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Abstract: Assuming a reliable and responsive spatial contextualization service is a must-have in
IEEE 802.11 and 802.15.4 wireless networks, a suitable approach consists of the implementation
of localization capabilities, as an additional application layer to the communication protocol stack.
Considering the applicative scenario where satellite-based positioning applications are denied, such
as indoor environments, and excluding data packet arrivals time measurements due to lack of
time resolution, received signal strength indicator (RSSI) measurements, obtained according to
IEEE 802.11 and 802.15.4 data access technologies, are the unique data sources suitable for indoor
geo-referencing using COTS devices. In the existing literature, many RSSI based localization systems
are introduced and experimentally validated, nevertheless they require periodic calibrations and
significant information fusion from different sensors that dramatically decrease overall systems
reliability and their effective availability. This motivates the work presented in this paper, which
introduces an approach for an RSSI-based calibration-free and real-time indoor localization. While
switched-beam array-based hardware (compliant with IEEE 802.15.4 router functionality) has already
been presented by the author, the focus of this paper is the creation of an algorithmic layer for use
with the pre-existing hardware capable to enable full localization and data contextualization over a
standard 802.15.4 wireless sensor network using only RSSI information without the need of lengthy
offline calibration phase. System validation reports the localization results in a typical indoor site,
where the system has shown high accuracy, leading to a sub-metrical overall mean error and an
almost 100% site coverage within 1 m localization error.

Keywords: indoor localization; RSSI; WSN; WiFi; 802.11; 802.15.4; bluetooth; iBeacon; iLocate;
phaseless; COTS; network; DoA; fingerprinting; tracking

1. Introduction

Indoor localization is one of the most challenging goals for mobile device application development,
as evidenced by the growing interest resulting in the birth of different consortia (i.e., i-Locate [1]) and
coarse wireless devices (i.e., Apple iBeacon [2], NexTOme [3]) with simple software development
kits (SDKs). In [4], some achievements resulting from the worldwide Microsoft Indoor Localization
Competition are outlined. Note that all the proposed systems were developed with certain constraints,
including cost-effectiveness, configuration speed and transparency.

Particular attention has been given to infrastructure-free systems [4]; that are systems used by
most widespread Component-Off-The-Shelf (COTS) devices (i.e., smartphones, tablets, etc.), which
only implement standard communication protocols and achieve localization services, starting from
coarse and protocol estimated parameters (i.e., RSSI, LQI). In fact, localization systems compatible
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with typical user devices are considered the only answer to the development of friendly, cost-effective
and simple localization [5]. Therefore, improving localization accuracy is achievable by refining
localization algorithms.

In terms of IEEE 802.11 and 802.15.4 compliant systems, the direct physical parameters for
packet transmission are the time of arrival (ToA) and the received signal strength indicator (RSSI).
Time difference of arrival (TDoA) techniques can produce interesting results [6], and they may be the
solution; however, as shown in [6,7] the lack of sufficient timing for resolutions at the protocola data
level impose the Component-Off-The-Shelf (COTS) transceiver architecture to open up and achieve
more accurate time estimations (likely using higher frequency ADCs) at a lower protocol stack layer.
If such modifications could be considered, hardware adaptation would require higher frequency ADCs
and DACs, comporting all related mixed-signal hardware changes and incrementing costs. With respect
to the constraints of implementing COTS transceivers, the system design can take advantage of the
RSSI parameter estimation available in all the IEEE 802.11 and 802.15.4 implementations. The direct
RSSI evaluation appears to be an unreliable measure [8] for achieving a sufficient accurate localization
in indoor environments. By this, some RSSI-based solutions based on distributed network of routers
have been proposed in the past, applying fingerprint-like methods [4,9,10] or trilateration by range
estimation [11,12]: in all of these solutions coarse errors arise due to the unpredictability of RSSI
estimations in complex environments. Localization accuracy is typically improved by obtaining
additional information from user devices’ inertial sensors and by applying Kalman filtering [13-15],
but information fusion requires high computational power and accuracy, both directly influencing
the overall localization performance. The best localization accuracy is achieved through fingerprint
methods, but a complex off-line calibration phase shall be introduced to make the system operational:
such calibration strictly depends on particular environment characteristics (i.e., routers distribution,
furnishings distribution, etc.), so it makes the overall localization solution very complex to be installed
and managed.

This work aims to propose an IEEE 802.11/802.15.4 network compliant indoor localization system,
which is capable of achieving sub-metrical accuracy without any kind of off-line calibration phases.
The proposed approach is based on a network of anchor nodes (or rather, typical routers) based on a
particular SBA (Switched Beam Antenna) structure [16,17] which is capable of SDMA (Space Division
Multiplexing Access).

In Section 2 we demonstrate that such anchor node is able to provide a more predictable radiation
pattern distribution across the area, and through SDMA, exploiting more co-operative anchor nodes,
the resulting constellation is able to subdivide overall area in small cells thus enabling a coarse metrical
space subdivision. In this refined space domain, the proposed localization algorithm estimates
effectively the target position. In force of the pattern predictability and space cell subdivision,
through a RSSI-based fingerprint-like localization algorithm based on a purely ideal “reference map”,
the proposed system is able to achieve the sub-metrical localization accuracy for both static and mobile
target nodes. Because proposed localization algorithm is based only on RSSI estimations, no more than
a typical 802.11/802.15.4 transceiver is required while RSSI values are obtained in a fully transparent
way during standard packet network communication.

2. Proposed Hardware Infrastructure

In [17,18], COTS-only hardware for transparent indoor localization was proposed for use
in a distributed network of IEEE 802.15.4 anchor nodes hanging from the ceiling, which offer
Ethernet-to-ZigBee connectivity. Every anchor node is capable of transferring packets between any
LAN host and each ZigBee node (Figure 1), while the LAN host collects all the localization-related data.

A reference table for complete anchor networks is built in the LAN host, containing the position of
each anchor node. As shown in [18,19], an ideal two-dimensional map of the expected RSSI is collected
for each antenna and anchor (considering the user node as the transmitter), directly projecting each
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oriented polar ideal antenna pattern to the plane, with the height being the mean height of the TAG
nodes (i.e., a typical height of 1.10 m from the floor is considered).

Each anchor node is built on the concept of a switched-beam array [16,20,21]. In Figure 2, a brief
hardware description is shown, including both the antenna array structure and the anchor node
block diagram; functionally, the concept is to place a uC-controlled RF switch on a standard ZigBee
transceiver (i.e., in [19], a COTS Texas Instruments CC2430 transceiver was used), which connects the
RF channel to every antenna of the array.

LOCALIZATION AREA
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150.217.1.200
User LAN host

(x3,¥3)
‘ (0 Anchor Nodes  Position
1) 150.217.1.201 - (x1,y1)
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Figure 1. Distributed 802.15.4 Anchors network infrastructure and experiment site.
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Figure 2. COTS IEEE 802.15.4 anchor node hardware description/motherboard.

Ethernet interface

The antennas are implemented as printed patch antennas, radiating a characteristic and regular
far-field pattern (Figure 3, [22-24]). The antennas operate in circular polarization, permitting a reliable
link regardless of the relative orientation of the tag [19,25,26]. Furthermore, circular polarization is a
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strong aid in contrasting multipath impairment [27-29]. A set of patterns is projected over different
spatial areas [19] and for each anchor tag data packet a complete RSSI vector for each antenna, called
the steering vector, is given.

radiation pattern @O©=70°
0°

X /200

180° CEILING

Figure 3. Switched-beam array anchor node [17].

2.1. Proposed Localization Method

A steering vector defined through RSSI values contains information only about packet received
signal power, thus phase information is totally unavailable. Despite this an accurate design of the
array structure (Figure 2, [16,30]) can provide an excellent pattern differentiation throughout each
single anchor domain, thus lowering the expected Cramer-Rao Bound lower limit for localization
accuracy [31] and enabling the single anchor node to perform Direction-of-Arrival estimation. In [32]
a specific implementation of the DoA MuSiC algorithm [33] has been proposed for phase-less RSSI
steering vectors. Such an algorithm was successfully implemented in the 802.15.4 COTS based SBA
designed in [16] and proposed in Figure 3, showing that a completely phaseless and RSSI-only based
architecture can perform DoA localization [17].

Different anchors DoA estimations could be used to perform a three dimensional localization
overall a site, but RSSI DoA estimation is far from being accurate enough to achieve a limited dilution
of precision for localization in large areas. To improve overall accuracy some enhanced triangulation
algorithms exist [34], but the actual problem is that each different DoA estimation is affected by an angle
estimation error while such estimations are applied as arguments of strictly non-linear trigonometrical
function to perform final (x, y) estimation [35].

Dealing with a network of N distributed anchors, making the final localization using N different
and independent DoA estimation without considering any kind of relationship between them does
not exploit the entire information available. A stronger control over estimation error propagation can
be achieved by applying an estimation algorithm over the entire set of RSSI data given by the entire
set of installed anchors: the effective increase of information quantity available to the final localization
algorithm allows to complete reciprocal anchor observations thus reducing overall estimation error.

The error propagation scheme is conceptually depicted in Figures 4 and 5. Note that while the
typical triangulation approach in fact gets the different DoA estimations from each anchor node without
performing any kind of reciprocity check, dealing with overall RSSI information (thus processing a
“global steering vector” given by the entire network of anchors) a single conceptual block can access to
the entire information batch allowing to implement smarter localization algorithms.

Note that the error propagation model of Figure 4 is still valid for trilateration approaches [36],
as the Friis formula inversion is required to estimate the distance between the anchor and each node.
In this case, the RSSI measurements error can have an even bigger impact.
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Figure 4. Error propagation scheme for RSSI Direction-of-Arrival (DoA) based localization.
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Figure 5. Error propagation scheme for RSSI DoA-fused data localization.

Figure 4 reveals how the main source of weakness is caused by a pair of non-linear transformations
applied over the collected steering vector, which is affected by RSSI measurement errors modelled as a
Gaussian noise distribution [32]. Note that the non-linear function of the localization error depends on
non-linear functions g (AS;) applied as trigonometric function t (¢, 6) arguments.

To achieve an higher control over error propagation, a one-step localization algorithm is highly
preferable. In Figure 5, note that the localization error function becomes directly dependent on
RSSI measurement errors, thus final localization error can be better controlled by refining the direct
localization estimator function. In one-step localization, error propagation does not depend on
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trigonometrical functions, and the overall information comes from a distribute set of directive antennas
(grouped by anchor nodes), building a more descriptive and fully exploitable data set.

The proposed approach analyses the RSSI values collected from the overall anchor-node antennas.
Dealing with an highly spread antenna distribution, an extensive information about environment is
given reducing the needing of information fusion with additional sensor data; the needing of an off-line
calibration phase is removed thanks to predictability increase overall the observation area. Additional
information given by a “global steering vector” can be exploited through different processing blocks
(accurately described in Section 3) lying within the “One-Step” localization algorithm (Figure 5) which
are able to feed each other to refine final estimation results.

In summary, the hardware architecture shown in [17,19] was used, the algorithmic layer is deeply
different from a simple implementation of the DoA RSSI algorithm on every anchor, obtaining the
final spatial localization through the simple triangulation algorithm, as shown in [35]. In [19], each
M-dimensional steering vector collected for each of the N = 4 anchor nodes (each composed by M =7
antenna elements) was used to compose a single MxN-dimensional global steering vector, which
became the input of the direct localization algorithm placed on the server (Figure 1).

3. One-Step Localization Algorithm

In Section 2.1 the localization method has been introduced. As it is depicted in Figure 5 the
core of actual localization approach relies within the “One-Step algorithm” block: This paragraph
will describe block implementation in depth, thus evaluating algorithm improvements respect RSSI
measure noise.

In the “one-step” approach the effective steering vector is the vector containing every RSSI
collected from each antenna of every anchor node, and it becomes a global steering vector. Global
steering vectors correspond to a long concatenation of all the different steering vectors collected from
each anchor node placed in a known order (e.g., lexicographical order based on the name associated
with each anchor). For each packet transfer, the host gets a global steering vector, as shown in
Equation (1).

Sq “anchor#1” S1i
_ S, “anchor#2” _ So;
S = = with S; = i-th anchor steering vector (M antennas)
Sy “anchor#N” SM;i
H
or S = <511|521|-'-|SM11|512|522'-'SMZZ--'51N|-'-|SMNN> (1)

number of elems:zﬁl M;=MxN

Next to the steering vector is a reference map of the whole set of expected global steering vectors
for each different position in the localization space (Equation (2)).

My (1)
— ) 1
Scotlected = M (x,y) +Mpias (x,y) +Prx YV (x,y) in the localization domain )
L ] L ]
expected ideal real vs. ideal
antenna gains projection bias

A generic Maximum-Likelihood fingerprinting algorithm is based on finding the solution to the
problem in Equation (3) [19,31,37]. The C (x,y) function is called the pseudospectrum function or the
estimator and is defined as a R*> — R function in the localization domain.

(%,9) = argmin, ) C(x,y) withC (x,y) =F (S, M (x,y)) 3)
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Maximum likelihood (ML) algorithms differ depending on the estimator. Among the ML
estimators, a reduced computational cost subclass can be defined; the generic form is shown in
Equation (4).

— M (x,y))
~M(%,7))
)

i (x

X,

—
=
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v

(
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0
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S
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This paper will cover only reduced computational cost estimators to follow the imposed real-time
constraint. In Section 5, the localization results will be compared between the proposed estimators and
the State-of-Art, computationally complex MUSIC estimator [32,33]. The least squares estimator is the
simplest ML estimator and is the one referred to in [19].

X
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Following a classic fingerprinting approach [10,38], in [19], the concept of predicted fingerprinting
is introduced to achieve an acceptable localization accuracy in the site shown in Figure 1. In the
predicted fingerprinting reference map, which is compounded by steering vectors collected at each
position in classic fingerprinting approaches, the software projects every antenna pattern of each
anchor onto the observation floor space. This step was the novelty of [19], as, at the time, there was no
need for an extensive offline calibration phase prior to a system’s effective utilization by replacing it
with an a posteriori tuning/optimization of antenna projection map parameters [38] respect a small set
of training observations.

Note that, as shown in [19], antenna projections are built considering a reference height of 1.10 m,
the typical height for mobile phone use when the user is standing.

3.1. Area Preselection

The reliability of the estimator values is directly related to the reliability of reference map M (x, y)
and the function trends can be dramatically altered by RSSI measurement noise; arguments bias can
effectively produce some wrong relative minimums, which can become new absolute minimums
that alter the final localization estimation. One way of keeping this source of estimation bias under
control is exploiting the capability of each anchor to make a coarse spatial subdivision for the area of
competence [19,39] (Figure 6).

In the subdivided localization spaces of multiple anchors in smaller sub-zones (or cells), each
anchor is uniquely linked to a list of corresponding maximal antennas for each anchor plus the
absolute maximal antenna (Figure 7). Therefore, every steering vector directly links to a subselection
of localization domain (or rather a sub-cell), reducing the computational cost and the maximal
localization error.

Defining a preselection steering vector with related preselection steering vectors reference map as
in Equation (6), the preselection algorithm is shown in Equation (7).

P = (idy|idy] . .. |idN>H with id; = max. antenna id on i-th anchor (6)

Pmap = Peypected V (%, ¥) in the localization domain
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Figure 6. Predicted fingerprinting map for the first anchor node.
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Figure 7. Maximum RSSI distribution over the site (a) and related cell descriptors (b).

The preselection algorithm removes each point from the reference map which does not belong in
the subselection condition represented by the masking function W (x, y): R — {0,1}.
The subdomain reference map equals

cell ID distance function

M (x,y) =M (x,y) - W (x,y) with W(x,y) =< 1 when d(P,Pmap (x,¥)) <dmax (7)
0 otherwise

with the cell identifier distance function d (P, Pmap (x,)) defined in Equation (8).
d:NN N / dE@W) = [v; — 0] pa (8)

The preselection algorithm relies on unrelated sub-domain removal (i.e., unrelated to selected
cells), which shows cell identifiers too different or “far” from the one extracted from the measured data.



Sensors 2017, 17, 717 9 of 39

Rough area preselection can lead to localization mistakes due to the preselection uncertainty
for areas laying near cell boundaries. The feature is associated with an index called the maximum
antenna distance (dmax), which permits the choice of the strictness of cell selection. For an example,
looking at Figure 7b, if the node position belongs near the red-coloured border, a cell selection mistake
could lead to increased localization errors. An effective workaround is to incorporate the cells that
belong on adjacent antennas in the domain selection. Imposing a higher dmax causes a reduction in
domain selection selectivity, so a complete localization routine could allow for an adaptive algorithm
to increment the dmax only when needed.

3.2. Adaptive Masking

If the localization problem is stated as in Equation (3), the main condition for the estimator
function is to be convex inside the current localization domain. By this, the presence of a possible
correct estimation is identified only if an absolute minimum is present in the observed domain.

The absolute minimum is defined for a R*> — R function as the point (£,1) corresponding to the
minimum value, in which the gradient and the Hessian matrix are defined in the neighborhood and
the conditions in Equation (9) is verified.

A ) [anx,y)}
TEpee Doy = | [ | =7
3 0:V W 2y
e>U: (xl,;\v),\ / |:82C(X/y)i| >0 (9)
(e y) = (& 9)]] <e T J(zg
C (x,y) defined PClxy)  PClxy)
] [AH (x )] _ ox?2 dxdy >0
C? necessary condition Yl(z9) ?C(xy) 9*C(xy)
W )

The approximate solution of the statement in Equation (3) is given computationally by looking
for the indeces matching the minimum value of the numerically computed pseudospectrum function;
therefore, the direct check of the conditions in Equation (9) is unnecessary. Nevertheless, if the selected
subdomain ends before the pseudospectrum value reaches its absolute minimum, the preselection
feature can lead to serious estimation errors (Figure 8).

Making the subdomain selection algorithm adaptive and dependent on each observation could
be a valid workaround. Since an a priori knowledge about the maximum position does not exist,
an one-step definition of the subdomain mask is unreliable. The idea is to apply an iterative
algorithm that verifies whether the minimum relies on an area that is safe and far enough from
any subdomain edge for each execution. If not, the subdomain boundary will be extended to enlarge
the selection area, increasing the dmax parameter shown in Equation (7) and reapplying the mask.
An example pseudocode implementation is shown below. Figure 8 shows the progressive building of
the pseudospectrum using the adaptive masking algorithm.

In Algorithm 1, the argmin operator is numerically computed, so Equation (9) computation is
unnecessary. Thus, the “CheckReliabilityMin” function must only check that the computed minimum
does not belong to the masked domain edges. If the condition is true, Equation (9) will be implicitly
verified thanks to the pseudospectrum continuity of the domain (Equation (5)) [19].
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Algorithm 1 Localization Algorithm with Adaptive Masking.

1: function LOCATE-2D
2: (reliableMin < 0) U (dmax < 0)
3 S « GetFusedSVector() > get data from the network (Equation (1))
4 P < GenerateCellldentifier(S) > generate the preselection vector P (Equation (6))
5: M < GetReferenceMap() > get the steering vector reference map M (Equation (2))
6 Pmap < GetCellsMap() > get the preselection vector reference map Pmap (Equation (6))
7
8 while not (reliableMin) do
9: Mg — GetCellDomain(M, Pmap, P, dmax) > apply the map masking M - W (Equation (7))
10: C <« Calculatepseudospectrum(S, Mg]) > compute the C [i,j] function (Equation (5))
11: [1,j] + argmin q Clijl > [1,j] = indeces of the C [i,j] minimum (Equation (3))
12: reliableMin <—éf1eckReliabilityMin(C, 1)) > verify Equation (9) domain conditions
(Algorithm 2)
13: if not (reliableMin) then
14: dmax ¢ dmax + 1 > increase the max. acceptable cell ID distance (Equation (8))
15: end if
16: end while
17:
18 (£,9) < (Mge.xVector [i] , M.y Vector [j]) > extract the (£, 1) from the indexed domain
19: return (£, 7)

20: end function

To minimize the computational cost, it is best to ignore all the pseudospectrum points that
belong outside of the masked domain. This marks all the points where the masking function is null
(Wi, j] = 0 - Equation (7)) as NaNs (i.e., MATLAB’s Not-a-Number marker). Marking the value
of a matrix as a NaN makes it a non-existent value, so any further processing propagates the
non-existence condition.

An implementation for the “CheckReliabilityMin” function is shown in Algorithm 2. The simplest
way to check a condition in a point neighborhood is to write a nested cycle where, for each column of
the matrix, all the rows are checked, so the neighbor zone will be square shaped.

Algorithm 2 CheckReliabilityMin Function.

1: function CHECKRELIABILITYMIN(C, [1,]])
2 let radius =ko - min [length (M.xVector) , length (M.yVector)]
3
4 fori= (i—radius) to (i+ radius) do
5: forj = (j — radius) to (j + radius) do
6 if C[i,j]=NaN then > point near the domain boundary
7 return 0 > pseudospectrum is not defined overall in the (£, ) neighborhood
8 end if > high risk of minimum identification mistakes
9 end for

10: end for

11:

12: return 1 > point far enough from the domain boundary

13: end function

A square domain neighbour does not respect the mathematical definition of the neighbourhood
of a point (defined as a circular area), but a workaround is to check the condition over an area that
contains a typical neighborhood.
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STEP #1 STEP #2 STEP #3

Unreliable ||
boundary
minimums

Figure 8. Example of pseudospectrum C (x, ) composition using an adaptive masking algorithm.

The radius of the point’s neighbour is defined through a proportionality constant number of
points over the localization domain’s minor dimension (conventionally kg = 0.1); the process for
checking for an effective domain is shown below.

__ max M.xVector—min M.xVector __ maxM.yVector—min M.y Vector s
Ax = length(M.xVector) Ay - length(M.yVector) A = min [[Ax’ Ay”

(x,y) sample steps
D= {(x,y) € R?:||(x,y) — (£,9)|| < (radius-A)} standard R? neighbor definition

4
D = {[if] € N+ (|[i~1]| < radius) 0 (|[j ] < radius) }
L U, ) !
x = M.xVector [i], £ = M.xVector [1] (10)

x
y = M.yVector [j], # = M.yVector [j]
ex = radius - Ax, ¢, = radius- Ay

Dy = {(x,y) € R (|lx =2l < e) N (ly— 9l <) }
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An effective neighborhood domain is rectangular when the reference map is built and uses
different sizes for each spatial dimension. Nevertheless, by Equation (10), it is clear that an R?
neighbour with an area greater than the standard is always verified (Equation (11)).

>42
. 2 . 2 | pu—|
D area = 7t (radius - A) D, area = 2¢ey - 2ey = 4 - radius” - AxAy
D 4 radius®- AxAy  4AxAy _ 4
area ratio = —2 ooa _ 2 TacIus ny = xzy >—>1 (11)
D area 7 (radius - A) A T

3.3. Antenna Weighting

RSSI measurements are non-direct physical estimations of a signal state. An RSSI value is obtained
after signal decoding through different correlation processes [40,41].

The decoding process achieves data transfer error rate reduction by introducing a high process
gain. RSSI measurements can observe high biases for lower signal powers, for which a smart decoding
process can achieve a better RSSI in respect to the effectiveness of the signal power. For such cases,
in particularly unlucky (x,y) points, reference map projections can produce RSSI values much lower
than the obtained ones.

The bias caused by demodulation process gain is expected to grow in the presence of low signal
powers, so an external correction gain can be applied in estimator computing to try to remove this
effect and reduce the weight of a weak antenna inside the overall estimator computation. For reduced
computational cost algorithms (Equation (4)), the function F (X) can be modified as follows:

MxN

C(x,y)=F(S—M(x,y) = Y, wF(S—M(xy)) (12)
i=1

with w; = i-th steering vector element related weight

RSSI ant: ighti 1ot

antenna weighting — w; = ————-

ghtng Ty WxN 10T

A direct RSSI antenna value can be used to estimate the RSSI estimation reliability, so antenna
weighting is applied by placing the weights as shown in Equation (12).

3.4. Minimum Variance (minVAR) Estimator

In the localization problem stated in Equation (3), the effective kernel of the localization algorithm
is the estimator or pseudospectrum function. An ideal estimator should give a singular minimum
point (i.e., an absolute minimum) for the overall localization domain, and it must coincide with the
right node position. If ideal hardware is used and localization is required in a perfect environment, in
which radio propagation acts perfectly and as modelled in the reference map (Equation (2)), a basic
estimator function can be used (Equation (5) [19]).

In [18,19], the maximum accuracy limit is stated performing an analytical Cramer—Rao-bound
(CRB) computation [37], as presented in [16], but CRB analysis places only an ideal accuracy limit
given by the geometrical distributions of antenna gains over the space. CRB analysis evaluates the
minimum achievable error for the localization space, supposing that the only source of idealization is
the RSSI AWGN added to the obtained steering vector (modelled by the equivalent ¢ noise parameter
asin [19]).

Rather than the measure AWGN, the main source of estimator bias in real applications is the
effective inconsistency between the reference map and the effective RSSI distribution over the space.
As an example, in Figure 9, the measured RSSI distributions of two different antennas in the experiment
site of Figure 1 is shown; next to them, the expected ideal distributions are plotted for two different
expected elevations (zyefg = 1.1 m and z,f; = 0 m).
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Figure 9. Collected RSSI values over the area (a) compared to the estimated RSSI values calculated
(b) at zrgr = 1.10 m and (c) at zrgp = 0 m.

Figure 9 clearly shows how much the RSSI distributions differ from the expected projections.
In real environments, producing a reliable reference map as proposed in [19,42] is unthinkable without
a scenery-related calibration session, as occurs in the fingerprinting approach. Dealing with this,
reducing the reference map misalignment effects on localization estimation (causing estimator bias) is
required and a new estimator function (respecting Equation (4) definition) is proposed.

C(x,y) = var, {S~ M (x,y)} = E { (s —m;) ~E; {5~ M (x,9)}]’}

MxN MxN 2 _ 1
C (x,y) = K() 1221 (Si — m,') — KO ]; (S] — m]) with KO = Mx N (13)

In Equation (13), the minVAR estimator is shown; it evaluates the variance associated with the
difference vector built from the measured steering vector and the reference map vector (while the
standard least squares estimator calculates its norm using Equation (5)). Assuming a perfect reference
map is created, both LSE and minVAR functions act as two unbiased estimators; thus, the CRB of
the localization network results, which show the expected accuracy related to typical AWG-noised
measures, are the same, as shown in [19].

3.5. Fading and Multipath Immunity

A straight evaluation of RSSI parameter intended as an estimation of physical RF received power
by the anchor node leads to huge localization estimation errors due to effective RF received power
fluctuations due to fading and multipath effects. Dealing with standard and crowded environments
such behavior could make the proposed system unusable, but RSSI defined as in IEEE 802.11/802.15.4
network protocols is strictly related to effective data packet information and it is uniquely linked
to each different data frame. Data packets are coded through Direct Sequence Spread Spectrum
techniques, thus effective data retrieval shows improved immunity towards fading and multipath
(representable as delayed receiving signal replies) [43—46].
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As depicted in Figure 10 RSSI estimation is averaged overall the preamble sequence window only
after recognizing the packet “Start of Frame Delimiter” through spread spectrum decoding, while
spread spectrum correlation techniques ensure that only the first coming packet will be evaluated
thus ignoring any delayed echo reply. Furthermore averaging RSSI over the entire preamble sequence
window allows to reduce highly variable fading effects on RSSI estimations, while highly destructive
effects lead to a packet loss which prevents from obtaining wrong RSSI values that can lead to wrong
localization estimations.

RSSI

5+(4to20)+n

. Octets: 2 1 4t020 n 2
window
Frame |Sequence Addressin
The | 128us [ Packet Control | Number Fields RES
sublayer Trigger |
MHR MSDU MFR
; |

Octets: 4 * 1 1

PHY Preamble 1ar10_f|fram Frame
layer |Sequence Dellmﬂer1 Length

5 SHR | PHR PSDU
| 11+(4t020)+n

PPDU

Figure 10. Pictorial of RSSI evaluation scheme within packet frame for IEEE 802.15.4.

For slow fading issues which belong to a constant and directive interference the antenna
multiplicity helps to mitigate such phenomena: Two different cases can happen

e omni-directional interference (or rather “diffuse scattering”): any steering vector RSSI value is
uniformly altered so the steering vector mean value y is altered, linearly multiplying the vector
for a constant coefficient, but overall linear vector direction remains the same;

° highly directional interference: some vector terms are dramatically altered, but the overall linear
values steering vector direction is maintained (only few vector terms ratio are changed).

As highlighted in Section 3 and further in Section 4 and in [17,19,32] the steering vector maintains
its DoA /positioning information into differences between single RSSI terms (or ratios between linear
terms), or rather, into the effective steering vector direction in CM /RM vectorial space.

Having as reference map the ensemble of physically acceptable steering vectors for a given array
structure, a good ML algorithm implementation will be able to identify the most similar reliable map
vector rejecting/ignoring the extra domain vectorial components.

ML algorithms based on vectorial subspaces decomposition [32,33] evaluates direction match
between obtained steering vector and reference vector ignoring at all any constant-term fluctuation
while rejecting singular term ratio mismatches. Note that for reduced computational cost subclass
algorithms (Equation (4)) such capability depends directly on estimator function.

By this Section 4 will describe how minVAR estimator respect LSE is more able to ignore
costant-term mismatches while singular term mismatch effects are minimized increasing the number
of distributed antennas, as it will be shown by estimator bias coefficients ratios in (Equations (33)-(35)).

4. Estimator Function Improvements Assessment

The effective core of “One-Step” algorithm block relies over the new minVAR estimator
function, introduced in Section 3.4. Having to process long vectors of RSSI values that describe
a set of distributed antenna gains, Maximum-Likelihood algorithms based on vectorial subspace
decomposition (like MuSiC [32,33] or Esprit [47]) become unfeasible due to increase of problem
complexity order and for the lack of orthogonality conditions between steering vectors collected
from different (x,y) points. Consequently, the effective estimator function improvements should be
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evaluated respect to LSE standard estimator implementation, as proposed in Equation (5) [31,35,38],
which is at the best of the author knowledge the only suitable estimator.

To achieve estimator bias immunity, a propagation error model for reference map errors in terms
of both LSE and minVAR follows.

Considering the reference map bias, the localization problem statement (Equation (3)) is as shown
in Equation (14). The equation defines the reference map bias vector object as the RSSI value difference
between the ideal projected gain maps and the physically obtained ones (Equation (15)).

ideal bias of ideal
reference map  reference map
(computed) (unknown)
— - _ I 1 I 1
Cloy) =F(S-M(xy) = Cxy)=FS-( My + Mr(xy))) (14)
| EE— — L 1
biased unbiased physical
estimator estimator reference map
(unknown)
H
map bias vector MA (X,y) = <mA11|mA21 . |mAM11|mA12| . |mAM22\ . |mA1N| . |mAMNN>
number of elems:Zf\il M;=MxN
with i (%, y) = MijpHysicAL (x,y)l ~ MijipEaL (x,y)l (15)
physical gain projection  ideal gain projection
(unknown) (calculated)

Following Equation (3), in localization estimation, a formally faultless evaluation of the estimator
bias should be made to evaluate how much the reference map bias vector argument can alter the
conditions in Equation (9) and shift the position of the minimum pseudospectrum point. Despite this,
it must be considered that any consideration about the unknown physical gain map projection trends
is totally unfeasible; therefore, its derivatives are undefinable.

The analysis can be simplified with a comparative evaluation of the effects of the bias vector
directly to the function image between the different estimators. Without evaluating the M (x,y) trend,
if an estimator shows a reduced variability in respect to the m,; (x,y) subfunctions, it will be more
robust against ideal physical reference map differences. Therefore, a qualitative comparison can be
made between the estimator function differences and the m,; terms.

The estimator function is directly definable in the RM*N

the estimator gradient can be defined as in Equation (16).

dC (x,y)| oC (x,y) aC (x,y) (16)
omy omy || ommN

reference map vectorial space. By this,

map gradient VC (x,y) = <

Thus, by defining the gradient vector, each point of the estimator function can be written as in
Equation (17), which separates the influence of the reference map bias vector.

estimator bias gain

- * I 1 2
Clxy) ~ C(xy) +[VuC(®Wlmuy Ma @y +0 (IMa(xp)lF)  (17)
ted unbiased ' o !
compute: : .
estima.trt))r value  estimator value estgﬂgg{igﬁlue superior order terms
(biased) (unknown) (due to map bias)

By Equation (17), a brief evaluation of the estimator bias is given by the estimator bias gain
(Equation (18)), which is a conceptually approximate map bias to estimator bias gain.

Co (x,) = |[[VMC (& W)lwtcen | (18)
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As estimator bias gain calculated in a localization point (£, ) points out how much the specific
estimator is susceptible of variation on that point due to map biases, comparison between different
estimators bias gains over the overall localization area could identify the more reliable estimator.

However, both LSE (Equation (5)) and minVAR (Equation (13)) estimators are strictly non-linear
in terms of their vectorial arguments, so it is necessary to verify whether a first-grade approximation
(Equation (17)) is reliable enough.

It has already been said in Section 3.1 that map bias can introduce new relative minimums in
different (x,y) points, and this can happen in map vector domains, as well. Assuming that the map
bias is restrained enough to alter the estimator function trend only in the neighborhood of the effective
estimation point (%, 7), a corollary condition should be that the My (x,y) term will not be able to
alter the estimator function convexity so that the relative minimum condition (Equation (9)) will still
be verified.

Convexity behaviour must be verified using the Hessian matrix (as seen in Equation (9)), but
the method is absolutely unfeasible when handling a high dimensional RM*N — R function.
An alternative way to impose convexity is to evaluate the influence of superior grade terms. It is clear
that all non-linear map bias dependency is defined by the residual term in Equation (19).

Cr(xy) =0 (IMa )1 (19)
= | (xy) — € (xy) ~ VMC (%9 nggay) - Ma (x,)

By quantifying non-linear estimators, it becomes possible to foresee the reliability of the estimator
bias prediction using the estimator bias gain in Equation (18). To evaluate the most reliable estimator
between A and B, both conditions in Equation (20) must be verified; the first one verifies which
estimator could be the more stable, while the second condition verifies how much the first condition
is reliable.

[Cp (£,9)]a < [C(£,7)]5 ~
A A <= A more reliable than B (20)
[CL (2,94 <[CL(%9)]p

Note that each condition must be verified in (%, ), while the estimator equations directly depend
on the collected steering vector S and the reference map vector M (£, ) (Equation (3)). Following the
reduced computational cost estimator class definition (Equation (4)), the correct and biased localization
estimation is defined below.

(2,9) = argmin ., C (x,y) (£,7)=F(S—M(%,79)) =0
(%,7) = argmin, C’ (x,y) ( S
The estimated localization should be equal to the real position.

*

C(£9)=F((S-M(£,9) —Ma(£,9) =0 (21)
Therefore,
S —M(%,9) = My (% 7) +E=X0] <= 0 (Equation (4)) (22)

Using Equations (21) and (22), each function can be evaluated in the (£, ) point by writing its
dependency from the map bias terms directly, as shown in Equation (23).

Cg = H[VMC (ﬁ/?)]M(ﬁy) ‘ CL = ’C (f,ﬁ) — [VMC (ﬁ’g)]M(x,y) -Mjy (f/ﬁ)

(a) map bias to estimator bias gain (b) non-linear estimator factor

(23)
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4.1. Algorithms Based on Vectorial Subspace Decomposition

Estimators based on vectorial subspace projections (e.g., MUSIC [32,33], Esprit [47]) can give very
high map bias and noise rejection relying on the property of orthogonality between the error vectors
and the expected vectorial subspaces. The bias factor for vectorial subspace algorithms is ideally zero
because any My (x,y) vector has a null projection over the map vector subspace [32].

Unfortunately, applying vectorial subspace decomposition algorithms on a one-step algorithm is
unfeasible due to the high grade complexity of the computation. A fundamental constraint for indoor
localization is real-time tracking, but high global steering vector dimensionality (Equation (1)) prevents
singular value decomposition and reference map vector projection [32,47] over subspaces within
reasonable timeframes. The localization results of RSSI MUSIC implementation (presented in [32]) will
be reported to show the mean execution time and speed ratio of each estimator.

4.2. LSE Estimator Bias

Applying the condition in Equation (21) to calculate the LSE estimator gradients results in the
following equation:

o A oC g
Cisk (x,y) _ ZMXN( . mz) ZMXN 42 [LSaEm(x]/)]( ) =—-2(s; — mi) = 2myp; (24)
i 29

[VmCrse(£9)];

Following Equation (23), the estimator bias factors for the LSE estimator are given below.

Coist MZMXN([WM) 2 N 2 2 My (2,9

%,9) A A 25
Cuse =[C(, 9) [V C (5 Dy Ma (% i) @)
’ZMXN — EMIN (—2mp ) myi| = 3EMIN ma 2 =3[ My (2,9)|
4.3. minVAR Estimator Bias
By Equation (13), the minVAR estimator is written as follows:
MxN MxN 2
Crminvar (%, ¥) =Ko ), G with Cp= [(1-Ko) (sx —m) =Ko ), (sj—mj) (26)
k=1 j=1,j#k
Each term of the minVAR estimator gradient is shown below:
[VMCminvar (%, y)]; meavﬁlj(x*y Ko 3N 5 = Ko (gg{ + TR ki grcnk>
with 96 =2 [(s; — m;) — Ko TGN ( 5j — m,>] (Ko — 1) 27)
% =2 |(sk —mg) — Ko ZMXN ( m])] Ko

Expanding on Equation (27) results in the following equation:

) = aio { (51— ms) — Ko 5N (s — my)| (Ko — 1) + Ko T, (51— me) = Ko EM5N (55— my) | }
Placing
MxN
=Ko ) (ss—m) =E{S—M(%79)} =E; {Ma(x,y)}
j=1
it results

o) — 5K {(Ko = 1) (s — m;) — p (Ko — 1) + Ko S350, (s — my) — H]} =
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= 2Kp [(Ko = 1) (s —m;) — p (Ko — 1) + Ko T3 3; (s — my) =Ko (M x N —1) V}
=2Ko [~ (si —m;) = (Ko—1) +p =Ko (M x N —1) ]

= 2K (—=s; +m; *VK0+V+IJ*V+(VK)0)

_ e — . 9CminvaAR (X,¥ _ _ )

=Kol — (s —mi)] = [PomEA] = 2K (= ma)

i

(28)

Following Equation (23), the estimator bias factors for the minVAR estimator are written
as follows:

dC(x,
CBminVAR = \/ f\ATN <{a(+zy):|(9/y)> = 2Ky MXN (mAz V)z
var;{Mu (2,9)}
var; {S M (% } —2Kjp MXN (n — mp;) ma;

CLminVAR

(29)

KOZMXN (mAtfu) 72K ZMXN (meAz)mm’
Ko ZMXN 1,2 — 2Kop "M N mp; + Ko (M x N) 52 — 2Kop SMN mmp; + 2Ko EMN mp 2
,Ko‘e.zMmeA +[(MxN) - y’

4.4. Estimator Bias Immunity Comparison

In Equation (30), a generic bias model is described. The map bias is given as a Gaussian noise
vector distributed over M x N steering vector terms; an eventual Pty term is embedded into the mean
value of the Gaussian noise, because it results to be common to every steering vector component.

M, (x,y) = Nyxn (1,0)  + overall map bias vector
n; =N1(0,0) <+ AWGN variable term
A= U+ < overall map bias term
Scollected = M (%, ]/) + My (xry) — (30)
un =Ei{n;} =0
#=E{S-M(x,y)} =E{Ma (x,y)} = Prx + 4
0% =var; {S—M (x,y)} = var; {Mx (x,y)}

Applying Equation (25), the LSE bias factor can be calculated as follows:

MxN MxN MxN MxN MxN

CBLSEZZ 2 mAiZ:Z 2 (y—i—ni)z:Z 2 ]/12+2]4 2 n; + 2 niz
i=1 i=1 i=1 i=1

i=1

= 2,/(M x N) 122 +-2 (M x N) pp + (M x N) 02

— 2/Mx Ny + 02 (31)
MxN MxN ) MxN MxN )
CLLSE:3 Z mAl-2:3 Z (}l+nl) =3 (MXN)]JZ‘FZH Z ni + Z n;
i=1 i=1 i=1 i=1

MxN
=3 [(MxN)y2+2(MxN)yN‘u+ Y nﬁ]
i=1

=3(Mx N) (;ﬂ + 02) (32)
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Applying Equation (29), the minVAR bias factor can be calculated as follows:

sz:N 9 MZx:N 9 MxN ) o
Cominvar = 2Ko (ma; — E)? = 2K, (4 +n; — E)? = 2K, n2=—2__ (33
" =1 7 i l = ' 2V/MxN

MxN
3 Y ma?+[(MxN)—4]p?
i=1

MxN

3Y, (n4m)’+[(MxN) -4
i=1

MxN

3(MxN)p>+6(MxN)unpu+3 Y n”+[(Mx N) -4

i=1

CLminvar = Ko =Ky

=Kp

MxN
3 Y n2+4MxN-1)p?
i=1

4 1 4

2 2 2 2

="+ (1- )y} RO+ U (34)
{ 3 ( M x N (MxN)>>1 3

=Ky

=K, {3(M><N)02+4(M><N—1)V2]

To evaluate the minVAR improvement over the LSE, the following Equation (20) ratio
conditions are

CLminvar (£,9) < Crrse (£,7) N { Crrario >1
v i

Cominvar (£,9) < Corse (£,7) Crario > 1
By replacing
C 2
CpraTiO = ‘*gfﬁ =4(MxN)y/ (;ﬁ,) 2+ 1>1 |V < VPx 35)
CLrario = grote =9 (M X N) (4?@%) =

Final conditions in Equation (35) summarize all reliability comparison between minVAR and LSE
estimators. When those conditions are verified, minVAR estimator reliability over LSE is proven.

In Figure 11, the estimator bias gain factors and estimator factor ratios are shown for the actual
experiment configuration (Figure 1 with 4 anchors, each with 7 antennas) with respect to different
(u, o) parameters in the Gaussian map bias model. The estimator factor ratios are always much greater
than one, making the minVAR estimator more reliable than the LSE.

By Equation (35), a further noticeable improvement is highlighted: The minVAR estimator is fully
independent or unbiased with respect to the user node’s transmitted power term Prx or rather from
each y steady term (as it can be a APtx due to path loss). In particular, if the reference map deviation
belongs only to the constant term, then Cg,,;,var (£,7) = 0. The improvement is not trivial; every
fingerprinting method is dependant on the overall received power value. This dependency causes
localization estimation bias for transmitted and received power fluctuations, even though a complete
and error-free measured data set is available [19,42].

Note that for minVAR estimator bias gain decreases by increasing the overall number of antennas
(Equation (33)) while the estimator non-linearity factor does not change at all (Equation (34)). Therefore,
it is proven that minVAR estimator will always enhance its reliability by increasing the number of
antennas over the localization space as stated by CRB-analysis [19,37]; LSE estimator instead shows the
reverse trend, worsening its bias if each antenna adds its RSSI measurement noise to the steering vector.
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Figure 11. Estimator bias factors for both LSE and minVAR.

Two main cases for map bias distribution can be evaluated: the first considers an highly stable
map bias |i| >> o (e.g., for high |Prx| terms due to path loss), and the second considers an highly
variable map bias (e.g., due to coarse unexpected map model errors).

= | minVAR bias << LSEbias|  (36)

~4(MxN)|E 1
‘ﬁ‘>>1 N CBraTIO 9( X ’o”>>
o CLraTIO & z(MXN)>
~ 4
9
3

‘g‘<<l N {CBRATIO (M x N) >>

(M xN)>>

= | minVAR bias << LSE bias |

4.5. Simulated Localization Estimation Results and Comparison

To make an effective comparison, in Figures 12 and 13, the simulated localization error results for
the referenced scenery (Figure 1) are shown, computing a set of 10 localizations in each (x, y) point.
For each localization the steering vectors was the corresponding reference map vector M (x, y) biased
with an AWGN map bias defined as in (Equation (30)).

It is remarkable that the plots in Figure 12 follow the predicted trends shown in Figure 11,
further highlighting the validity of proposed model. For comparison, Figure 12 and Table 1 show the
localization error results of the State-of-Art MUSIC localization algorithm, as shown in [32]. For a
21 x slow down in the localization execution time, better localization estimations were achieved.

Table 1. Simulated localization estimations of all the cases (N = 10 localizations for each (x, y) point).

Estimator Mean Error (m) Mean Std.Dev. (m) Execution Time (ms) Speed Ratio

LSE 0.37 m 0.20m 10 ms 21 x
minVAR 0.11m 0.26 m 10 ms 21 x
MUSIC 047 m 0.87m 210 ms 1x
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Figure 12. Simulated localization estimations with the Gaussian map bias (mean error).
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Figure 13. Simulated Localization Estimations With the Gaussian Map Bias (Standard Deviation).

5. Experimental Results

The minVAR estimator can achieve better results than the LSE that are directly comparable to the
well-known and high accuracy MUSIC estimator [33,48]. The overall one-step localization algorithm
described in Section 3 can be implemented in a known indoor WiFi COTS localization infrastructure.
As described in [19] and briefly in Section 1, a network of four IEEE 802.15.4 (as well as IEEE WiFi)
compliant anchor nodes (or routers) based on SBA technology [31] (Figure 3) were installed on the
ceiling of the office area site, as shown in Figure 1.

The goal is to provide reliable and sufficiently accurate localization without any kind of offline
calibration phase, which has been mandatory in the past [1,5,38]. In [19], the novelty has been
the replacement of the offline calibration phase with a computed predictive fingerprinting map,
but an additional map parameters tuning phase was needed to achieve acceptable results using an
LSE-based localization algorithm. Instead in actual experiment the reference map was the straight
planar projection of direct angular patch antenna models with parameters as presented in [17] and
proposed again in Figure 3: No map tuning phases were performed and the straight ideal map
was used.

This work aims to propose an effective implementation of a real-time and calibration-free indoor
localization system. To provide a complete characterization of system effectiveness, different kinds of
experimental campaigns shall be performed:

o  static localizations: effective localization accuracy estimation is given through an extensive
campaign of localizations achieved throughout the site domain, putting a typical user node
on an extensive set of possible positions. Considering a widespread uniform set of positions
overall the observation area an highly descriptive error distribution function can be defined, thus
characterizing system capability to interact with a non ideal environment which should require
specific calibration phases;

e  staticlocalizations with strong scenario changes: while localizing in a real environment without
adding a calibration phase helps to understand how much the localization algorithm is able to



Sensors 2017, 17, 717 22 of 39

overcome “minimal” reference map misalignments, the real complete Plug-and-Play capability
is achieved if system functionality is proven also reducing at most any requirement over users
deportment (i.e., enabling users to portrait their devices at different heights and with different
orientations). As well as a map misalignment is given when an user node is placed at a
different height respect reference map zr; height reference, in the same way using reference
maps computed for a zrgr different from effective user node height z74¢ helps characterizing
localization system capability to minimize bias in front of strong utilization scenario changes;

e dynamic localizations: the “real-time” localization capability is a specification more linked to
the system implementation level than to the effective localization methodology. Despite this, this
work aims to show a possible implementation for an effective consumer level Plug-N-Play system:
by this, a lifelike example of an actual implementation scenario is given. Different measurements
campaign have been done placing a walking user throughout the entire site, making it portraying
as a typical standing user holding a standard mobile device;

e dynamic localizations with strong echo interferer: to provide an actual demonstration about
multipath immunity given by exploiting RSSI measurement through the minVAR estimator
(as described in Section 3.5) some additional real-time tracking experiments are done in the
presence of a strong echo interferer, thus providing an example of system capability to overcome
strong multipath effects.

5.1. Static Localizations

A CP antenna equipped TAG node is to be placed on a grid of known positions (Figure 14) at an
equivalent height of about 1.10 m over the floor with anchors pinned on the ceiling at 2.8 m (Figure 1).

In Figure 15, the distribution over (x,y) of the mean Euclidean localization error and its standard
deviation over 100 localization trials for each point are shown. These results were computed using an
ideal reference map with pattern projections computed as shown in [19] for a height of 1.10 m from the
floor (or rather the exact height for TAG positions).

Figure 15 highlights the accuracy improvement obtained through a raw minVAR estimator
implementation, absolutely without enabling the extended features of the preselected area (Section 3.1),
adaptive masking (Section 3.2) and antenna weighting (Section 3.3). Figure 15b shows that a raw
minVAR implementation is able to achieve a straight 65% area coverage with a sub-metric localization
error. The typical LSE algorithm (Figure 15a) implemented without a reference map calibration
shows an halved sub-metric error coverage (30%) while the MuSiC implementation depicts a quite
unpredictable error distribution (Figure 15¢) due to wrong gain vectorial space definition.

Note that only 36% of all the experiment points belong inside the mesh area (shown as a bounding
box in Figure 14). The mesh was built to have a limited coverage of the overall site area to demonstrate
the capability of the localization system to work where a high dilution of precision is expected.
While Figure 15 offers an introductive performance comparison, more detailed comparisons follow.
The overall results are evaluated for the mesh area only and for the complete site area, placing a direct
comparison with results of [19] and an indirect comparison with other State-of-Art indoor positioning
systems in the existing literature.

In Figure 16, the cumulative distribution functions (CDFs) of the localization error are shown
applying the entire “One-Step” algorithm block implementing the LSE and minVAR algorithms.
The final “One-Step” implementation corresponds to the “minVAR-+features” trace, specifying the
enabling of all the proposed extended features (or rather, the preselected area (Section 3.1), adaptive
masking (Section 3.2) and antenna weighting (Section 3.3)).
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Figure 14. User mobile test-device positions and collected maximum RSSI distribution.
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Figure 15. Distributed localization error over (x,y) with N = 100 trials per point.
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Figure 16. Cumulative distribution functions (CDFs) using the reference map @zrpr = 1.10m = z745.

An important achievement for this work is the capability of obtaining a sub-metric localization
accuracy without the needing of the calibration phase: The dashed lines in Figure 16 describes
localization error results obtained by [19] applying a raw LSE algorithm using a calibrated
reference map.

In [19], the reference map was given as a parametrical function over (x,y) with a set of angular
parameters regarding each antenna of the SBAs (i.e., the HPBW angles, the expected front-to-back ratio
and the ratios of the different antenna gains) plus an a parameter corresponding to the # free-space
path loss exponential of the Friis transmission equation [19]. Localization results of [19] have been
obtained through a complex parametric tuning of parameters described above, applying some manual
corrections after observation of overall RSSI measurements.

From Figure 16, it is evident that results obtained through minVAR estimator using a totally
uncalibrated (or rather, purely ideal) reference map are directly comparable with the results of the raw
LSE implementation using the carefully calibrated map. Enabling the extended features actual results
are far better than the LSE calibrated one: note that in actual implementation the calibration routine
is still applicable, but it is interesting to show that effective reference map error reduction achieved
through calibration (Figure 16 “minVAR+calibration” trace) is almost useless thanks to minVAR bias
immunity improvement.

Static Localizations with Strong Scenario Changes

A trivial method to verify the localization estimation immunity over the map bias is to make the
localization estimations using a reference map computed for a TAG height different from the effective
one. Figure 17 shows how the zrgr height projection parameter alters the map projection considerably.
Looking over the projection operation shown in [19], it is clear that given a fixed point (%, ) TAG
height variations will lead to highly different global steering vectors due to different distance variations
between each antenna and the TAG node.

Note that by Equations (2) and (14) global steering vector bias can be considered equivalent
to a specific map bias vector added to the reference map in the (%, 7) point. Therefore, computing
localization using reference maps computed for different heights will be equivalent to obtain a global
steering vector bias due to height variation.
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Different localization sessions are conducted for the entire set of experiment points using different
reference maps calculated for various heights (0 m, 0.55 m, 1.9 m and 2.8 m; Figure 17), which are
different from the effective TAG height. Following map bias effect reciprocity as stated above, the
computed localization results are able to show estimator stability with respect to vertical TAG motion,
placing that the global steering vector variation is due only to geometrical projections differences.

Ref.Map max. RSSI (dB)

Ref.Map max. RSS! (dB) Ref.Map max. RSS! (dB) @height =1.10m - TAG effective height s
@height = 0m @height = 0.55m

x(m) x (m)

Ref.Map max. RSSI (dB) Ref.Map max. RSSI (dB)
@height = 1.90m @height = 2.80m

x(m)

Figure 17. Applied reference maps computed for different heights; TAG height = 1.10 m.

In Figures 18 and 19, the resulting CDFs for the same experimental data set are given, each for a
different reference map. The estimation stability in respect to height variations is perceivable through
CDF dispersion; a lower bias immunity corresponds to a higher variance over the mean error and
error parameters.

The dashed lines show the effect of an overfitting map parameter, as in [19]. It is worthwhile to
highlight that, while parameter calibration helps the standard LSE algorithm perform better when the
reference map height is equal to the TAG height, the difference between the CDF traces for different
ZREF parameters worsen.

When the considered localization area is limited to the mesh area, the calibrated reference maps
are able to bind the accuracy variance below the uncalibrated LSE execution; uncalibrated minVAR
with features gives directly comparable results. Extending the localization area to the overall site,
the calibration shows remarkable accuracy gain in respect to the LSE algorithm, while uncalibrated
minVAR shows a comparable overall accuracy with much less variation over Azgrr.

Tables 2 and 3 summarize the overall localization estimation results. Defining the coverage as the
percent of the interested area points with submetrical localization error, the coverage variance column
briefly describes the overall dispersion between the CDFs. Overall localization error parameters are
evaluated for the estimations calculated using the right zrgr = z14 reference map.
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Figure 18. CDFs using different zrgr reference maps (mesh area).
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Table 2. Localization Estimation Result Comparison (Mesh Area [10 m?2]) @zgpr = 1.10 m.

Method Mean Error (m) Mean Std.Dev. (m) witCl?Ei:?)%i(;/. °0) m Covgggfa}{azlgggi (%)
LSE + calib. [19] 0.55m 0.07 m 93% (96% — 85%) = 11%
LSE 0.83m 0.08 m 71% (80% — 58%) = 22%
LSE + feat. 0.53 m 0.15m 80% (95% — 67%) = 28%
minVAR 0.62m 0.09 m 75% (91% — 75%) = 16%
minVAR + feat. 0.60 m 0.19m 92% (92% — 82%) = 10%
MUSIC 0.81m 0.26 m 75% (75% — 53%) = 22%
MUSIC + feat. 0.78 m 0.25m 77% (77% — 60%) = 17%

Table 3. Localization Estimation Result Comparison (Overall Area [35 m?]) @zgpr =1.10 m.

Coverage (%) Coverage Variance (%)
Method Mean Error (m) Mean Std.Dev. (m) with Erros < 1.0 m Overall Azgpr

LSE + calib. [19] 1.08 m 0.08 m 55% (80% — 55%) = 25%
LSE 1.37m 0.08 m 38% (45% — 33%) = 12%

LSE + feat. 1.27m 0.15m 42% (62% — 40%) = 22%
minVAR 1.08 m 0.19 m 58% (61% — 47%) = 14%
minVAR + feat. 0.87 m 0.21m 70% (70% — 65%) = 5%
MUSIC 1.00 m 0.26 m 61% (61% — 48%) = 13%
MUSIC + feat. 0.98 m 0.29m 62% (62% — 50%) = 12%

As depicted by Tables 2 and 3, the proposed approach is capable of ensuring remarkable
localization accuracy compared to the LSE best-fit calibration without any kind of calibration at all.
Obviously, as can be seen in Figure 16, the calibration routines are still applicable to further improve
the localization accuracy results without the high sensitivity to experiment parameters variations,
which can worsen the standard algorithms.

5.2. Dynamic Localizations

Static localization results describe an acceptable systematic sub-metrical accuracy over the entire
35 m? office area. Localization error distribution as shown in Figure 15 appears to be quite regular and
estimations computed through different heights calculated reference maps have been demonstrated to
maintain the same error distribution applying minVAR estimator function (Figures 18 and 19).

Fading and multipath phenomena effects can appear heavily reduced if localization tests are done
only on a set of static positions. Within a standard static environment multipath paths could be quite
static and predictable throughout the site area thus a static test is not enough to argue that actual
system is sufficiently immune to fading effects (i.e., Figure 15 higher localization error distribution
could depend on static fading interferences); in addition to this, fast fading effects are absent altogether
if the site is clear and the testing user device is in a stationary position.

To exploit effective fading immunity some tracking tests are performed. Such tests assume the
observation of one or more user nodes which are keep in motion by their users walking within the area:
thinking at a standard WiFi PIFA installed on a typical smartphone (Figure 20a), the testing 802.15.4
user nodes are equipped with a similar pattern antenna oriented towards the ceiling.

Tracking tests are performed having a walking user (moving at about 5 km/h) throughout the
office site following paths highlighted in Figure 20b, handling its device as in Figure 20a.

Tracking sampling rate is related only to coarse communication required time: for a single user
node a valid global steering vector is obtained when an estimated RSSI is obtained for each antenna of
the global anchor network SBAs. Proposed communication scheme suppose to perform a network-user
node communication having only one transmitting anchor for each communication while the others
can sniff overall network packets (because all the anchors act as a single distributed 802.15.4/802.11
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router): for the proposed system each anchor obtains its part of the global steering vector when it
completes an RSSI collection cycle on its own antennas.

Figure 20. Common standing user posture (a) and tracking experiment site and paths (b).

An RSSI collection cycle is completed when for each antenna of a single SBA a network packet
is sent by the user node: the actual 802.15.4 implementation provides a data transfer rate of about
250 kbit/s with a packet length of 60 bytes. Thus global steering vector sampling rate is equal to

_ packet length [bytes]
Ts = (M x N) x datarate [bytes/s]

-1
= (MxN)x (% kBytes/s) -60 bytes] ~ 28 x 1.9 ms = 53.2 ms (37)

with (M x N) = number of distributed antennas

Final localization sampling time must include the algorithm computing time. Following results in
Table 1 for actual sub-optimal MATLAB implementation, global sampling time results equal to

Tops = Ts + Toig = 53.2ms + 10 ms ~ 63.2 ms (38)

Considering a typical walking speed of about 5 km/h, for a walking user the effective spatial
sampling rate becomes

10
As = Ty - (5- 3% m/s) ~ 8.8 cm

thus indicating that proposed system is feasible for real-time tracking.

Tracking paths are thought to put the user in “close” areas surrounded by furnishings as various
metallic desks (Figure 20b center and right) and some wooden shelves (Figure 20b left). The device
is hold at a typical 1.10 m device height for a loose walking user (Figure 20a): for each chosen path
different trials are performed using different kinds of antenna on the user device (Figure 21).

The best match for the “smartphone” use case in Figure 20a is given by the CP antenna
configuration but to maximize fading observation and to highlight system strength among different
user device antenna types, tracking tests are done also for two generic 2.45 GHz dipole LP antenna
cases (Figure 21b,c). Using LP antennas, the multipath rejection aid given by CP polarization will be
absent in all cases.

A detailed tracking error analysis is given by overall error Cumulative Distribution Functions
proposed below for each tracking test achieved, for both the preceding LSE tuned implementation
as in [19] (Figure 22a) and for the actual proposed one (Figure 22b). Tables 4 and 5 summarize the
overall results.
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(a) CP antenna (b) 2.45GHz LP antenna
«PIFA-like» pattern «H» orientation (¢) «V» orientation

Figure 21. Tracking tests different antenna configurations.

Tracking on X - calib. LSE [19] Tracking on X - One-Step

90 -
80 -
70 F
60 -
50 ¢ f—
40 +
30 -
20 -

Percentage of cases (%)
Percentage of cases (%)

. . . I
0 0.25 0.5 0.75 1 1.25 15
Maximal Localization Error (m)

0 0.25 0.5 0.75 1 1.25 15
Maximal Localization Error (m)

100 - Tracking on Y - calib. LSE [19] n

—CP#2
—CP#3
—CP#4
—CP#5

= LP-Horizontal #1
== LP-Horizontal #2
= LP-Horizontal #3
== LP-Horizontal #4
LP-Horizontal #5
== LP-Vertical #1
LP-Vertical #2
LP-Vertical #3
LP-Vertical #4
LP-Vertical #5

7

Tracking on Y - One-Step

Percentage of cases (%)
»
o
Percentage of cases (%)
o
3

0 & | | | | | I
0 0.25 0.5 0.75 1 1.25 15
Maximal Localization Error (m)
(b)

0 0.25 0.5 0.75 1 1.25 15
Maximal Localization Error (m)
(a)

1
1
1
1
I
|
1
1
I
I
|
|
1
I
I
1
1
1
1
I
1
|
|
1
1
I
I
|
1
1
I
I
I
|
1
1
I
I
|
1
1
I
1
I
|
1
1
1
1
I
|
|
I
I
I
|

Figure 22. Tracking Error Results CDFs using calibrated LSE [19] (a) and uncalibrated One-Step (b).

Figure 23 depicts tracking results respect proposed reference paths. The CP antenna case is the one
which better models a typical smartphone PIFA device: Nevertheless the LP cases allow to estimate
system behavior dealing with a fading impaired environment.

Overall results clearly show an accuracy worsening for LP vertical oriented dipole case
(Figure 21c). Such behavior is explainable due to exactly vertical dipole radiation pattern inversion, for
which the LP dipole shows an equivalent isotropic pattern over the XY plane (thus confusing mesh
anchor proximity estimation) while within close proximity effective received power is highly reduced.

Nevertheless, the “One-Step” solution still performs far better than previous calibrated LSE
implementation [19]. Regarding fading issues X-path tracking trials are more representative due
to furnishings arrangement (Figure 20): for the worst cases (LP cases on X-path) the “One-Step”
implementation clearly shows an high accuracy improvement.



Sensors 2017, 17, 717 30 of 39

Table 4. X-path Tracking estimation error results @zggr = 1.10 m.

Calibrated LSE [19] Uncalibrated One-Step
Case Coverage (%) Coverage (%)
Mean Error (m) with Error <1.0 m Mean Error (m) with Error < 1.0 m
#1 0.18 m 100% 0.16 m 100%
#2 0.36 m 96.15% 031 m 98.72%
CP (less fading) #3 0.28 m 100% 0.26 m 100%
#4 043 m 93.06% 0.38 m 97.69%
#5 0.36 m 94.26% 0.28 m 100%
#1 0.49 m 92.47% 0.30 m 100%
#2 0.45m 92.31% 0.26 m 100%
LP-H #3 0.62m 85.23% 043 m 98.66%
#4 0.50 m 89.47% 0.38 m 94.74%
#5 0.46 m 94.56% 031 m 100%
#1 1.22m 39.77% 0.66 m 69.32%
#2 1.28 m 35.36% 0.61 m 76.83%
LP-V (worst fading)  #3 1.23m 40.16% 0.74 m 68.85%
#4 0.95m 54.54% 0.44 m 92.92%
#5 1.46 m 20.93% 1.06 m 51.16%
Table 5. Y-path Tracking estimation error results @zgpr = 1.10 m.
Calibrated LSE [19] Uncalibrated One-Step
Case Coverage (%) Coverage (%)
Mean Error (m) with Error < 1.0 m Mean Error (m) with Error < 1.0 m
#1 0.31m 100% 0.15m 100%
#2 043 m 100% 0.18 m 100%
CP (less fading) #3 0.47 m 100% 0.17 m 100%
#4 0.46 m 100% 0.21 m 100%
#5 043 m 100% 0.20 m 100%
#1 0.60 m 100% 0.37 m 88.98%
#2 0.60 m 100% 0.25m 96%
LP-H #3 0.56 m 100% 0.17m 100%
#4 0.60 m 100% 0.20m 100%
#5 0.66 m 100% 0.20 m 100%
#1 0.80 m 87.70% 0.54 m 97.54%
#2 0.79 m 86.73% 0.53 m 100%
LP-V (worst fading)  #3 0.76 m 76.98% 0.67 m 100%
#4 0.78 m 89.92% 0.63 m 100%
#5 0.81 m 75.21% 0.64 m 100%
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Figure 23. Best performing tracking results for X path (Left) and Y path (Right).
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Dynamic Localizations with Strong Echo Interferer

As suggested in Secrion 3.5, localization estimation done using power-only measurements can be
highly affected by fading and multipath phenomena. Actual IEEE 802.15.4/802.11 stacks implement
advanced protocol techniques to overcome such effects reducing their disruptive action over packet
data transmission [43—46]; in the same way, antenna input power measurements are post-processed
before obtaining effective RSSI values.

As briefly described in Section 3.5, a coarse RSSI processing is able to overcome estimation
fluctuations due to highly variable effects (the “fast fading”) by averaging power measurement over a
window. By this, final RSSI linear estimation shows a value shift related to the “slow fading” effect
only which can be described in terms of physical spreading over the entire set of distributed antennas.

Considering the possible interferer spreading behavior as classified in Section 3.5, a really rough
model for slow fading effect over steering vector observation can be modeled using the generic model
of reference map bias described in Equation (30). Applying a first grade approximation, slow fading
effect could be brought back to an equivalent map bias vector featuring an unknown mean value
and a low probabilistic dispersion throughout the different antennas (i.e., a low ¢ parameter for
Equations (30)—(35).

Theoretically the minVAR estimator is able to overcome such kind of map biases, so actual
localization should be highly immune to multipath effects.

Some experiments are done to validate such models. A possible way to impose a bad multipath
condition is to put within the site a strong interferer distributed as it can be expected by a coarse first
grade RF reflection model. Following such criteria some tracking tests are done using the experimental
TAG node (Figures 21 and 24) putting on the antenna RF connector a Wilkinson power splitter,
connecting both a linear 2.45 GHz dipole for voluntary TAG transmission and an additional 2.45 GHz
dipole through an RF cable to act as a strong interferer (Figure 24).

Node Antenna
«Standard
Emitter»

«LPh» Echo case

«LPv» Echo case

Interferer
Power Antenna
divider «Echo Emitter»
Position
(0.3 m, 3.5 m)

Figure 24. Strong Echo Interferer Experiment Configuration: Node structure (Left) experiment
site (Right).

Experiments are repeated for two different RF cable lengths, and for each test the interferer antenna
is placed both in an equivalent horizontal polarization respect the anchor network (Figure 24—“LPh”
Echo Case) and in an equivalent vertical polarization (Figure 24—"LPv” Echo Case) to model the two
main cases of reflection.
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Dealing with 2.45 GHz signals effective signal delays are totally negligible respect RSSI window
averaging length (128 us for 802.15.4, Figure 10) thus effective interferer immunity can be related to
algorithmic improvements.

The interferer is placed adherent to the left wall of the site (at x; = 0.30 m, y; = 3.5 m—Figure 24)
thus enforcing the interfering action by profiting of equivalent RF signal reflection given by the wall
itself. Because a symmetric power divider is used, effective transmitted power at the input of the
mobile antenna (the 2.45 GHz linear dipole) and at the input of the interferer path (composed by a
“long” RF cable connected to a second identical 2.45 GHz dipole) is absolutely the same. Effective ratio
between desired transmitted signal and interferer (or rather an equivalent SIR—Signal-to-Interferer
Ratio) is given only by RF cable losses: Table 6 lists actual SIRs for both RF cables applied.

Table 6. Experimental SIRs obtained through applied RF cables.

Cable Attenuation Equivalent SIR
Cable Type  (4B/m) @2.45 GHz Lensth (dB)
Im 1.33
RG316-DS [49] 1.33 i .

A set of 50 localization is computed connecting a 50 Ohm termination on the mobile antenna
connector to validate interferer operation: Table 7 shows overall mean localization error and standard
deviation for each different case. Direct interferer antenna radiation pattern is dramatically altered
by the wall (acting as an adherent ground plane) thus interferer localizations are quite noised, but
localization error parameters are still under 1.5 m (or rather considerable “metrical”).

Table 7. Static interferer localization results over 50 trials.

Interferer L Ca]ile Mean Standard SAzeeitaogrel\(/{leg)n S.Vector Mean S-ngtr(;g:tgi%ﬁm
Polarization Case Length (m) Error (m) dev. (m) 4 in Equations 30-35 std.dev. dB) . Equations 30-35
LP-horizontal Im 0.80 m 0.68 m —62.69 0.85 7.65
“ 3m 12lm  0.07m —65.23 0.37 7.30
LP-vertical 1m 1.01m 0.24 m —59.72 0.61 6.64
3m 1.04 m 042 m —63.79 1.19 6.92

Results in Table 7 demonstrate that the interfering antenna is an effective signal source. Average
RSSIs collected are absolutely within the typical range of RSSIs for a typical node within the site area
(as it can be seen in Figure 9) so putting an identical linear dipole on the mobile antenna connector
clearly produce a situation where two identical and identifiable signals are present.

In Table 7 two columns are highlighted: Such columns lists the equivalent parameters which
directly feeds the observation/reference map bias model as proposed in Equations (30)-(35) of
Section 4.4. Proposed values are extracted evaluating the statistical distribution of RSSI values
throughout every single collected steering vector, then the parameters obtained for each steering
vector have been averaged throughout the entire set of observations. It is worthwhile to point out
how the interferer only observations feature a low ¢/ ratio, due to particular signal spreading case
following a “diffuse scattering” propagation model.

Due to RSSI estimation path as depicted in Section 3.5 it has been shown that each diffuse
scattering phenomena can be brought back to an highly spreaded RSSI values alteration on collected
steering vectors. Following estimator functions theory depicted in Section 4 the minVAR estimator
should be more able than LSE to overcome such observation bias, thus tracking experiments should
prove this.

Overall tracking error is evaluated moving the node throughout the “Y-path” already described
in Section 5.2 and shown in Figure 24. The choice of the “Y-path” is merely due to scenario constraints,
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because effective tracking experiments are done by moving the mobile node carrying also the RF cable
for interferer antenna feeding (Figure 25).

43.80226,11.24685,
7 Mar 2017 211

43.80226, 11.24685, 100.9)
7 Mar 2017 2:11:11 pi

Figure 25. Experimental Session photo: LPv Case (Left) LPh Case (Right).

Overall error distribution functions are plotted in Figure 26 while Table 8 summarizes most
significant results. Table 8 clearly depicts how uncalibrated One-Step applying the minVAR estimator
is able to better overcome steering vectors alterations introduced by the interferer, while results for
both LSE and for minVAR shows that applying an advanced protocol scheme incidence of fading
problems is widely reduced.
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Figure 26. Tracking Error Results CDFs for all test cases: 1 m RF cable (Above) and 3 m RF
cable (Bottom).
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Table 8. Overall Tracking Y-path estimation errors with interferer.

Interferer Calibrated LSE [19] Uncalibrated One-Step
ase Coverage (%) Coverage (%)
Mean Error (m) with Error < 0.5 m Mean Error (m) with Error < 0.5 m
1m,SIR=1.3dB 091 m 5.43% 0.50 m 67.39%

LP-h 3m,SIR=4.0dB 0.34 m 81.54% 0.11m 100%
3m,SIR=4.0dB 0.57m 34.41% 0.16 m 100%
1m,SIR=1.3dB 0.60 m 20.71% 0.14m 100%

LP-v 3m,SIR=4.0dB 0.54m 89.52% 0.23m 98.10%
3m,SIR=4.0dB 0.31m 85.71% 021m 87.62%

In fact localization results obtained using the old calibrated LSE [19] does not show a dramatic
impact of interferer, but the minVAR estimator function result to be more reliable as predicted by
model described in Section 4 applying phenomena parameters as identified in Table 7.

6. System Validation and “State-of-Art” comparison

The applied reference tuned map model projection seen in [19] gives a first-grade approximation
of RSSI environment distribution without evaluating any advanced effects, such as fading or
scattering [50] or measurement device deviation [51,52], which dramatically alters the effective power
distribution [8]. Due to the unpredictability of such phenomena, minimizing the effects of non-idealities
will be much more reliable than making any kind of calibration, giving the unknown dependency
and environment variables. Some solutions are proposed to reduce fingerprint map errors [53],
but the given improvement is far from achieving acceptable accuracy results. The depicted analysis
and experimental results show an improved robustness of the proposed system to allow for the
implementation of host-side software based solutions.

Table 9 lists a comparison of the State-of-Art equivalent indoor localization systems in the
literature, considering standard COTS systems based on IEEE 802.11- and 802.15.4-compliant networks
only, as the main goal is to produce a new direct-to-use submetrical localization system that can be
considered transparent and cost-free in terms of a standard WiFi network configuration [5]. To provide
a comparison with systems based on more refined CSI (Channel State Indicator) evaluations ignoring
the loss of portability due to unavailability of CSI detection (available only for OFDM WiFi modulation
schemes [54]) on wide-spread IEEE WiFi protocols, also results given by the state-of-art CSI-based
localization system presented in [54] are cited.

In literature some accurate indoor localization systems based on TDoA method over 802.11 IEEE
networks are presented [6,7] but such method is currently unfeasible using COTS due to high accuracy
measurement devices required or the needing of low-level communication stack access.

Explicitly smartphone-related algorithms (i.e., all odometry-based algorithms of Table 9) improve
localization accuracy by accomplishing RSSI fingerprint localization with odometric information
provided by smartphone sensors. Some papers [15] present approaches not based on fingerprinting
techniques; nevertheless, all of them rely on an offline training phase. Although the accuracy can be
good, the training phase always requires an uncomfortable calibration session.
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Table 9. Actual State-of-Art Localization System Comparison (inertial measurement units = IMUs).

Reference  NYMberof  Technology o masser  forsite Arca(1sl Embrtm)  ares oo
[55] Case #1 4 RSSI 21 pts. 16 pts. 1.55 7 X 6.4
[55] Case #2 6 RSSI 18 pts. 19 pts. 1.22 6.3 x 5.1
[55] Case #3 3 RSSI 18 pts. 19 pts. 2.58 6.3 x 5.1

[54] Case “Lab.” 3 CSI 10 + learning ? 0.60 5x8
RSSI 10 + learning ? 0.90
[54] Case “Corr.” 3 CSI 10 + learning 1.00 32.5 x 10
RSSI 10 + learning 1.40
[13] 4 RSSI + IMUs 30 pts. 7 pts. 1.80 10 x 15
[56] 15 RSSI + IMUs 286 pts. 6 pts. 3.42 70 x 23
[57] 8 RSSI + IMUs 50 pts. 8 pts. 1.00 435 x 4.8
[15] Case #1 4 RSSI +IMUs  “Large” Set ? 1.00 19 x 16.3
[15] Case #2 7 RSSI +IMUs  “Large” Set ? 1.00 70 x 23
[58] Case #1 6 RSSI + IMUs 350 pts. 10 pts. 1.00 1250
[58] Case #2 6 RSSI + IMUs 50 pts. 2 pts. 2.75 1250
[19] (mesh) 4 SBA + RSSI 10 + tuning 10 pts. 0.55 2.6 x 3.8
[19] (full) 4 SBA + RSSI 10 + tuning 10 pts. 1.08 575 x 6
This work (mesh) 4 SBA + RSSI none - 0.60 2.6 x 3.8
This work (full) 4 SBA + RSSI none - 0.87 575 x 6

7. Conclusions

The advantage given by the proposed solution is not trivial at all. System accuracy in bigger
environments can be achieved using less anchor nodes in LOS sites (e.g., a single room) while for
non LOS sites (e.g., between different rooms) the number of anchors may have to be increased, so the
direct comparison of anchor node density (specifically in comparison with [15,58]) is at risk of being
misleading. Good wireless network distribution planning tends to maximize the number of anchors
inside more complex non LOS areas to maximize connected users’ quality of service; therefore, the
necessary conditions allow the proposed localization solution to have good accuracy. The localization
service can be provided both through a centralized server or through the user host because steering
vectors can be obtained directly from the network of anchors without any network overhead at all.
The overall accuracy will not depend on odometric information accuracy, which is dependent from
each user node hardware and there is no longer the needing for a tracking filtering.

The overall presented localization solution is thought to be a plug-and-play system without
an offline calibration phase to achieve an acceptable localization accuracy. Furthermore, the
system is self-consistent and does not require any kind of data fusion with additional sensor
information (different from typical fused RSSI and odometric indoor localization with tracking
approaches [15,56-58]). Because the hardware is based on standard 802.11 and 802.15.4 anchor nodes
with the only hardware improvement being the use of a switched-beam array as the antenna, the
localization service is given as additional and transparent, using standard network operations; thus,
the network administrator is given the ability to provide indoor localization and data contextualization
directly to users using only standard network configuration procedures.

Such solution is considerable “infrastructure-free” respect the user experience because any
modification to user device nodes is not necessary: as a matter of fact, the system totally shares
the existent topology of typical 802.15.4-802.11 LAN networks, and the anchor nodes substitution will
not change pre-existent wireless network functionality. Obviously an effective ad-hoc infrastructure
must be installed, but its installation concerns only the initial wireless network planning and setup
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assuring to every user the straightaway access to the localization service accessing it directly

through the application layer.
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CDF
COT
cpP

CRB

Cumulative Distribution Function
S Component-off-the-Shelf

Circular Polarization

Cramer-Rao Bound

DOA Direction of Arrival

MU
LP
LQI
ML
PHY
RSSI

Inertial Measurement Units

Linear Polarization

Link Quality Indicator

Maximum Likelihood estimator

IEEE Network ISO/OSI Physical Layer
Received Signal Strength Indicator

TDoA  Time Direction of Arrival
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Switched-Beam Antenna

SDMA  Space Division Multiplexing Access
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