forward 
information. Sensor nodes are spatially distributed in UWSNs with some sensing work to obtain 
water-related properties such as mass, temperature and pressure data [2]. UWSNs usually arrange 
many sensor nodes to monitor the underwater environment. Those sensor nodes exchange the node 
location information and other data through the underwater acoustic communication. Moreover, 
UWSNs can be applied to many areas such as disaster early warning, pollutant control, marine 
resource exploration and maritime military activity. 

The location information of the sensor nodes in UWSNs is necessary to provide users with an 
efficient testing service. Therefore, underwater sensor node positioning can be regarded as the 
foundation and core for UWSNs. How to accurately estimate the position of the underwater node in 
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UWSNs is of great research significance. Many researchers have studied the topic of sensor 
localization. In an outdoor environment, GPS-based positioning systems are mostly used and have a 
good performance. In an indoor environment, RF-based and VLC-based positioning systems have 
attracted many researchers. However, it is unfeasible to apply any of them to UWSNs. Only RF 
signals at low frequencies of about 30–300 Hz can be used in UWSNs, moreover, large antennas or 
high transmission power is needed [3]. Optical signals are also subject to underwater attenuation and 
scattering [4]. Fortunately, the frequency of sound waves is small between 10 Hz and 1 MHz [1], 
which can provide small bandwidth but long wavelengths. Therefore acoustics can be used to relay 
information over kilometers [5]. 

Underwater localization usually requires some objects with known locations (anchors) and 
objects to be localized (unknown nodes) [6]. The location information of anchors can be obtained 
through a variety of methods. In [7], the authors divided the localization scheme of UWSNs into two 
phases, namely the position-related information collection phase and the position estimation phase. 
In the first phase, position-related information such as the distance, angle, and hop count between 
each other or the anchor point is measured by the node. In the second phase, the localization 
algorithms are performed by the sink nodes or locally calculated by them. Conventional localization 
algorithms use the distance or angle measurements between the anchor and the unknown nodes to 
estimate the location of unknown nodes. Some positioning schemes do not require an anchor node 
and use the connection information to obtain the location of unknown nodes [8,9]. The deployment 
of UWSNs is still a challenging task because of the limitations of computing power, cost, memory, 
transmission range and the lifetime of any single sensor [1]. A large number of anchor nodes can 
provide greater coverage and higher accuracy but may add cost. Therefore, how to decrease the 
number of anchor nodes or to achieve anchor-free localization is still an active research direction. 
Moreover, the battery resources are limited which shortens the operation time. Thus, an effective 
strategy must guarantee the system performance with low energy consumption. 

Time synchronization is directly assumed in many localization schemes. However, it is not 
feasible in the UWSNs. In [10], the authors show that precise time synchronization is hard to achieve 
due to the characteristics of sound. In UWSNs, the propagation delay is much higher due to the five-
orders-of-magnitude difference in the speed of sound in water compared with RF propagation: 1500 
m/s compared with 8103  m/s. Therefore the high propagation delay of UWSNs will bring time 
synchronization problems. Many time synchronization localization algorithms rely on some form of 
clock synchronization, either by ensuring that the transmitter-receiver is synchronized with the two-
way message or by assuming that surface “anchor” nodes which can synchronize their clocks and 
disseminate or collect information to or from other nodes [11]. However, that method will bring new 
challenges in terms of overhead and communications management, and often assumes very low data 
rate communications. Therefore how to develop a synchronization-free algorithm is a direction to 
solve this problem. 

In this paper, basing on Time Synchronization-Free Localization using mobile beacons (we 
called it as TSFL) [12], we propose the Two-Phase Time Synchronization-Free Algorithm (TP-TSFLA). 
TP-TSFLA can be divided into two phases, namely, a range-based estimation phase (Phase I) and 
range-free evaluation phase (Phase II). In Phase I, we use the TSFL algorithm to obtain the distance 
measurements from the anchor node to the unknown sensor nodes, then we employ the PSO 
algorithm to solve the localization optimization problem. In Phase II, we propose a range-free 
algorithm to locate the unlocalized sensor nodes. Only sensor nodes which cannot be localized in 
Phase I will execute Phase II. In Phase II, the localized sensor nodes act as the new anchor nodes to 
help realize localization. The unlocalized sensor node actively initiates a localization request, then 
the localized sensor nodes within the transmission range of the unlocalized sensor node can receive 
the request and respond their coordinate to the unlocalized node. Then the unlocalized sensor node 
starts a Circle-based Range-Free Localization Algorithm (CRFLA) to locate itself. Besides, a 
coordinate adjustment scheme is proposed to improve the precision of CRFLA. In our algorithm, we 
use the TSFL algorithm to obtain the distance measurements without time synchronization. In the 
TSFL algorithm, the distance is estimated by using the time interval between the first and second 
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message received by the unknown sensor node from the same anchor node. Thus, the time 
synchronization between the sensor node and anchor node is unnecessary. Also, the synchronization 
among the unknown sensor nodes or the anchor nodes is unnecessary. It is obvious that the PSO 
algorithm and CRFLA do not have the requirement of time synchronization. Therefore, TP-TSFLA 
we proposed in this paper without time synchronization can effectively solve the problem of time 
synchronization. 

The remaining portion of this paper is organized as follows: in Section 2, we survey localization 
algorithms according to their different natures. The system model is given in Section 3. In Section 4, 
we use the range-based estimation algorithm based on the PSO algorithm to obtain the coordinates 
of the unknown sensor nodes. CRFLA and its coordinate adjustment scheme are presented in Sections 
5 and 6, respectively. The detailed algorithm application procedure is shown in Section 7. Section 8 
shows the simulation results and comparison. Finally, we conclude in Section 9. 

2. Related Work 

Recently, numerous localization algorithms have been put forward, and some researchers have 
done some surveys of localization algorithms [13,14]. In this section, we discuss the localization 
algorithms in UWSNs in five aspects, namely computation algorithms, anchor requirements, range 
measurements, synchronization requirements, and communication between nodes. We only discuss 
the differences in each aspect and use some references to describe them. 

According to the computation algorithm to be implemented, we classify the computation 
algorithms into two categories: centralized techniques [15] and distributed techniques [16]. The 
centralized techniques perform the localization algorithm at the command center or the sink node. 
However, in the distributed techniques, the sensor nodes alone estimate the location of each sensor 
node. In [17], a Reverse Localization Scheme (RLS) with a fast response to events is proposed. The 
scheme is based on the centralized technique. Thus, the data can be transmitted to the station, and 
the positioning algorithm is executed there. The scheme is divided into two phases, namely, a a 
transmitting phase and a centralized geometric localization phase. In the transmission phase, a new 
message exchange mechanism based on event-driven reporting is proposed. At the beginning of the 
second phase, the sink collects information from the anchor and estimates the location of the sensor 
node. The authors of [18] have reported a localization algorithm based on distributed technology. 
The authors mainly consider the problem of estimating the isolated unknown nodes and propose a 
Multihop Fitting Localization Approach (MFLA). The method sets the intermediate node between 
the beacon and the unknown node as a router to construct the path through the greedy method, and 
then fits the multi-hop path into a straight line and estimates it by trilateration. 

The anchor requirement means the anchor node is required or not in the localization algorithm. 
According to this, we classify the localization algorithms into two taxonomies: anchor-free and 
anchor-based schemes. In UWSNs, many positioning algorithms can use anchor nodes to help 
estimate location. However anchor nodes are not necessary, and some researchers have proposed a 
self-localization algorithm that does not need anchor nodes. The positioning scheme [19] is an anchor-
based scheme. This scheme consists of four types of nodes: surface buoys, Detachable Elevator 
Transceivers (DETs), anchor nodes and ordinary nodes. Besides, the scheme locates the nodes in two 
phases. First, the anchor node uses a range-based distributed approach to locate itself. Secondly, 
ordinary nodes use the regional positioning scheme to achieve location-free centralized approach. In 
[20], an Anchor-Free Location Algorithm (AFLA) for active restricted UWSNs is proposed. The 
algorithm uses the relationship between adjacent nodes. In this scenario, the underwater sensor node 
which is actively limited means that when anchored to the seafloor, it floats in the sea and moves 
within the hemispherical region. A node with unknown location broadcasts a message and receives 
the information from other nodes at the same time. When the node receives two messages from two 
different nodes, it starts the location calculation process. 

Based on the range measurement, we classify the localization algorithms into two categories: 
range-based schemes, and range-free schemes. In general, range-based schemes estimate distances 
by various algorithms and then convert them into positional information. A range-free scheme does 
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not require distance measurementa and bearing information, but uses a local topology and the 
position of the neighboring anchor nodes to obtain the position estimate. However, the range-free 
scheme can only get a rough location with little accuracy. The positioning method of [20] is a range-
based approach and is known as the multi-stage AUV-assisted positioning scheme that is an 
improvement of the “multi-stage DNR” scheme. In [16], the DNR is replaced by an AUV. The AUV 
with known coordinates dives to a pre-programmed depth and begins to traverse the sensor network 
according to a pre-programmed path. When a non-collinear position receives signals from three 
beacons, triangulation is used to obtain the position of the node. In [21], the authors propose an 
efficient Area Localization Scheme (ALS). The scheme estimates the position of the sensor within a 
particular region. An anchor node broadcasts a beacon signal to a sensor node and sends an acoustic 
signal with a varying power level. The sensor nodes passively monitor the signals and record the 
received information, then forward it to the sink. The sink uses the information gathered from sensor 
nodes to estimate the area in which the sensor is localized. 

The synchronization requirement means that time synchronization is required or not in the 
localization algorithm. Based on this, we classify the localization algorithms into two categories: 
synchronization localization schemes and the synchronization-free localization schemes. In many 
cases, the localization scheme directly assumes that sensor nodes are synchronized with each other. 
However, this is difficult to implement in underwater environments, thus the researchers have 
proposed some localization algorithms without synchronization requirements. The localization 
scheme of [22] requires time synchronization, but dual hydrophones on each node can reduce the 
time synchronization requirement. In [22], a Dual Hydrophone Localization (DHL) approach is 
proposed, and the localization problem is converted into a half-plane intersection problem. As for 
the synchronization-free positioning scheme, we introduce three papers to show it. In [23,24], a range-
free scheme using AUV periodically broadcasts message blocks via four directional beams to estimate 
the location information of sensor nodes. The node receives the message block and uses two different 
continuous beams to estimate the position of the AUV at two different moments. The location of the 
nodes can then be obtained by using the two estimated locations. In [25], a Basic Synchronization-
Free Localization (BSFL) scheme is proposed. It consists of two steps, namely the range difference 
calculation, and the position calculation. However, the BSFL still suffers from some of the drawbacks 
of large-scale UWSNs. Therefore, a Large-Scale Localization Scheme (LSLS) based on BSFL is 
designed. It consists of three phases, namely sea surface anchoring, iterative localization and 
complementary phase. 

Based on the communication characteristics between the reference node and the common node, 
we classify the UWSNs localization algorithm into two classes: single stage methods [26,27] and 
multi-stage methods [28–30]. The single stage method means that the exchange of messages between 
all sensor nodes and the reference nodes is straightforward. After obtaining the location, they are still 
passive and cannot be used to help locate other sensor nodes [31]. In the multi-stage scheme, the 
common nodes do not need to communicate directly with the reference nodes. Once sensor nodes 
are localized, they become new reference nodes and can help to locate other sensor nodes [31]. The 
positioning scheme of [32] is based on the single-stage method. The authors use hyperbolic methods 
and normal distribution estimation error modeling and calibration for location estimation. The 
positioning scheme [33] is based on a multi-level localization scheme. The Top-down Positioning 
Scheme (TPS) for UWSNs without evenly distributed anchor nodes or additional infrastructures can 
increase location coverage while maintaining low positioning errors. In this scheme, there are three 
types of nodes, namely surface anchor nodes, new reference nodes, and non-localized nodes. First, 
only sensor nodes that are close to the surface anchor nodes can be localized. Once the positions of 
sensor nodes are obtained, they compute their confidence values and compare them to the confidence 
thresholds. If the nodes’ confidence values are greater than the confidence thresholds, they become 
new reference nodes to help the non-localization nodes locate themselves. 

Next, we compare the TP-TSFLA we proposed in this paper (we use the term “our” to express it 
in Table 1) and those algorithms which are mentioned in Section 2 in the five aspects (computation 
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algorithm, anchor requirement, range measurement, synchronization requirement, and 
communication between nodes). The detailed comparison is shown in Table 1. 

Table 1. The comparison of the localization algorithms. 

Ref. Computation 
Algorithm 

Anchor 
Requirement 

Range 
Measurement 

Synchronization 
Requirement 

Communication 
between Nodes 

[17] Centralized Anchor-based Range-based Synchronization Single stage 
[18] Distributed Anchor-based Range-based Not specified Single stage
[19] Hybrid Anchor-based Hybrid Not specified Single stage
[20] Distributed Anchor-free Range-based Synchronization Single stage
[16] Distributed Anchor-based Range-based Synchronization Multi-stage
[21] Centralized Anchor-based Range-free Synchronization-free Multi-stage
[22] Centralized Anchor-based Range-based Synchronization Single stage

[23,24] Distributed Anchor-based Range-free Synchronization-free Single stage
[25] Distributed Anchor-based Range-based Synchronization-free Multi-stage
[26] Distributed Anchor-based Range-based Not specified Single stage
[27] Distributed Anchor-based Range-based Synchronization Single stage
[28] Distributed Anchor-based Range-based Synchronization Multi-stage
[29] Distributed Anchor-based Range-based Synchronization Multi-stage
[30] Distributed Anchor-based Range-based Synchronization Multi-stage
[32] Centralized Anchor-based Range-based Synchronization Multi-stage
[33] Distributed Anchor-based Range-free Not specified Multi-stage
Our Distributed Anchor-based Hybrid Synchronization-free Multi-stage

3. System Model 

3.1. Overview of the System 

This paper mainly concentrates on locating the underwater sensor nodes. Due to the 
unfeasibility of the assumption of perfect time synchronization, we propose TP-TSFLA to realize 
localization without time synchronization. In this algorithm, sensor nodes are randomly deployed in 
the different depth of the underwater to monitor various areas. We assume sensor nodes are static 
within the 3D-network architecture. A pressure sensor is equipped on every sensor node to obtain 
the depth of the sensor node as the z-coordinate. Obtaining the x-coordinate and y-coordinate of the 
sensor node is necessary. Hence, the 3D-localization problem can be transformed into a 2D-
localization issue. 

To obtain the coordinates of the sensor node, some particular nodes which the coordinate that 
can be looked as known are needed. In this scheme, we use a mobile beacon to help realize 
localization, and no other anchor nodes are required. A mobile beacon can dive and rise in the vertical 
direction with the aid of extra weight. When it reaches the deepest point of the deployment, it rises 
to the surface. Once it floats on the sea surface, it can use a GPS receiver to obtain its new coordinates. 
Hence, when the mobile beacon dives into the deepest deployment point, we suppose that only the 
the z-coordinate is changed over time. Also, the mobile beacon can use a pressure sensor to obtain 
the z-coordinate. The detailed deployment scheme is shown in Figure 1. 

All the mobile beacons have a fixed transmission range and a fixed diving speed and can 
broadcast messages at fixed time intervals. The mobile beacons broadcast messages which contain 
the mobile beacon id and coordinates. Sensor nodes in the transmission range of the mobile beacon 
can receive the message. Then sensor nodes can use the geometric properties to locate themselves. 
During this phase, the sensor node only passively listens to the message from the mobile beacon to 
decrease the power consumption. After that, the unlocalized sensor node actively launches the 
localization request. The localized sensor node which is in the transmission range of the unlocalized 
sensor node acts as the new anchor sensor node and responds with the coordinates to the unlocalized 
sensor node. The unlocalized sensor node uses CRFLA to locate itself. 
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Figure 1. System model. 

3.2. Time Synchronization-Free Localization Scheme Using Mobile Beacons 

Based on the system model, we can employ the time synchronization-free localization scheme 
proposed in [12] to obtain the distance measures in Phase I. Hence, to describe it concisely, we called 

it as the TSFL algorithm. The mobile beacon dives and rises in the underwater at the fixed speed 1v . 

1T  and 2T  express the time that the first message received by sensor node and the second message 
received by the sensor node respectively. Hence, the coordinates of the mobile beacon at the different 

times are denoted as ),,( 111 zyx  and ),,( 211 zyx . The speed of sound is 2v , and the coordinate of 

the sensor node is ),,( 3zyx . The distance measure from the mobile beacon to the sensor is expressed 

as d . 

If 1 3 2z z z  , we can obtain the distance d , and the detailed process can be found in [12]: 
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If 1 2 3z z z  , we can obtain the distance d  by using the following equation: 
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If 3 1 2z z z  , we can obtain the distance d  by using the following equation: 
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If at least three distance measures from different mobile beacons have been obtained, the 
position of the sensor node can be obtained. However, the authors do not take the impact on the 
water current into account and make the speed of the mobile beacon and sound a constant. This is 
not actually held true. Thus, we consider the error caused by the underwater environment and 
propose a localization scheme based on the PSO algorithm. Besides, to save costs, the number of 
mobile beacons is limited, which leads to a lower localization ratio. Especially when we use the 
algorithm in the relatively large environment, the localization ratio is not enough. Hence, we improve 
the algorithm based on the two aspects in TP-TSFLA. 

3.3. Algorithm Features 

In this paper, TP-TSFLA is mainly concerned with the time synchronization requirements, trying 
to find a synchronization-free localization scheme. The localization algorithm proposed in this paper 
is based on the distributed localization technique. In Phase I, mobile beacons are used as anchor nodes, 
and in Phase II, sensor nodes that are localized in the first phase act as anchors to help locate the 
unlocalized sensor nodes. The algorithm used in Phase I is range-based, while the algorithm of Phase 
II is range-free, and belongs to the multi-stage method. The features of the system can be described 
as follows. 

 The system is suitable for using in a 3D-network architecture, and the sensor node is assumed 
to be static in the network. Every sensor node is equipped with a pressure sensor to sense its 
depth. The mobile beacons can obtain their x-coordinate and y-coordinate by GPS, and only the 
z-coordinate is changed when the mobile beacon dives in the sea. 

 The diving speed of the mobile beacon and the rate of the sound in the water of the TSFL 
algorithm are assumed as a constant. The mobile beacon broadcasts the message at a fixed 
interval. The transmission range of the mobile beacon and sensor node is fixed. The transmission 
range of the mobile beacon is larger than the transmission range of sensor nodes. 

 During Phase I, sensor nodes passively listen to the mobile beacon without transmitting a 
message to the mobile beacon to decrease the power consumption, while in Phase II, sensor 
nodes can initiate active communication with other sensor nodes to obtain the message which is 
required to realize localization. 

 In TP-TSFLA, the mobile beacons are used as the anchor nodes. In Phase II, the algorithm uses 
a multi-stage scheme to help realize the localization. The localized sensor nodes are used as the 
new anchor nodes. 

4. Range-Based Estimation Algorithm Using PSO 

In this section, we employ the Particle Swarm Optimization (PSO) algorithm to obtain the 
estimated position of the unknown sensor nodes. To solve a variety of optimization problems, many 
optimization algorithms have been proposed, such as climbing method, genetic algorithm and so on. 
The hill climbing method has high precision, but it easily falls into a local minimum. The genetic 
algorithm belongs to the evolutionary algorithm class. However, the genetic algorithm requires more 
sophisticated programming, and the choice of the parameters severely affects the quality of the 
solution, and most of these parameters depend on experience. The PSO algorithm, with smooth 
implementation, high precision, and fast convergence is similar to a genetic algorithm, and it also 
starts from a random solution. The PSO algorithm iteratively finds the optimal solution and evaluates 
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the quality of the solution through fitness, but it is simpler than the genetic algorithm. It does not 
have the “cross” (crossover) and “mutation”. The global optimum is sought by following the current 
search to the optimal value. 

Basing on the TSFL algorithm, after at least three distance measures id  from different mobile 
beacons  , ,i i ix y z  have been obtained, the authors of [12] estimate the position of the sensor node 

 zyx ,,  by using the following equation: 
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However, this kind of method to obtain the coordinate of the unknown sensor node is not 
suitable for our algorithm. When we take the impact on changing speed for the mobile beacon and 
for the sound through the water, the localization problem becomes a multidimensional non-linear 
optimization problem, and we employ the PSO algorithm to solve it. The detailed mathematical 
derivation is shown as follows. 

The distance between unknown sensor node  zyx ,,  and the anchor node  , ,i i ix y z  

expressed as ir  is given as: 

2 2 2
1 1 1 1

2 2 2
2 2 2 2

2 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )n n n n

x x y y z z r

x x y y z z r
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
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



     

  (7) 

Let ir̂  be the noisy range value of ir . Actually, in this paper, the value of ir̂ is the distance 

measure id  which is obtained by using the TSFL algorithm. Then: 
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iiii nrrd  ˆ  (8) 

where in  is the measured noise. 
Assume that the estimated location of the unknown sensor nodes is x , and the location of the 

anchor node is p , then the estimated location of the unknown sensor nodes x  is given by: 





N

i
iid

1
||)||(minarg xpx

x
 (9) 

where || ||i p x  represents the Euclidean distance between ip  and x . N  is the number of 
anchor nodes which can be received by the sensor node. Thus, the localization is a multidimensional 
non-linear optimization problem which can only be solved by using an iterative approach [34]. 
Equation (9) involves a non-convex objective function (with a Hessian matrix not positive definite). 
Therefore, the result of using the L2 optimization methods is not generally optimal. To solve this 
problem with low computational cost, we employ the PSO algorithm. Besides, the PSO algorithm can 
ensure high accuracy. 

4.1. Search Space of Particles 

The transmission range of anchor node  , ,i i ix y z  is R. In [35], the authors use the 

circumscribed square of side length R as the search space of particles. Then:  

],[],[ RyRyRxRxS iiiii   (10) 

where iS  is the search space of the particles. If the unknown sensor node has N anchor nodes, the 
search space of the particles can be expressed as: 


N

i
iSS

1

 , (11) 

Actually, the transmission range of an anchor node is a circle of the radius R, thus we redesign 

the search space of particles. The search space of an anchor node iS  is a circle of the radius R and 

circle center  ,i ix y , moreover, iS  can be expressed as follows: 

222 )()( Ryyxx ii   (12) 

In our algorithm, at least three anchor nodes are needed to obtain the coordinate of the unknown 

sensor node. Therefore, the search space of the particles S  is given as: 


N

i
iSS

1

  (13) 

Hence, we initialize a group of random particles (random candidate solution) in the search space 

of the particles S . Then the PSO algorithm iteratively finds the optimal solution. In each iteration, 
the particle updates itself by tracking two extreme values. One of the extreme values is the optimal 
solution found by the particle itself, and the solution is called the individual extreme (pBest). The 
other is the optimal solution found by the whole population. The extreme value is the global extreme 
value (gBest). When these two optimal values are found, the particle updates its speed and new 
position according to the following equation: 
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1 2[] [] () ( [] []) () ( [] [])v w v c rand pbest present c rand gbest present           (14) 

[][][] vpresentprsent   (15) 

where []v  is the speed of the particle, w  is the inertia weight, []present  is the current position 

of the particle, []pbest  is the individual extreme value,  gbest  is the global extreme value, and 
()rand  is the random number between (0, 1). 1c  and 2c  are the learning factors. 

4.2. Inertia Weight  

In general, the inertia weight can be fixed or linear decrease. Moreover, some studies have 
shown that bigger inertia weight contributes global search, while smaller inertia weight contributes 
local search [36]. In [36], the authors use the following equation to express the inertia weight: 

k
k





max

minmax
max


 , (16) 

where, max  is the initial weight, min  is the final weight, maxk  is the maximum number of 

iterations, and k  is the current iteration. In this paper, we use the same parameters as [36]. 

4.3. Learning Factor 

The learning factor can be a constant or variable. In [36], the authors give formulas for 1c  and 

2c , respectively: 

],0[),cos(2.13.11  ttc  (17) 

],0[),cos(2.10.22  ttc  (18) 

k
k

t 
max


 (19) 

where maxk  is the maximum number of iterations, and k  is the current iteration. 

The design of the learning factor based on that global search does not easily fall into local 

optimum at the beginning of the search. Thus, in earlier search, 1c  with a larger value, and 2c with 
a smaller value will enhance the global search capability of the PSO algorithm. In the latter part of 

the search, 1c  with a smaller value and 2c  with a larger value will enhance the local search 
capabilities of the PSO algorithm. 

4.4. Fitness Function  

The distance measure of the unknown sensor node  zyx ,,  from the anchor node  , ,i i ix y z  

is id . The coordinate of the particle is  , ,j j jx y z , and the number of anchor node is N, and the 

fitness function can be described as: 
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2 2 2( ) ( ) ( )
1

j i j i j i j i

N
f d x x y y z z
i

      


, (20) 

If the fitness function tends to be 0, the estimated coordinate tends to be the coordinate of the 
unlocalized sensor node. After the maximum number of loops is reached, the current global extreme 
value will be chosen as the coordinate of the sensor node. 

5. CRFLA 

Generally, the number of the anchor nodes is limited when we take the cost of the system into 
account. Actually, in our simulation environment, the number of mobile beacons is 25, while the 
number of unknown sensor nodes is 800. Although the anchor nodes have a large transmission range, 
there still are some unknown sensor nodes which cannot receive at least three pieces of information 
from different anchor nodes. Therefore, after Phase I, some sensor nodes may not obtain the location 
information. Then those sensor nodes execute Phase II to locate themselves. In Phase II, the 
environment is different from Phase I. In Phase I, the mobile beacon acts as the anchor node, and 
the number of mobile beacons is small. However, in Phase II, the localized node serves as the 
new anchor node, and the number is much more than the unlocalized sensor node. The 
unlocalized sensor node (UN) transmits the localization request, and the localized sensor node 
(LN) which is localized in the transmission range of UN (denoted as r ) can receive the request. 
The distance pd  between UN and LN which is in the transmission range satisfies the inequation 

pd r . We draw a circle whose center is the localized sensor node ( , , )p p px y z  and which 

radius is r , then the unlocalized sensor node must locate in the circular area. In the range-base 
algorithm, we can use the point of intersection of those three circles as the estimated coordinate 
of the sensor node (EN), but in the range-free algorithm, the three circles may not intersect at 
one point. Thus, we use the geometric center of the intersection area of the circles as the 
coordinate of the unlocalized sensor node (shown in Figure 2). We can see that if the intersection 
area is small, the precision will be much higher. We can state that if the following two conditions 
are satisfied, the precision of the circle-based range-free algorithm will be much higher. 

 
Figure 2. CRFLA. 
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Condition I: The distance pd  between the unlocalized sensor node and the localized sensor node 

is infinite close to the transmission range r  of the unlocalized sensor node. 

Condition II: The three localized sensor nodes locate in the different directions of the circle. 

Here, we use the figure to show the counter-example of the two conditions. We assume 
/ 2pd r  to verify Condition I and show it in Figure 3. 

 
Figure 3. CRFLA against Condition I. 

As shown in Figure 3, if pd  is much smaller than r , the intersection area will increase. If the 

three intersection points are symmetrical, the geometric center of the intersection area is still near the 
unlocalized sensor node. However, all sensor nodes are randomly distributed in UWSNs, and the 
probability of the three localized sensor nodes being distributed symmetrically is very low. Hence, if 
the intersection area is small, even though the three localized sensor nodes are not symmetrical, the 
geometric center will not be far away from the unlocalized sensor node. 

To satisfy Condition I as far as possible, we employ the fact that the signal strength decreases 
with the increase of distance. The unlocalized sensor node utilizes the response information from the 
localized sensor node which contains the coordinates of the localized sensor node and the signal 
strength to choose the three localized sensor nodes. Simply said, the unlocalized sensor node 
determines the three localized nodes which have the lowest signal strength. It means that the distance 
of the chosen three localized sensor nodes from the unlocalized sensor node is the largest in all 
localized sensor nodes which can receive the information from the unlocalized sensor node. Here, we 
do not obtain the distance from the signal strength but compare the value of the signal strength. 

We suppose the following case that the three localized sensors satisfy Condition I but not satisfy 
Condition II, and show it in Figure 4. 

Three localized sensor nodes are far away from the unlocalized sensor node and pd  is close to 
r , but the three localized sensor nodes are in the same direction of the circle of the unlocalized sensor 
node. In Figure 4, the intersection point is three, and the geometric center of the intersection area is 
far away from the unlocalized sensor node. It means that the localization error is larger. 

To satisfy Condition II as far as possible, we employ the k-means clustering algorithm. The 
clustering algorithm can ensure that the class distance is as small as possible, and the distance 
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between classes as large as possible. In TP-TSFLA, we cluster the localized node which locates in the 
transmission range of the unlocalized sensor node into four categories. The localized sensor node 
with the lowest signal strength in each category is chosen. It means that four localized sensor nodes 
with the lowest signal strength in four different categories are determined. Any three of the four 
localized sensor nodes are picked. We use the localized sensor node as the circle center and r  as the 
radius to draw the circle. Hence, three circles can be obtained, and then calculate the geometric center 
of the intersection area of the three circles. Using the four localized sensor nodes, we can get four 
different groups of intersection area. 

 
Figure 4. CRFLA against Condition II. 

Then the average value of the four geometric centers of the four intersection areas is used as the 
coordinate of the unlocalized sensor node. The circle-based range-free algorithm is shown in Figure 
5.  

 

Figure 5. The detailed procedure of CRFLA. 
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The red circle expresses the transmission range of the unlocalized sensor node. The other points 
within the red circle mean the localized sensor node which can receive the request of the unlocalized 
sensor node. Then employing the k-means algorithm clusters those localized sensor nodes into four 
classes (using different shapes to express). In each class, the algorithm picks out the LN which is the 
lowest signal strength in its cluster (the distance between the localized sensor nodes and unlocalized 
sensor nodes is the largest). Three LNs draw three circles. The geometric center of the intersection 
area of the three circles can be obtained. 

If LNs within the transmission range of UN satisfy the two conditions with a high possibility to 
ensure that the three circles are intersecting and the intersection area is relatively small. The relatively 
high precision can be guaranteed. Note that the intersection point can be three or two. We can 
describe CRFLA in Algorithm 1. 

Algorithm 1: CRFLA 
Step 1: The unlocalized sensor node (UN) ),,( zyx  transmits the localization request. 

Step 2: The localized sensor nodes (LNs) which satisfy pd r  respond the information which 

contains the coordinate ( , , )p p px y z  and signal strength pRSSI  to the UN. 

Step 3: The UN use the k-means clustering algorithm to cluster the LNs into four classes ( icc ). 

Step 4: For each icc , choosing the LN with min( )pRSSI , four LNs can be obtained as 

4,3,2,1 LNLNLNLN . 
Step 5: Picking three LNs from 1, 2, 3, 4 LN LN LN and LN  to draw three circles, the cases 
contain  3,2,1 LNLNLN ,  4,2,1 LNLNLN ,  4,3,1 LNLNLN  and  4,3,2 LNLNLN , four 

geometric centers of the intersection area can be obtained expressed as  ,123 123x y ,  ,124 124x y , 

 ,134 134x y , and  ,234 234x y . 

Step 6: Calculate the average value of  ,123 123x y ,  ,124 124x y ,  ,134 134x y ,  ,234 234x y  as the 
coordinate of the UN. 

123 124 134 234 123 124 134 234( , ) ( , )
4 4

x x x x y y y y
x y

    
   

 

6. The Extension of CRFLA 

Based on CRFLA, we can get an estimation of the unlocalized sensor node’s position. However, 
the precision is rough. Thus, we try to increase the accuracy of CRFLA by studying the relative 
relationship between the original coordinates of the unlocalized sensor node, estimation coordinates, 
and the coordinates of the localized sensor nodes. Considering several of the geometric position 
relationships of the three coordinates, two cases are shown, as follows: in Figure 6, LN expresses the 
localized sensor node, and UN expresses the unlocalized sensor node, and EN expresses the 
estimated coordinate of the unlocalized sensor node.  
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Figure 6. The localization relationship of UN and EN when LN2 is above UN and EN. 

Connecting three LN points constitute a triangle. From Figure 6, we can see that EN is far away 
from UN and close to LN2. Hence, we approximate that EN is in the direction of LN2 away from UN. 
Figure 6 shows the case that LN2 is above UN and EN. 

The case that LN2 is below EN and UN is shown in Figure 7. Similarly, we can approximate that 
EN is in the direction of LN2 away from UN. Next, we should try to find out why the point is not 
LN1 or LN3 but LN2. Through observation, we find the angle α is the largest angle in the triangle. 
We test some cases and from those tests, it is true that it is a high possibility that EN is in the direction 
of LN2 away from UN. Hence, LN2 corresponds to the point that the angle of it is the largest angle 
in the triangle. We transfer the largest angle to the longest opposite edge. It means that the distance 
between LN1 and LN3 is the largest. We will use the MATLAB simulation to demonstrate it. Next, 
we give the mathematical model of the extension of CRFLA. 

 
Figure 7. The localization relationship of UN and EN when LN2 is below UN and EN. 
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The coordinate of UN is ),,( zyx , and the coordinate of LN2 is 2 2 2( , , )x y z , and the coordinate 

of EN is )ˆ,ˆ,ˆ( zyx . If we want )ˆ,ˆ,ˆ( zyx  is close to ),,( zyx , we should adjust the coordinate 
)ˆ,ˆ,ˆ( zyx  in the opposite direction of the movement of EN where EN is in the direction of LN2 away 

from UN. Because the z-coordinate can be obtained from the pressure sensor equipped on the 
unlocalized sensor node, we just discuss the adjustment of the x-coordinate and y-coordinate. The 
final coordinate of the unlocalized sensor node can be formulated as follows. 

,1 1ˆ ˆ( , ) ( )x y x a y b    (21) 

The extension of CRFLA adjusts the estimated coordinates in two steps: 

Step 1: The adjustment of the x-coordinate: 
Case I: if 2 ˆx x , then 1ˆx x a  ; 

Case II: if 2 ˆx x , then 1ˆx x a  ; 
Step 2: The adjustment of the y-coordinate: 

Case I: if 2 ˆy y , then 1ˆy y b  ; 

Case II: if 2 ˆy y , then 1ˆy y b  ; 

The determination of the variables 1a  and 1b  is hard. The value of variables 1a  and 1b  will 
seriously affect the precision of the location. Unfortunately, we still cannot find an excellent method 

to determine the value of variables 1a  and 1b . We first assume a kind of relationship between the 

variables 1a , 1b  and the distance between the side lengths of the triangle drawn by using the 
localized sensor node. Then we use a significant number of MATLAB simulations to change the 
parameters to observe the precision changes. In this paper, we use the parameters as follows: 

1 2 ˆa x x   (22) 

1 2 ˆb y y   (23) 

We will show the comparison of the different parameters using a MATLAB simulation. 

7. TP-TSFLA Procedure 

The TP-TSFLA proposed in this paper contains two phases. In Phase I, the mobile beacon is 
employed as the anchor to realize the time synchronization-free localization of sensor nodes. If the 
sensor node cannot obtain its coordinates in Phase I, it goes into Phase II and uses CRFLA to locate 
the unlocalized sensor nodes. Hence, for each phase, there are two steps. The detailed algorithm can 
be described as follows: 

Phase I: Range-based estimation phase 

Step 1: The sensor node uses the TSFL algorithm to obtain the distance measure d  from the 
mobile beacon to the sensor nodes. In this step, sensor nodes passively listen to the messages of the 
mobile beacon. Then using those messages received from the mobile beacons, the sensor node can 
measure the distance from the mobile beacon. If at least three distance measures are obtained, sensor 
node records those distance measures and goes into Step 2. 

Step 2: Every sensor node which has obtained at least three distance measures through Step 1 
use the PSO algorithm to obtain the estimated position. 

Phase II: Range-free evaluation phase 
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Step 3: Sensor nodes which cannot obtain their position through Phase I actively launch the 
localization request. The localized sensor nodes within the transmission range of the unlocalized 
sensor node receive the request and respond their coordinates to the sensor node. Then the 
unlocalized sensor node uses CRFLA to obtain its coordinates. 

Step 4: Sensor nodes adjust the estimated coordinate to improve the precision of the range-free 
method, and the final estimated location is taken as the coordinate of the unlocalized sensor node. 

The block diagram of TP-TSFLA is shown in Figure 8. 

 
Figure 8. Block diagram of TP-TSFLA. 

Table 2 gives all the mathematical notation and symbols definitions used in Algorithm 2. 

Table 2. Notation. 

Sign Meaning

iD  Number of mobile beacons to which the distance measurement from the 
sensor node i  is available 

jM  The number of the message received from the j  mobile beacon 

iLoc  If the node i  is localized, the 1iLoc  , else 0iLoc   

3z  The z-coordinate of the sensor node 

3( , , )
icoordinate

x y z

 
The estimated coordinate of the sensor node i  after using the 
optimized algorithm 

jjf
 The fitness function of the particle jj  

Maxgen  Number of iterations 
gbest  The population optimal 

2 2 2( , , )x y z  The coordinate of localized sensor node which corresponds to the point 
that the angle of it is the largest angle in the triangle 
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The detailed stepwise procedure for TP-TSFLA is shown in the following Algorithm 2. 

Algorithm 2: TP-TSFLA 
Phase I:  
Step 1: TSFL 
1: Each sensor node i  initialize data: 

3z depth , 
iiM  = 0, 

iLoc  = 0, 
iD  = 0 

2: Sensor node receives the beacons and records the beacon id j , 
jM  = 

jM  + 1 

3: if 
jM  ≥ 2, sensor node uses TSFL algorithm to compute the distance measure id , records 

iD  = 
iD  + 1 

4: end if  
Step 2: The PSO algorithm 
5: if 3iD   

6: Initialize the parameter of PSO, and produce initial particles jj  and velocities, and compute

jjf , then set Maxgen  
7: while the Maxgen  is not achieved do  

8: Update the velocity, particle population, and 
jjf  

9: Update the population optimal gbest  

10: end while 
11:

icoordinate  = gbest , sensor node records 
iLoc  = 1 

12: end if 
Phase II: 
Step 3: Circle based range-free localization  
13: if 

iLoc  = 0 

14: _ icoordinate initial  = Algorithm I 

15:
iLoc  = 1 

Step 4: Sensor nodes adjust the estimated coordinates to improve the precision 

16: Compute the parameter 1 1 ˆa x x  , 1 2 ˆb y y   

17: Adjust the x-coordinate and y-coordinate: 1ˆx x a  , 1ˆy y b   

18: 3( , , )icoordinate x y z  
19: end if 

8. Discussion 

In this section, we use a MATLAB simulation to evaluate the performance of TP-TSFLA. The 
simulation environment is 600 m × 600 m × 500 m. In order to sense the data of the whole simulation 
environment, we use 800 sensor nodes (the transmission range of sensor nodes is tens of meters) in 
UWSNs. All sensor nodes are regarded as stationary. Considering the size of the simulation 
environment, balancing the localization ratio and cost, we use 25 mobile beacons in this environment. 
The following parameters are the same as [12]. The speed of sound is set to 1500 m/s, and the rate of 
the mobile beacon is 1 m/s. The beacon interval varies from the 30 s to 100 s, and the transmission 
range varies from 150 m to 250 m. 

In [12], the authors do not show the localization precision of their algorithm. The effect of the 
underwater environment is not taken into account. Here we consider the factors which may lead to 
the distance measurement error. Thus, we employ the PSO algorithm to obtain the coordinate of the 

unknown sensor nodes. The maximum number of iterations maxk  is 200, the search space of the 
particle is the union set of the several circles whose center is the mobile beacon and the radius is the 
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transmission range R . Because the transmission range R  is large, thus the search space is relatively 
large. Thus, particle number has a big impact on average localization error of the algorithm. Here the 
particle number varies from 100 to 1000. And we design the experiment to compare the localization 
time and the average localization error at different particle number. The inertia weight can be 

obtained by using the Equation (16). In our experiment simulation, 4.0,9.0 minmax   . 1c  and 

2c  can be calculated by Equations (17) and (18), and 200max k . First, we fix the number of 
particles at 600, and the localization error of the sensor nodes by using the range-based estimation 
algorithm is shown in Figure 9. The average positioning error of the range-based estimation 
algorithm of using PSO by the MATLAB simulation is 0.7123 m. Note that we use 800 sensor nodes 
in this simulation, but in Figure 9 only about 650 sensor nodes are shown. It is because that some 
sensor nodes cannot obtain the position information only through Phase I. The localization ratio of 
the range-based estimation algorithm of using PSO is about 82.13%. 

 

Figure 9. The localization error of the range-based estimation algorithm of using PSO. 

Meanwhile, we discuss the effect of the particle number on the localization error when the sensor 
node uses the range-based estimation algorithm of using PSO to realize localization. Here we make 
the assumption that the particle number varies from 100 to 1000. Due to the large search space, the 
right choice of the particle number will decrease the average localization error. Moreover, the more 
particles mean the longer positioning time. In this simulation, we record the ratio of the localization 

time 100T

T
Tr i
i 

. iT  is the localization time when particle number is )1000,...,300,200,100( ii . 
When the particle number varies from 100 to 1000, the average localization error and the ratio of the 
localization time of the range-based estimation algorithm of using PSO is shown in Figure 10 and 
Figure 11, respectively. From Figure 10, we can see the average localization error is larger when the 
particle number is less than 600. While the particle number is more than 600, the increase of particle 
number does not significantly improve the positioning accuracy. From Figure 11, we can see that the 
localization time increase greatly with the increase of particle number. Thus, it is not worth increasing 
the more particles to decrease the localization error when the particle number is more than 600. Even 
the average error localization will increase with the increase of the particle number when the particle 
number is more than 600. It may be caused by the PSO algorithm falling into a local optimum. 
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Figure 10. The average localization error with different parameter setting in the PSO algorithm. 

 

Figure 11. The ratio of localization time with different parameter settings in the PSO algorithm. 

We study the effect of the beacon interval and transmission range on the localization ratio 
(defined as the number of localized sensor nodes). However, in [12], the authors did not put out the 
simulation environment, just noting that sensor nodes are 250. In [12], the authors show that the 
localization ratio is about 76% when the beacon interval is 100 s, while the localization ratio is about 
90% when the beacon interval is 30 s. However, our simulation experiment (shown in Figure 12) 
indicates that the localization ratio is about 57.75% when the beacon interval is 100 s, while the 
localization ratio is 82.13% when the beacon interval is 30 s. In [12], when the transmission range is 
150 m, the localization ratio is about 80%, while the transmission range is 250 m, the localization ratio 
is about 90%. However, our simulation experiment (shown in Figure 13) indicates that the localization 
ratio is close to 0 when the transmission range is small than 180 m. Hence, the localization ratio is 
close to 82.13% when the transmission range is 250 m. The reason for it may be that our simulation 
environment is much larger than that used in [12]. Meanwhile, the results show that when this 
method is utilized in the larger environment, the localization ratio may be not enough. Thus, we use 
CRFLA to improve the localization ratio. In the CRFLA, we use the beacon interval as 30 s and the 
transmission range as 250 m. 
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Figure 12. The localization ratio versus beacon interval. 

 
Figure 13. The localization ratio versus transmission range. 

CRFLA is based on the assumption that the number of anchor nodes is relatively larger in the 
localized-to-be area. In TP-TSFLA, only x-coordinate and y-coordinate of the sensor nodes are needed 
to obtain. Therefore, we project sensor nodes into the 2D-plane and study the 2D-relationship 
between sensor nodes. In Figure 14, we use the red circle to express the sensor node, and the blue 
triangle to show the estimation location of the range-based estimation algorithm of using PSO. We 
can see the red circle which is not surrounded by the blue triangle is the unlocalized sensor nodes. 
Hence, it is evident that the localized sensor nodes (new anchor nodes) are much more than the 
unlocalized sensor nodes. They locate in the different directions of the unlocalized sensor nodes. Thus, 
the prerequisites of CRFLA are established. 

We then use the MATLAB simulation to estimate the positioning error of CRFLA. The results 
show that the average positioning error is about 6.7996 m. Compared with the range-based 
localization algorithm (Phase I), the localization error is much larger. This is the shortcoming of the 
range-free localization algorithms, but the range-free localization is much simpler, and the power 
consumption is much lower. Besides, the range-free localization does not need some unrealistic 
assumptions such as precise time synchronization, and fixed speed which may lead to the localization 
error. An extension of CRFLA is proposed by designing a coordinate adjustment scheme. The 
comparison of the localization error of the unlocalized sensor node in Phase II is shown in Figure 15.  
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Figure 14. The location of the sensor node projected to the 2D-plane. 

 

Figure 15. The localization error of CRFLA. 

From Figure 15, we can see most of the localization error of the extension of CRFLA is lower 
than CRFLA. The average positioning error using the extension of CRFLA is 3.5348 m. Besides, the 
extension of CRFLA may increase the localization error. But it is just a small part of it. Hence, to this 
extent, the coordinate adjustment scheme is useful. Compared with TSFL which those coordinates of 
unlocalized sensor node are unknown, TP-TSFLA can locate most of them with the average 
localization error of 3.5348 m and has significantly improved the performance. The localization ratio 
is 96.38%, while the localization ratio of TSFL is 82.13%. 

Moreover, we survey the effect of the coordinate adjustment parameter settings on the 
localization error. We discuss some cases, and here we just list ten of them whose localization error 
is relatively small. We list the parameter settings of 1a  and 1b , and the No (#) of the cases, and the 

different localization errors are shown in Table 3. The coordinates of the UN are ),,( zyx , the 
coordinates of LN1 are 1 1 1( , , )x y z , the coordinates of LN2 are 2 2 2( , , )x y z , the coordinates of LN3 

are 3 3 3( , , )x y z , and the coordinates of EN are )ˆ,ˆ,ˆ( zyx . Note that LN2 corresponds to the point 
where the angle is the largest angle in the triangle. We use the No (#) of cases as 0 to express CRFLA. 
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Then we discuss some cases of the parameter settings and choose ten of them to show the localization 
error. We can see the different parameter settings can decrease the localization error at different 
extent. Compared with the localization error of CRFLA, the localization error of all the cases is 
reduced and shown in Figure 16. 

Table 3. The parameter setting of the coordinate adjustment scheme and their own localization error. 

No (#) The Parameter Setting of 1a  and 1b  
Average 

Localization 
Error 

0 1 1 0a b  6.7996 m 

1 
1 2 ˆa x x   

1 2 ˆb y y   
3.5348 m 

2 
1 2 ˆ 2a x x  

1 2 ˆ 1b y y  
 3.6220 m 

3 
1 2 ˆ 5a x x  

1 2 ˆ 5b y y    3.6815 m 

4 
 1 1 2 3ˆ ˆ ˆ 3a x x x x x x      

 1 1 2 3ˆ ˆ ˆ 3b y y y y y y      
 3.7380 m 

5 
       

   

2 2 2 2
1 1 2 2

1 1
2 2

3 3

ˆ ˆ ˆ ˆ
25

ˆ ˆ

x x y y x x y y
a b

x x y y

                

 

4.0327 m 

6 
       

   

2 2 2 2
1 1 2 2

1 1
2 2

3 3

ˆ ˆ ˆ ˆ
40

ˆ ˆ

x x y y x x y y
a b

x x y y

                

 

4.1148 m 

7 

       

   

2 2 2 2
1 2 1 2 1 3 1 3

1 1
2 2

3 2 3 2

40
x x y y x x y y

a b
x x y y

                

 

4.1152 m 

8  1 1 2 2ˆ ˆ 15a b x x y y      4.1489 m 

9    2 2
1 1 2 2ˆ ˆ 15a b x x y y      4.3465 m 

10 
 1 1 2 1 3 16a x x x x    

 1 1 2 1 3 16b y y y y      4.6065 m 
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Figure 16. The localization error of different coordinate adjustment scheme parameters 1a , and 1b . 

The MATLAB simulation shows that the average localization error of the range-based estimation 
algorithm by using PSO is 0.7123 m. The PSO algorithm can efficiently locate the sensor nodes and 
ensure a relatively high accuracy without time synchronization. In Phase II, we use CRFLA to locate 
the unlocalized sensor nodes, and the localization ratio achieved is 96.38% while the localization ratio 
using TSFL is 82.13%. The average localization error of CRFLA is 6.7996 m while using the coordinate 
adjustment scheme so the average localization error can decrease to 3.5348 m. 

9. Conclusions 

To make better use of underwater resources and realize the application of UWSNs, the 
localization of sensor nodes for UWSNs is the critical issue. Many scholars have put forward different 
localization techniques for UWSNs. However, most of them are based on the assumption of accurate 
synchronization between sensor nodes. In fact, this is tough to achieve. The TP-TSFLA method 
proposed in this paper contains two phases, namely, a range-based estimation phase and a range-
free evaluation phase. First, we use the TSFL algorithm to obtain the distance measurements from 
the mobile beacons to the sensor nodes. Then the PSO algorithm is employed to estimate the location 
of the sensor nodes. Moreover, CRFLA locates the unlocalized sensor nodes after Phase I. We use a 
multi-stage scheme where the localized sensor nodes acted as the new anchor nodes to help realize 
localization. Besides, a coordinate adjustment scheme is extended to improve the precision of the 
circle-based range-free algorithm. The simulation results show that TP-TSFLA can achieve a relative 
localization ratio without time synchronization and the coordinate adjustment scheme can decrease 
the localization error. However, there are still some issues that demand further study. We design the 
two conditions based on experience and experiments. therefore, it just can only guarantee with a high 
probability that the selected anchor nodes are optimal. We will further improve the two conditions. 
If the coordinate adjustment scheme is designed more reasonable, the localization error will decrease 
a lot. Hence, we will find the better parameter setting of the coordinate adjustment scheme. The 
impact of the localization protocols on the routing and clustering protocols is also a direction in the 
future. 
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