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Abstract: In this paper, in order to describe complex network systems, we firstly propose a general
modeling framework by combining a dynamic graph with hybrid automata and thus name it
Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow
over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA.
With a modeling procedure, we adopt a dual digraph of road network structure to describe the
road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road
segments and transform the nonlinear expressions of the transmitted traffic flow between two road
segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure
is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm
for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway
network with arbitrary topology structures and sizes. Next we analyze mode types and number in
the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS)
model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed
to estimate the traffic densities of the freeway network, where a set of observer gain matrices are
computed by using the Lyapunov function approach. As an example, we utilize the PWALS model
and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to
clearly interpret the principle of the proposed method and avoid computational complexity, we adopt
a simplified version of Beijing third ring road. Practical application for a large-scale road network
will be implemented by decentralized modeling approach and distributed observer designing in the
future research.

Keywords: urban freeway network; dynamic graph hybrid automata; piecewise affine linear system;
switched state observer; density estimation

1. Introduction

A traffic flow network is a typical example of a complex network system [1,2]. Dynamic modeling
of the traffic flow network is quite a challenging task in traffic flow analysis and control. Various traffic
flow models have been proposed to study complex traffic phenomena on a road network, e.g., as the
mathematically most consistent macroscopic traffic flow, the well-known LWR model proposed by
Lighthill, Whitham [3] and Richards [4], which formulates the relationship among the key traffic
flow parameters such as density, flow etc. using continuous time partial differential equations.
The second-order model is presented by Payne [5]. From the view of application, Daganzo [6,7]

Sensors 2017, 17, 716; doi:10.3390/s17040716 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 716 2 of 24

first proposed the Cell Transmission Model (CTM) by spatially and temporally discretizing the LWR
model. Later, many researchers further improved the CTM. For example, Lebcque [8] considered
the merge law and the diverge law of traffic flow according to the proportional distributions rule.
Flötteröd and Nagel [9] developed the model by considering the merge and diverge law of multiple
cells. Gomes and Horwitz [10–12] proposed the Asymmetric Cell Transmission Model (ACTM) and
applied it to the freeway on-ramp metering control. Lo and Lin [13,14] amended the CTM to describe
road networks with intersections. Sumalee et al. [15] developed the Stochastic Cell Transmission
Model (SCTM). Canudas-de-Wit [16] proposed a graph constrained CTM.

These modified CTMs mainly focus on rules of transmitted traffic flow but give too little care to
the description of road network structure, which leads to a lack of modularization and expandability
in modeling a large-scale traffic network. Moreover, the nonlinear relationship between traffic flow and
density results in study difficulty. Although Muñoz and Sun et al. [17,18] presented the Switching Mode
Model (SMM) which is a piecewise linearized version of the CTM, this model may be improved further
by introducing some modeling tools as solid theoretical basis. Hence, in the previous work [19–21] we
proposed a model framework by introducing dynamic digraph and hybrid automata. Different from
the traditional digraph method describing the road topology [22], we adopted dual digraph idea and
introduced dynamic digraph [23] into the description of traffic flow over a road network, where road
segments are marked vertex, and traffic flow directions are considered as the directed edges of digraph.
In our opinion, it has at least two advantages. Firstly, dynamic weights of describing traffic state in
a road segment can be added in vertices as customary as in the weight digraph theory. Secondly,
traffic flow directions can be clearly indicated by the directed edges and transmitted volumes can
be expediently described by dynamic weights and switchings on edges, where the edge switchings
between vertices can describe the traffic light signals.

On the other hand, we point out that hybrid automata, as a kind of hybrid dynamic system
models [24,25], are an appropriate model to describe a multi-mode dynamic process. For instance,
references [26,27] applied the hybrid automaton theory to automated highway systems (AHS).
Lei and Ozguner [28] presented a hybrid automaton model for a single intersection for the first
time. Chen et al. [29–31] studied the optimal control of single intersection and the cooperative control
between intersections by using hybrid automata. Muñoz and Sun et al. [17,18] presented the Switching
Mode Model (SMM) for the California Freeway. In the model framework proposed in [19–21] we
introduced hybrid automata to describe traffic densities in road segments.

Consequently, by combining dynamic digraph with hybrid automata and applying the parallel
composition law between hybrid automata [32,33], we can obtain a new networked model and name it
Dynamic Graph Hybrid Automata (DGHA). As an independent model framework, the DGHA can
be applied in various dynamic network systems with multi-mode switchings. When applying it to
model traffic flow of a road network, one can adopt different types of traffic variables as the state of
the hybrid automata, such as two-dimensional variables of traffic density and vehicle average velocity.
One may also apply, in the place of the hybrid automata, more complex uncertain models, and more
modes taken when piecewise linearizing the nonlinear fundamental diagram. However, in this paper,
as well as in [19–21], we embedded CTM into DGHA and thus only the traffic density variable was
used as the state.

In this paper, we first further improve the DGHA framework proposed in [19–21] and the
modeling procedure of urban freeway networks. More in detail, we first restate the definition of
DGHA model more clearly. Then we analyze types and number of combination modes of cells (the
partitioned road segments) when embedding CTM into the DGHA. Compared with the existing
literature [34], we not only consider the multi-mode switchings of vertex state, but also take into
account the multi-mode switchings of edge weights. In other words, the nonlinear expression of
the density in a cell is described by a linear hybrid automaton and the nonlinear expression of the
transmitted traffic flow between two cells is transformed into piecewise linear functions in terms
of multi-mode switchings. We distinguish two modes (free flow and congested flow) in each cell
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and two modes (upward traffic wave and downward traffic wave) for each of the three types of
connections between cells (linear connection, merge connection and diverge connection). Although
the number of the combination modes is larger than that in the existing literature [34], e.g., about
5400 possible combination modes for a road partitioned into 10 cells (see the proof in Section 3.5),
the combination modes not only describe the traffic state in a road segment but also the relative flow
feature between two road segments. Next we give a convex polyhedral description of the combination
modes by introducing a partition of state subspace. Finally we deduce an expression of Piecewise
Affine Linear System (PWALS) for the whole freeway network. We point out emphatically that the
modeling procedure is modularized and rules-based. Thus we develop an algorithm to implement
modeling procedure of traffic networks by accomplishing parallel composition of cells with the help of
a computer program. So compared with the traditional manual calculation [17,18,34], the modeling
procedure is easily-extensible with the help of the algorithm and can be applied to traffic networks
with arbitrary topology structures and sizes, including the road networks with signal intersections.

The proposed PWALS model can be utilized in many aspects, such as traffic state estimation and
traffic flow control. In this paper, we focus on the estimation problem of traffic densities. Over the past
decades, abundant work on this problem has been done by using different approaches, including the
Kalman filter [22,35–37], particle filtering [38], the set-valued estimation [39–41]. These approaches are
not based on networked hybrid automata and thus cannot be directly applied to our model.

On the other hand, the simpler state observer has been well-known as a powerful estimation
tool. However, for the DGHA, we need to consider a switching observer. In the existing literature,
the design approaches of switching observer can be divided into two classes, depending on whether
the active modes are known or not. When the active modes are known, one can utilize the switched
Luenberger-type observer with the same switching rules as in the model. The corresponding observer
gains can be found by using the Lyapunov function approach for the switched dynamics of estimation
error system and solving Linear Matrix Inequalities (LMI) [42–46]. Literature [47] proposed a switching
observer for the systems with continuous state jumps and based on a known and fixed switching
signal sequence. In the case when the active modes are unknown, meanwhile one is required to
identify the modes on the basis of the observation of the output of the system over a certain interval.
Pettersson [48,49] proposed multiple quadratic Lyapunov functions to design observers for a switched
linear system with continuous state jumps. Literature [50] also deals with the observer design problem
for continuous-time switched linear systems with unknown switchings.

The authors in [16] proposed a graph constrained CTM observer. In [51] they further introduced
a robust mode selector for the uncertain graph-constrained switching mode model and applied it to
highway traffic density estimation via a switched state observer. Alvarez-Icaza et al. [52] designed
adaptive observer to estimate vehicle density.

As to the sufficient condition of observer design, the system must be observable, this problem
is closely related to the traffic sensor placement in the traffic network. References [53,54] presented
an algebraic approach to understand the problem of identifying which subsets of OD-pair and link
flows can be calculated based on a given subset of observed OD-pair and link flows, and further
applied the algorithm on the Nguyen-Dupuis network problem. A new framework which investigates
observability in terms of flow and routing information on network arcs was proposed in [55].

In this paper, we focus on the design of a switched state observer based on the deduced PWALS
model to estimate traffic densities under the assumption that the active modes are arbitrary but known.
We will discuss more practical issues when the active modes are unknown in the future research.

The main contributions of the paper can be summarized in the following two aspects:
(1) The DGHA modeling framework is proposed and a PWALS model is deduced when embedding
the well-known CTM into the DGHA. Particularly, this modeling procedure is modularized and
easily-extensible and can be used to model traffic networks with arbitrary topology structures and
sizes; (2) A switched state observer is designed to estimate traffic densities of an urban freeway
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network. The corresponding observer gains are found by using the Lyapunov function approach for
the switched dynamics of estimation error system and solving Linear Matrix Inequalities (LMI).

The rest of the paper is organized as follows. In Section 2, we provide some relevant background
material about dynamic graph and hybrid automata and propose the modeling framework of Dynamic
Graph Hybrid Automata. In Section 3, the DGHA framework is used to model traffic flow network
by embedding the CTM into it. In Section 4, we deal with the design of the switched state observer.
In Section 5, we illustrate the obtained results by applying them to the simplified version of Beijing
third ring road. The paper is concluded in Section 6.

2. Preliminaries

First of all, we briefly review dynamic graph theory [23] and hybrid automata theory [25] and
then combine dynamic digraph with hybrid automata to propose a new model framework which we
call Dynamic Graph Hybrid Automata (in short, DGHA) [19,20].

2.1. Dynamic Graph

A graph [23] is a pair (V, E), where V is a finite set of vertices or nodes, and E is a set of undirected
edges, each being an unordered pair {i, j} and expressing a link between two vertices i, j ∈ V.
A digraph is a pair (V, E), where V is a finite set of vertices or nodes, and E is a set of directed edges
eij ∈ V ×V, i 6= j, expressing a link from vertex i ∈ V to vertex j ∈ V.

A vertex-weighted graph or digraph is a triple (V, E,F), where (V, E) is a graph or digraph, F : V → X
is a function to assign a weight xi ∈ X for every vertex i, and X is a pre-specified set. An edge-weighted
graph or digraph is a triple (V, E,G), where (V, E) is a graph or digraph, G : E → Y is a function
to assign a weight yij for every edge {i, j} or eij, and Y is a pre-specified set. A fully-weighted graph
or digraph (V, E,F,G) has weights assigned to both vertices and edges. Depending on the context,
the weight sets X, Y may be real numbers, complex numbers, integers, or even elements of a group or
a field, etc.

The set V of vertices of a graph or digraph (V, E) is said to be dynamic if its number |V| is
time-varying. The set E of edges of a graph or digraph (V, E) is said to be dynamic if the edges are
time-varying on-off switches. The vertex-weight function (respectively, edge-weight function) is called
dynamic if the weights xi (respectively, yij) are time-varying. A fully-weighted graph or a digraph is called
to be dynamic when any one of the four entities (V, E,F,G) is dynamic.

Remark 1. Dynamic set V of vertices means that some vertices may be added or removed. When a vertex is
added or removed, the corresponding edge linking is also appended or eliminated. Dynamic set E of edges implies
that edges may be added or deleted over time. We also say that the graph or digraph has a switched set of edges.

Remark 2. In what follows, for a digraph (V, E), we denote by Pre(i) = {l ∈ V : eli ∈ E} the set of all
upstream neighbouring vertices and Post (i) = {j ∈ V : eij ∈ E} the set of all downstream neighbour ones
of vertex i, respectively. Thus Ni = Pre(i) ∪ Post(i) is the set of all neighbour vertices of vertex i. We also
introduce notation N̄i = {i} ∪ Ni.

2.2. Hybrid Automaton

A hybrid automaton [25] with continuous input and output H is a collection H =

(S, Init, U, f , δ, Inv,G,R, Y, g), where

• S = Q× X is a state space of hybrid state variables (q, x), where Q is a finite set of discrete states
q and X ⊆ Rn is a n-dimensional state space of continuous state vector x;

• Init ⊆ S is a set of initial hybrid states;
• U ⊆ Rm is a set of continuous input variable u;
• f : S→ X is a vector field describing the continuous state dynamics defined by
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x (t + 1) = f
(

q (t) , x (t) , u (t)
)

;

• δ : S→ Q is a transition map describing the discrete state dynamics. One can also use a binary
relation set ∆ = Q× δ(S) ⊆ Q×Q to express the discrete state transition;

• Inv : Q→ 2X defines the domain of continuous state vector under each discrete state. The domain
is also called invariant set of continuous state vector;

• G : ∆→ 2X defines a guard condition for each discrete state transition;
• R : ∆ → X is a reset map to assign a new initial state to the continuous state variable after the

transition of the discrete state.
• Y ⊆ Rp is a set of continuous output variable y;
• g : S→ Y is an output map defined as

y (t) = g
(

q (t) , x (t)
)

;

A hybrid automaton can also be expressed by a digraph as shown in Figure 1 [25]. We notice that
in this paper we focus on discrete time system defined by a difference equation for the continuous part
of the hybrid automaton.
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Figure 1. Digraph expression of hybrid automaton.

2.3. Dynamic Graph Hybrid Automata

Now we combine a dynamic graph with hybrid automata to propose a new model which we call
Dynamic Graph Hybrid Automata (DGHA, for short). An early version of the model was given in
references [19–21]. In what follows, we restate it in the way of parallel composition of hybrid automata.

Definition 1. DGHA model is a hybrid automaton H over a digraph (V, E) which described by the following
four parts:

(1) Fully weighted dynamic digraph. In G = (V, E,H, Φ), V = {1, · · · , N} is a finite set of N fixed
vertices, and E =

{
eij : i, j ∈ V

}
is a set of directed edges, H and Φ are sets of the automata and the

functions that assign the vertex weights and edge weights, respectively, which are described in detail
as follows;
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(2) Vertex dynamics. The elements in H = {Hi : i ∈ V} are hybrid automata Hi =

(Si, Initi, Ui, fi, δi, Invi,Gi,Ri, Yi, gi) to describe the dynamics of vertex i ∈ V, whose components are
similarly defined as in Subsection B.

(3) Edge weight functions. The set Φ =
{

φij : eij ∈ E
}

consists of the functions φij : Yi ×Yj → Rm that
assign a weight φij(yi, yj) for each edge eij ∈ E;

(4) Composition of hybrid automata. In DGHA = (V, E, H), H = (S, Init, f , δ, Inv,G,R) is the closed
hybrid automaton over the digraph (V, E) obtained by parallel composition of hybrid automata inH, i.e.,
S = Q×X with Q = Q1× · · · ×QN and X = X1× · · · ×XN ; Init = Init1× · · · × InitN ; f : S→ X
is defined as f = f̄1 × · · · × f̄N and f̄i : S |i→ Xi describes the dynamics of vertex i by substituting ui(t)
in the the following equation

xi (t + 1) = fi

(
qi (t) , xi (t) , ui (t)

)
, (1)

with the following relation:

ui(t) = ∑
l∈Pre(i)

φli

(
yl(t), yi(t)

)
− ∑

j∈Post(i)
φij

(
yi(t), yj(t)

)
, (2)

where S |i denotes the projected subspace of S on the state components with indices in N̄i, and for any
i ∈ V the output yi is given by

yi (t) = gi

(
qi (t) , xi (t)

)
; (3)

transition map δ : S→ Q is defined by the following rule:

δ (s1, · · · , sN) =
(
q′1, · · · , q′N

)
⇔ δi (si) = q′ i, ∀i ∈ V;

Inv = Inv1 × · · · × InvN ; G = G1 × · · · × GN ;R = R1 × · · · ×RN .

A DGHA model can also be expressed by a digraph as shown in Figure 2.

l i j
l

H
i

H j
H

 !,li l iy y ! ",
ij i jy y 

Figure 2. A general DGHA model.

Remark 3. In Definition 1, the vertex set V and edge set E are assumed to be fixed. However, instead of the
fixed edge set E, one can use a dynamically switching edge set E (t) =

{
δij(t)eij : i, j ∈ V

}
by introducing

a Boolean function δij : R→ {0, 1} to indicate appearing or disappearing of edges, which can be used to express
the traffic lights, i.e., δij(t) = 0 if the light is red, and δij(t) = 1 if the light is green. In this case, the edge
weight function will be also affected by the switching function and thus become δij (t) φij

(
yi (t) , yj (t)

)
. In this

paper, we focus on modeling urban freeway, so we do not further discuss this kind of models more in detail.

Remark 4. In general, the functions φij
(
yi, yj

)
are nonlinear. When the hybrid automata of vertices are all

linear or affine linear, one can further express these functions by linear ones in a way of multiple mode switchings.
In this case, the vertex hybrid automata may be changed accordingly, depending on the edge modes and the
modes of all neighbour vertices (see the application below in traffic flow model).
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3. DGHA Model For Urban Freeway Network

As a generalized model framework, the DGHA can be applied to various complex network
systems in different fields. When applying it to a traffic flow network, one can adopt different types
of traffic variables to describe traffic state in road segments, e.g., two-dimensional traffic variables of
traffic densities and vehicle average velocity. But in this paper we apply the DGHA to model traffic
flow of an urban freeway network by embedding the well-known CTM into the DGHA. That means
we only use the traffic densities to describe traffic state in road segments. As for urban street networks
with intersections, we need DGHA with switching edges to describe traffic lights, which goes beyond
our research in this paper.

We improve our previous work in [19–21] in the following aspects. Firstly, we introduce a partition
of state subspace such that the combination modes of cells can be described by convex polytopes.
Meanwhile, by adopting parallel composition algorithm of automata to obtain a hybrid automaton
with high dimension over the whole road network. We finally deduce a Piecewise Affine Linear System
(PWALS) of the overall road network. Based on the obtained PWALS, we further analyze the types
and number of combination modes of cells and give a corresponding computational formula of the
number of modes. An algorithm is developed on the basis of DGHA framework, and one can apply
this algorithm to implement modelling of traffic networks with arbitrary topology structures and sizes.

3.1. The Dual Digraph Description of Road Network

In most literature, a road network is modeled as a digraph according to its original structure [22],
i.e., each intersection or bottleneck point is represented as a vertex and the road section between
adjacent intersections or bottleneck points is represented as the directed edge. However, in contrast
to this traditional methodology, in our DGHA model, we adopt the dual digraph of the original
structure of the road network. More precisely, each road section connecting two adjacent intersections
or bottleneck points is partitioned into one or several segments and these segments, which are called
cells, are modeled as vertices of the digraph. Two vertices are connected by an directed edge if there is
traffic flow transition between them along the arrowed direction.

In our opinion, the dual digraph description has at least three advantages. Firstly, the network is
easily extended by adding vertices and edges of the digraph. Secondly, weights describing dynamic
procedures can be added in vertices as customary as in the weight digraph theory. Finally, traffic
flow directions can be clearly indicated by the directed edges of the digraph and transited flows can
be expediently described by dynamic weights and switchings, and especially, the edge switchings
between vertices can describe the traffic light signals.

In this paper, we use fully weighted dynamic digraph G = (V, E,H, Φ) to describe urban freeway
network, where V = {1, 2, · · · , N} denotes the set of all partitioned road segments of a given road
network, E =

{
eij : i, j ∈ V

}
denotes the set of all the directed edges indicating the transition of traffic

flow, and the set H of automata and the set Φ of edge weighted functions will be illustrated later.
Compared with the traditional modeling method, directed edges clearly indicate the transition of
traffic flows and their weights express the traffic volumes transited during a pre-specified time interval.
For the description of urban street network with intersections, we can express the switchings of traffic
lights, instead of the fixed set E, by adopting a switching edge set E(t).

3.2. Dynamics of Traffic Flow in Road Segment

To the best of our knowledge, the CTM [6,7] can well describe traffic flow, where the triangular
fundamental diagram or the trapezoid fundamental diagram is adopted to approximatively express
flow-density relationship [17,18,22]. In this paper, we use traffic density ρi to express the traffic state
of road segment i, and also adopt the triangular fundamental diagram shown in Figure 3 for road
segment i, where Ci is the traffic capacity (vph), Vi is the free flow speed (mph), Wi is the traffic wave
speed (mph), ρ0

i is the critical density (vpm), and ρm
i is the maximum/jam density (vpm).
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To express the dynamics of vertex i, we use the hybrid automaton Hi =

(Si, Initi, Ui, fi, δi, Invi,Gi, Yi, gi), whose entries are illustrated as follows:

• Si = Qi ×Xi, where Qi = {F, C}, “F = Free flow, C = Congested flow”, and the continuous state
space is Xi = R since only density ρi is adopted as continuous state variable;

• Initi ⊂ Si can be given arbitrarily;
• The input variable ui represents the changed flow of road segment i during the time period

[tT, (t + 1)T], where T is the sample time period. Thus we have the input space Ui = R;
• The vector field fi : Si ×Ui → Xi is described by the following equation:

ρi
+ = ρi + aiui. (4)

where ai = T/Li and Li is the length of the road segment (cell) i. Here and henceforth for
simplicity we omit the time t in various variables and use ρ+i to express ρi(t + 1);

• The transition map δi is defined according to the guard conditions, i.e., a transition happens if and
only if the corresponding invariant set is damaged and the guard condition is satisfied; The reset
mapRi is identical and thus is omitted;

• The invariant sets are Invi (F) =
{

ρi : 0 ≤ ρi ≤ ρ0
i
}

and Invi (C) =
{

ρi : ρ0
i < ρi ≤ ρm

i
}

;
• The guard conditions are Gi(F, C) =

{
ρi : ρi > ρ0

i
}

and Gi(C, F) =
{

ρi : ρi ≤ ρ0
i
}

;
• The output space is Yi = R2;
• The output function gi : Si → Yi is defined as yi = gi(qi, xi) = [ri, si]

T , where
ri = min

{
Ci, Wi

(
ρm

i − ρi
)}

is the flow that can be received by cell i over the interval
[tT, (t + 1) T]), si = min {Viρi, Ci} is the flow that can be supplied by cell i over the interval
[tT, (t + 1) T]), i.e.,

yi = gi (F, ρi) =

[
Ci

Viρi

]
, (5)

yi = gi (C, ρi) =

[
Wi
(
ρm

i − ρi
)

Ci

]
. (6)

i 

m

i
 0

i
 0

iC

iq

iWiV

Figure 3. Triangular fundamental diagram.

3.3. Multi-Mode Description of Transited Traffic Flows

The edge weight function φij : Yi × Yj → R in the set Φ =
{

φij : eij ∈ E
}

expresses traffic flow
practically transited from upstream cell i to downstream cell j. According to the rule of the CTM,
the transited traffic flow is defined by a nonlinear function

φij
(
yi, yj

)
= min

{
si, rj

}
, (7)
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where rj is the flow that can be received by cell j and si is the flow that can be supplied by cell i, both

during the time interval
[
tT, (t + 1) T

]
.

In what follows, we give a two-mode switching description of linear functions via two modes
“D = Downward wave, U = Upward wave”:

D : φij
(
yi, yj

)
= si, if si ≤ rj,

U : φij
(
yi, yj

)
= rj, if si > rj. (8)

Remark 5. Two modes “D” and “U” describe the relation of the traffic flow between the road segments i and j.
“D” mode means that the road segment j can release the traffic flow from i, while “U” mode indicates that the
road segment j blocks the traffic flow from i.

3.4. Composition for DGHA Model of Traffic Flow Network

In literature [56], used a combination of LWR model with Godunov based numerical solutions [53]
to solve the Riemann problem where the initial condition is a piecewise constant function with
two values ρ` and ρr for the upstream (left) and downstream (right) densities. Either a shockwave
or a rarefaction wave originates from the junction of the two densities. A shockwave develops if
f ′ (ρ`) > f ′ (ρr). Similarly, a rarefaction develops if f ′ (ρ`) < f ′ (ρr). However, in the paper the hybrid
switching automata approach proposed is to solve the traffic characteristics and system evolution by
considering a Riemann problem with a piecewise constant initial condition.

Now we discuss the composition rules of the vertex automata affected by the edge weight
functions described in Sections 3.2 and 3.3 above. That is, we combine the dynamics of traffic flows in
road segments with the transited traffic flows described by the two-mode switching linear functions to
deduce the DGHA model of traffic flow network.

We assume that the merging interrelationship of flows in segments l ∈ Pre(i) and dividing
interrelationship of flows in segments j ∈ Post(i) have been separated according to the rules via
merging or dividing ratio [6,8], so that we can independently deal with the transited flows between
any two segments (l, i) or (i, j). In other words, assuming that ζli and ηij are the merging and dividing
ratios respectively, the Equation (7) is modified by the merging and dividing rules

φli (yl , yi) = min {sl , ζliri} , (9)

φij
(
yi, yj

)
= min

{
ηijsi, rj

}
. (10)

Thus, according to the composition rules of hybrid automata in Equation (2), the function ui in
Equation (4) is given as follows:

ui = ∑
l∈Pre(i)

min
{

sl , ζliri

}
− ∑

j∈Post(i)
min

{
ηijsi, rj

}
. (11)

Especially, when only linear connections exist, e.g., in a urban ring freeway, we have Pre (i) = {l}
and Post (i) = {j} in Equation (11), and thus ζli = 1 and ηij = 1, which is the case we assume for
simplicity in the following statement.

Now we use the way of modes in Equation (8) to express the Equation (11) into a switching
procedure between a series of linear equations. In other words, we analyze the modes of vertex i
in connected network by combining discrete states Qi and modes of all the edges connected with
vertex i. It is obvious that these modes depend on the states of the vertices in N̄i, and each mode
can be expressed by a group of inequalities of state variables ρk, k ∈ N̄i. Thus, we use a partition of
state subspace Θi = ∏k∈N̄i

Xk to express these modes so that the Equation (4) with Equation (11) is
expressed by a piecewise affine linear system (PWALS).
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For the special case of Pre (i) = {l} and Post (i) = {j}, Equation (11) into Equation (4) gives the
following equation:

ρ+i = ρi + ai

(
min

{
sl , ri

}
−min

{
si, rj

})
(12)

In order to Equation (12) into a PWALS, we partition the subspace Θi = {ρ̄i = (ρl , ρi, ρj)
T ∈ R3}

into a group of subsets defined by convex polytopes Θik = {ρ̄i : Hik ρ̄i ≤ hik}, and thus in each of the
subsets the flows qli = min{sl , ri} and qij = min{si, rj} can be expressed by linear relations.

First of all, we show that the cell i generally possesses seven modes with relation to upstream l
shown in Table 1, where αli = min{Ci/Vl , ρ0

l } and βli = max{ρ0
i , ρm

i − Cl/Wi}.
As seen in Table 1, the practical modes depend on the traffic capacities Cl , Ci. In fact, we can list

the following three cases: Cl > Ci, Cl < Ci and Cl = Ci. In the case of Cl > Ci, there exist six combined
modes “FDF, FUF, CUF, CUC, FUC, FDC”; In the case of Cl < Ci, there exist six combined modes “FDF,
CDF, CDC, CUC, FUC, FDC”; In the case of Cl = Ci, mode “FUF” (resp. “CDC”) will be merged into
mode “FDF” (resp. “CUC”) and thus there exist only five combined modes “FDF, CDF, CUC, FUC,
FDC”, where “FDF” and “FDC” indicate free flow, “CUC” and “FUC” are congested flow, and “CDF”
is saturated flow. Similarly, one can analyze the modes of i with respect to downstream j.

Table 1. Modes of i with relation to upstream l.

Mode Condition of (ρl , ρi) Flow qli

FDF 0 ≤ ρl ≤ αli, 0 ≤ ρi ≤ ρ0
i Vlρl

FUF Ci/Vl ≤ ρl ≤ ρ0
l , 0 ≤ ρi ≤ ρ0

i Ci
CDF/CUF ρ0

l ≤ ρl ≤ ρm
l , 0 ≤ ρi ≤ ρ0

i Cl or Ci
CDC ρ0

l ≤ ρl ≤ ρm
l , ρ0

i ≤ ρi ≤ ρm
i − Cl/Wi Cl

CUC ρ0
l ≤ ρl ≤ ρm

l , βli ≤ ρi ≤ ρm
i Wi(ρ

m
i − ρi)

FUC 0 ≤ ρl ≤ ρ0
l , ρ0

i ≤ ρi ≤ ρm
i , Vlρl + Wiρi ≥Wiρ

m
i Wi(ρ

m
i − ρi)

FDC 0 ≤ ρl ≤ ρ0
l , ρ0

i ≤ ρl ≤ ρm
i , Vlρl + Wiρi ≤Wiρ

m
i Vlρl

Next, we combine the modes of i with relation to l and j to obtain the modes of cell i in the
connected network by using the corresponding subsets Θik. In this case, Equation (12) is expressed
into a piecewise affine linear system with the following twelve linear subsystems:

ρ+i = (1− aiVi)ρi + (aiVl)ρl ,
if “FDFDF” : Hi1ρ̄i ≤ hi1;
or if “FDFDC” : Hi2ρ̄i ≤ hi2;

ρ+i = ρi + (aiVl)ρl + (aiWj)ρj − aiWjρ
m
j ,

if “FDFUC” : Hi3ρ̄i ≤ hi3;
or if “FDCUC” : Hi4ρ̄i ≤ hi4;

ρ+i = ρi + (aiVl)ρl − aiC,
if “FDCDF” : Hi5ρ̄i ≤ hi5;

ρ+i = (1− aiVi)ρi + aiC,
if “CDFDF” : Hi6ρ̄i ≤ hi6;
or if “CDFDC” : Hi7ρ̄i ≤ hi7;

ρ+i = ρi + (aiWj)ρj + ai(C−Wjρ
m
j ),

if “CDFUC” : Hi8ρ̄i ≤ hi8;
ρ+i = (1− aiWi)ρi + ai(Wiρ

m
i − C),

if “CUCDF” : Hi9ρ̄i ≤ hi9;
or if “FUCDF” : Hi(10)ρ̄i ≤ hi(10);

ρ+i = (1− aiWi)ρi + (aiWj)ρj + ai(Wiρ
m
i −Wjρ

m
j ),

if “FUCUC” : Hi(11)ρ̄i ≤ hi(11);
or if “CUCUC” : Hi(12)ρ̄i ≤ hi(12).

(13)
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where the matrices Hik, hik, k = 1, · · · , 12 are listed in Appendix A to express Θik = {ρ̄i : Hik ρ̄i ≤ hik}.
We add Θi0 = Θi\ ∪12

k=1 Θik, and thus have Θi = ∪12
k=0Θik.

Similarly, we can deal with all the cells in an urban ring freeway which is partitioned into N cells.
Finally, we can obtain all modes of the freeway network by finding intersections of all the convex
polytopes Θik, i = 1, · · · , N, k = 1, · · · , 12, in the state space RN .

Let S = S(N) be the number of all the combined modes of the freeway network with N cells,
and Ds ⊂ RN , s = 1, · · · , S, be the convex polytopes describing the combined modes. We use
x = [ρ1, · · · , ρN ]

T ∈ RN to denote the traffic density vector of all the cells, use the vector u ∈ RM to
represent the traffic demand from on-ramps of the freeway network, and assume that the dividing ratio
of the cell i with an off-ramp to the downstream cell j is ηij. Thus traffic flow of the freeway network
can be modeled by a PWALS with S subsystems and a switching function σ : [0,+∞)→ {1, 2, · · · , S}
among these subsystems:

x(t + 1) = Aσ(t)x(t) + Bσ(t)u(t) + Fσ(t), (14)

where the switching function σ(t) is determined by the convex polytopesDs, i.e., σ(t) = s if and only if
x(t) ∈ Ds; for s = 1, · · · , S, vector Fs, matrices As and Bs consist of the parameters in the fundamental
diagrams and the dividing ratios of all the cells.

3.5. Analysis of the Number of Combined Modes

As the basis of other work, such as density estimation and on-ramp metering, it is essential to
analyze the complexity of combined modes. Now we take an urban freeway with N partitioned cells
as an example to investigate the combined mode number S(N).

We prove that S(N) satisfies the following relation:

S(N) = 2S(N − 1) + S(N − 2), N ≥ 3, (15)

with initial conditions S(1) = 2 and S(2) = 5.
The proof is as follows. As seen in Figure 4, if the current cell is in mode “F”, there are only three

possible modes combined with the downstream cells, i.e., “FDF”, “FUC”, “FDC”. Otherwise, there
exist only two possible combination modes when the current cell is in mode “C”, i.e., “CDF”, “CUC”.
Hence, we have the following equation:

S(N) = 3SF (N − 1) + 2SC (N − 1) (16)

where SF (N − 1) and SC (N − 1) are the mode numbers of the first N − 1 cells when the (N − 1)th
cell is in mode “F” and “C”, respectively.

On the other hand, we have SF (N− 1) = S(N− 2) since “F” can appear after any modes. Moreover,
because of SF (N− 1) + SC (N− 1) = S(N − 1), we get SC (N− 1) = S(N − 1) − SF (N − 1).
Substituting these two expressions into Equation (16), we obtain the following equation:

S(N) = 3SF(N− 1) + 2SC(N− 1)

= 3S(N− 2) + 2
[
S(N− 1)− S(N− 2)

]
= 2S(N− 1) + S(N− 2),

and thus verify the Equation (15).
Although we focus on the analysis of urban freeway networks, we can use similar method to

investigate other types of road networks. However, since these combination modes are affected by
various factors, such as traffic lights, the types and the number of merge connections and diverge
connections, the situation may become more complex. On the other hand, we should point out that
although we list all the combination modes for a given road network theoretically, further studies are



Sensors 2017, 17, 716 12 of 24

needed to check whether all the modes exist practically and how these modes change during traffic
flow evolution.

In the literature [34], the number of modes is 2N for a road segment with N cells. They only
considered the modes in the vertices and ignored the multi-mode switchings of the edges. In our
DGHA model, the modes of vertices and edges are both considered. Consequently, the modes are
more than the those in [34].
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Figure 4. Combination modes.

4. State Observer Design

State observers have been considered as effective tools of state estimation in the control theory,
and various types of state observers have been developed and widely applied in practical fields. In this
section, we choose the Luenberger-type switching observer in [43] to estimate traffic densities based
on the PWALS Equation (14) for a freeway network divided into N cells.

We suppose that M fixed or floating sensors are installed on some road segments and aim to
estimate the densities on all the segments of the whole freeway network via the PWALS Equation (14)
and the traffic data obtained from the sensors.

Let y(t) ∈ RM be the measured output vector of the sensors and assume that it has the following
relation to the densities:

y(t) = Cx(t) (17)

where C is the output matrix depending on the type, number and location of the sensors. We also
assume that (As, C) , s = 1, 2, · · · S, are observable or detectable.

In this paper, we assume the switching rule of the observer is the same with that of the PWALS
Equation (14). Thus, based on the Equation (14) and the measured output Equation (23), we construct
the following piecewise affine linear observer (Figure 5):

x̂(t + 1) = Aσ(t) x̂(t) + Bσ(t)u(t) + Fσ(t) + Kσ(t)

(
y(t)− Cx̂(t)

)
, (18)

where x̂ (t) ∈ RN is the estimation of the state x(t), Ks, s = 1, · · · , S, are the observer gain matrices
which will be designed below, the switching function σ : [0,+∞) → {1, 2, · · · , S} is the same with
that of the PWALS Equation (14) and thus is determined by the convex polytopes Ds, s = 1, · · · , S, i.e.,
σ(t) = s if and only if x(t) ∈ Ds.
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Figure 5. The schematic diagram of state observer.

Therefore, the state estimation error e(t) = x(t)− x̂(t) can be described by the following switched
linear system:

e(t + 1) =
(

Aσ(t) − Kσ(t)C
)

e(t). (19)

In order to ensure lim
t→∞

e(t) = 0 for any switching signal σ(t), the switched linear Equation (19)

must be asymptotically stable for any switching signal σ(t). We apply the common quadratic Lyapunov
function approach for the following subsystems to compute the observer gain matrices Ks:

e(t + 1) = (As − KsC)e(t), s = 1, · · · , S. (20)

First of all, we state two well-known lemmas as follows.

Lemma 1. Assume that (As, C) , s = 1, 2, · · · S, are observable or detectable. If there exists a positive definite
symmetric matrix P satisfying the following Lyapunov inequalities:

(As − KsC)TP(As − KsC)− Ps < 0, s = 1, · · · , S (21)

the gain matrices Ks, s = 1, · · · , S, ensure that, for any switching signal σ(t), the estimation error of the observer
Equation (18) exponentially converge to zero.

Lemma 2. Let Xs = PKs. Then the inequalities Equation (21) are equivalent to the following LMIs with respect
to P and Xs: [

P (PAs − XsC)T

PAs − XsC P

]
> 0, s = 1, · · · , S. (22)

Thus, we can find the gain matrices Ks = P−1Xs, s = 1, · · · , S by solving the LMIs Equation (22).
In fact, the condition in Equation (21) or (22) provides a sufficient and necessary one for the

existence of the observer Equation (18). In other words, if the condition Equation (21) or (22) is not
satisfied, one has to change the structure of the observer or even to find another type of state estimation
approach. The same case happens in other estimation methods such as Kalman filter, where one cannot
always find the Kalman gain matrix.
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5. Application to Beijing Third Ring Freeway

5.1. Test Data and Parameter Settings

Beijing third ring freeway (Figure 6) is approximately 48 km long and includes 62 on-ramps and
62 off-ramps. We apply the proposed model and state observer to the outer ring freeway. According
to consistency rule of cells [21], the outer ring freeway can be partitioned into 128 cells. As shown in
Section 3, if a centralized Equation (15) is used for the freeway with 128 cells, there exist 8.44342× 1048

combination modes, which results in high computational complexity. Therefore, in this paper, in
order to clearly interpret the principle of the proposed method and avoid computational complexity,
we take into account a simplified version of the outer ring freeway. For the practical application we
will consider a decentralized model and a distributed observer in the future research.

 

B 

 
on - ramp

off - ramp

North

A

Figure 6. Beijing third ring freeway (from Google Map). The points A and B are marked as the
first on-ramp and the first off-ramp, respectively. The segment between A and B is labeled as cell 1.
(Note: The Chinese word in this map is just the name of some buildings and will not affect the meaning
of this image.)

The simplified outer ring freeway (Figure 7) contains 20 cells, 4 on-ramps and 4 off-ramps.
Each cell has three lanes and the length of the cells is listed in Table 2. The parameters of all cells are
given in Table 3.

Moreover, since Modelica language [20,57] has the advantage of modeling hybrid systems,
we choose the open source software OpenModelica to develop a program library to implement
the traffic flow model and state estimation.
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Figure 7. The simplified version of Beijing third ring freeway.

Table 2. Cell length of simplified third ring freeway.

Number Length Number Length Number Length

1 111 m 8 430 m 15 300 m
2 535 m 9 500 m 16 350 m
3 336 m 10 355 m 17 332 m
4 138 m 11 338 m 18 210 m
5 586 m 12 355 m 19 367 m
6 140 m 13 458 m 20 458 m
7 281 m 14 256 m

Table 3. Road segments parameters.

Number V W C ρ0 ρm

2,3,4 65 20 2800 46 185
7,8,9 63 21 2850 45 180

12,13,14 65 20 2760 44 182
17,18,19 62 19 2650 43 180

1,20 60 19 2450 40 170
5,6 58 18 2350 41 165

10,11 55 20 2200 40 150
15,16 50 19 2100 41 155
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For the experimental data, we collected 6 h (from 6:00 a.m. to 12:00 a.m.) traffic flow data of
4 on-ramps, 4 off-ramps and traffic densities of 4 road segments of the outer ring freeway on 19 May
2015. Then we used a microscopic model of the outer ring freeway built by Paramics [58] to simulate the
traffic flow from 6:00 a.m. to 12:00 a.m. and collect the densities (we call them the simulated densities)
by virtual sensors in all the segments, where the real traffic flows of 4 on-ramps and 4 off-ramps were
used as the traffic demand and to determine the dividing ratios. The real initial densities of the 4 road
segments were used as the initial traffic state of all the cells. In simulation procedure, by setting the
dividing ratio, and adjusting the whole microscopic simulator, the modes of traffic flow change in the
following sequence order: 20F→ 16F4C→ 12F2C2F4C→ 6F3C3F2C2F4C→ 6F3C3F8C→ 16C→
7F1C1F3C1F3C3F1C, where kF or kC denotes continuous k cells in mode F or C.

The corresponding matrices As = [ai,j] and vectors Fs = [ fi], s = 1, 2 · · · 20, are listed in
Appendix B. For the outer ring freeway with 4 on-ramps the matrix Bs = [bi,j] is a constant matrix with
the entries b3,1 = 0.0149, b8,2 = 0.0116, b13,3 = 0.0109, b18,4 = 0.0238, and bi,j = 0 for the other entries
in Bs. Here the sample time period T = 5s such that the condition ViT ≤ Li, i = 1, 2 · · · 20, is satisfied.

Nowadays various sensor technologies can be applied to collect traffic data, including floating
vehicle, loop detector, microwave and video. Different source data can provide different measurement
outputs and thus one gets different types of matrix C in the measurement output Equation (23). One can
even utilize the fused data or multi-dimensional data of several types of sensors at the same time.

However, in this paper we used the loop detector to collect traffic densities. In the example,
the virtual loop detectors in Paramics installed in the cells 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 were
used to collect traffic densities (see Figure 7). Hence, corresponding to these detectors, C = [ci,j] is
a 10× 20 matrix with entries c1,1 = c2,3 = c3,5 = c4,7 = c5,9 = c6,11 = c7,13 = c8,15 = c9,17 = c10,19 = 1
and ci,j = 0 for the other i, j. Moreover, one can verify that the pair (As, C) is observable for all
s = 1, · · · , 20.

5.2. Analysis of Simulation Results

The simulation results for the whole simplified outer ring freeway are shown in Figure 8 in the
way of time-space diagram, where Figure 8a shows the real traffic densities from 6:00 a.m. to 12:00 a.m.,
and Figure 8b presents the estimated densities by the observer. It is clear that some segments with
red color represent a real congestion state. Especially, heavy traffic jams happen in the morning rush
hour from about 7:00 a.m. to 10:00 a.m. and the congestion time periods are different for different road
segments. Error curve(see Figure 9) shows that the error converges to zero at about 200 s, the speed is
acceptable and the gain matrices are appropriate.
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Figure 8. Time-space diagram of traffic density.
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Figure 9. Error curve.

One can further compare estimated densities with the simulated ones in all road segments.
For example, the cells 14 and 20 are presented to exhibit more in detail the the density comparison
(see Figure 10). From Figures 8 and 10, it is clear that the proposed modeling approach and the observer
are feasible, and the estimated densities well approximate to the simulated ones.

Table 4 shows the performance indicator of the state observer by using the mean square error
(MSE) which is defined by the Equation (23)

MSE =

√√√√√ n
∑

i=1
(ρ̂i − ρi)

2

n
(23)

From the MSE of each cell, we can further compute the mean value of 20 cells is approximately
11.34%. The results indicate that the designed model-based switched state observer has a good
estimated performance.

Table 4. Mean square error of estimated densities.

Number of cell 1 2 3 4 5 6 7 8 9 10
MSE 0.1095 0.1126 0.1132 0.1223 0.1205 0.1176 0.1301 0.1005 0.1108 0.1201

Number of cell 11 12 13 14 15 16 17 18 19 20
MSE 0.1132 0.1087 0.1136 0.1009 0.1143 0.1209 0.1120 0.1013 0.1147 0.1106
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Figure 10. Simulated and estimated densities of cells 14 and 20.
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6. Conclusions and Future Work

In the paper, a modeling framework named Dynamic Graph Hybrid Automata (DGHA) has been
proposed by combining a dynamic graph with hybrid automata. Then this framework was applied to
model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM)
into the DGHA.

In the modeling procedure, the dual digraph of road network structure was adopted to describe
the road topology, hybrid automata were used to describe multi-modes of dynamic densities in
road segments, and the nonlinear expressions of the transmitted traffic flow between two road
segments were transformed into piecewise linear functions in terms of multi-mode switchings. By using
a combination algorithm for the dynamics of traffic flow, the modeling procedure is modularized and
rule-based, and thus is easily-extensible. Thus it can be used to model an urban freeway network
with arbitrary topology structures and sizes. Furthermore, mode types and number in the model
of the whole freeway network were analyzed, and, consequently, a Piecewise Affine Linear System
(PWALS) model of urban freeway was deduced. Finally, based on the PWALS model, a switched state
observer was designed to estimate the traffic densities of the urban freeway, where a set of observer
gain matrices were computed by using the Lyapunov function approach. The proposed modeling
approach and the observer were validated to be feasible by the simplified example of Beijing third
ring freeway.

However, there are some drawbacks which require further improvements in the future research.
First, we adopt centralized model and observer, which, as shown above, results in huge number of
combined modes and computational difficulty. So from the view of practical application, decentralized
model and decentralized observer are required to reduce computational complexity.

Second, the assumption that the switching function of the observer is the same with that of the
model means that the switching of the observer is driven by the model states. However, in practice
it may be difficult to implement and one needs to identify mode switchings by designing a discrete
event observer, which will result in unsynchronized mode switchings between the practical object and
the observer and thus bring about larger estimation error. So, in this case, another type of switched
observer is required to be design for the state estimation.

Third, in the application example, we took the simplified version of Beijing third ring road, and
used the incompletely collected traffic data and the simulation data obtained by Paramics. That means
we need real experiments for the practical application to further verify our proposed approach.
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Appendix A

Hi1 =



−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1


, hi1 =



0
ρl0
0

ρi0
0

ρj0


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Hi2 =


−1 0 0
1 0 0
0 −1 0
0 0 −1
0 Vi Wj

 , hi2 =


0

ρl0
0
−ρj0

Wjρjm



Hi3 =


−1 0 0
1 0 0
0 1 0
0 0 1
0 −Vi −Wj

 , hi3 =


0

ρl0
ρi0
ρjm
−Wjρjm



Hi4 =


−1 0 0
0 −1 0
Vl Wi 0
0 0 −1
0 0 1

 , hi4 =


0
−ρi0

Wiρim
−ρj0
ρjm



Hi5 =


−1 0 0
0 −1 0
Vl Wi 0
0 0 −1
0 0 1

 , hi5 =


0
−ρi0

Wiρim
0

ρj0



Hi6 =



−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1


, hi6 =



−ρl0
ρlm
0

ρi0
0

ρj0



Hi7 =


−1 0 0
1 0 0
0 −1 0
0 0 −1
0 Vi Wj

 , hi7 =


−ρl0
ρlm
0
−ρj0

Wjρjm



Hi8 =


−1 0 0
1 0 0
0 1 0
0 0 1
0 −Vi −Wj

 , hi8 =


−ρl0
ρlm
ρi0
ρjm
−Wjρjm



Hi9 =



−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1


, hi9 =



−ρl0
ρlm
−ρi0
ρim
0

ρj0



Hi10 =


1 0 0
0 1 0
−Vl −Wi 0

0 0 −1
0 0 1

 , hi10 =


ρl0
ρim
−Wiρim

0
ρj0


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Hi11 =


1 0 0
0 1 0
−Vl −Wi 0

0 0 −1
0 0 1

 , hi11 =


ρl0
ρim
−Wiρim
−ρj0
ρjm



Hi12 =



−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1


, hi12 =



−ρl0
ρlm
−ρi0
ρim
−ρj0
ρjm


Appendix B

Mode 1: FFFFFFFFFFFFFFFFFFFF (20F)
a1,1 = 0.2491, a1,20 = 0.7509, a2,1 = 0.1558, a2,2 = 0.8442, a3,2 = 0.2481, a3,3 = 0.7519, a4,3 = 0.6040,
a4,4 = 0.3960, a5,4 = 0.1422, a5,5 = 0.8578, a6,5 = 0.5954, a6,6 = 0.4046, a7,6 = 0.2966, a7,7 = 0.7034,
a8,7 = 0.1938, a8,8 = 0.8062, a9,8 = 0.1667, a9,9 = 0.8333, a10,9 = 0.2348, a10,10 = 0.7652, a11,10 = 0.2466,
a11,11 = 0.7534, a12,11 = 0.2348, a12,12 = 0.7652, a13,12 = 0.1820, a13,13 = 0.8180, a14,13 = 0.3256,
a14,14 = 0.6744, a15,14 = 0.2778, a15,15 = 0.7222, a16,15 = 0.2381, a16,16 = 0.7619, a17,16 = 0.2511,
a17,17 = 0.7489, a18,17 = 0.3969, a18,18 = 0.6031, a19,18 = 0.2271, a19,19 = 0.7729, a20,19 = 0.1820,
a20,20 = 0.8180, and the other entries ai,j are zero. F = 0.

Mode 2: FFFFFFFFFFFFFFFFCCCC (16F4C)
a1,1 = 0.2491, a2,1 = 0.1558, a2,2 = 0.8442, a3,2 = 0.2481, a3,3 = 0.7519, a4,3 = 0.6040, a4,4 = 0.3960,
a5,4 = 0.1422, a5,5 = 0.8578, a6,5 = 0.5954, a6,6 = 0.4046, a7,6 = 0.2966, a7,7 = 0.7034, a8,7 = 0.1938,
a8,8 = 0.8062, a9,8 = 0.1667, a9,9 = 0.8333, a10,9 = 0.2348, a10,10 = 0.7652, a11,10 = 0.2466,
a11,11 = 0.7534, a12,11 = 0.2348, a12,12 = 0.7652, a13,12 = 0.1820, a13,13 = 0.8180, a14,13 = 0.3256,
a14,14 = 0.6744, a15,14 = 0.2778, a15,15 = 0.7222, a16,15 = 0.2381, a16,16 = 0.7619, a17,16 = 0.2511,
a17,17 = 1, a17,18 = 0.0837, a18,18 = 0.8676, a18,19 = 0.1324, a19,19 = 0.9243, a19,20 = 0.0757,
a20,20 = 0.9393, and the other entries ai,j are zero.
f1 = 0.0338, f17 = −0.0151, f20 = 0.0027, and the other entries fi are zero.

Mode 3: FFFFFFFFFFFFCCFFCCCC (12F2C2F4C)
a1,1 = 0.2491, a2,1 = 0.1558, a2,2 = 0.8442, a3,2 = 0.2481, a3,3 = 0.7519, a4,3 = 0.6040, a4,4 = 0.3960,
a5,4 = 0.1422, a5,5 = 0.8578, a6,5 = 0.5954, a6,6 = 0.4046, a7,6 = 0.2966, a7,7 = 0.7034, a8,7 = 0.1938,
a8,8 = 0.8062, a9,8 = 0.1667, a9,9 = 0.8333, a10,9 = 0.2348, a10,10 = 0.7652, a11,10 = 0.2466,
a11,11 = 0.7534, a12,11 = 0.2348, a12,12 = 0.7652, a13,12 = 0.1820, a13,13 = 1, a13,14 = 0.0607,
a14,14 = 0.8914, a15,15 = 0.7222, a16,15 = 0.2381, a16,16 = 0.7619, a17,16 = 0.2511, a17,17 = 1,
a17,18 = 0.0837, a18,18 = 0.8676, a18,19 = 0.1324, a19,19 = 0.9243, a19,20 = 0.0757, a20,20 = 0.9393, and the
other entries ai,j are zero.
f1 = 0.0338, f13 = −0.011, f14 = 0.0049, f15 = 0.0125, f17 = −0.0151, f20 = 0.0027, and the other
entries fi are zero.

Mode 4: FFFFFFCCCFFFCCFFCCCC (6F3C3F2C2F4C)
a1,1 = 0.2491, a2,1 = 0.1558, a2,2 = 0.8442, a3,2 = 0.2481, a3,3 = 0.7519, a4,3 = 0.6040, a4,4 = 0.3960,
a5,4 = 0.1422, a5,5 = 0.8578, a6,5 = 0.5954, a6,6 = 0.4046, a7,6 = 0.2966, a7,7 = 1, a7,8 = 0.0989,
a8,8 = 0.9353, a8,9 = 0.0647, a9,9 = 0.9444, a10,10 = 0.7652, a11,10 = 0.2466, a11,11 = 0.7534,
a12,11 = 0.2348, a12,12 = 0.7652, a13,12 = 0.1820, a13,13 = 1, a13,14 = 0.0607, a14,14 = 0.8914,
a15,15 = 0.7222, a16,15 = 0.2381, a16,16 = 0.7619, a17,16 = 0.2511, a17,17 = 1, a17,18 = 0.0837,
a18,18 = 0.8676, a18,19 = 0.1324, a19,19 = 0.9243, a19,20 = 0.0757, a20,20 = 0.9393, and the other entries
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ai,j are zero.
f1 = 0.0338, f7 = −0.018, f9 = −0.0025, f10 = 0.0106, f13 = −0.011, f14 = 0.0049, f15 = 0.0125,
f17 = −0.0151, f20 = 0.0027, and the other entries fi are zero.

Mode 5: FFFFFFCCCFFFCCCCCCCC (6F3C3F8C)
a1,1 = 0.2491, a2,1 = 0.1558, a2,2 = 0.8442, a3,2 = 0.2481, a3,3 = 0.7519, a4,3 = 0.6040, a4,4 = 0.3960,
a5,4 = 0.1422, a5,5 = 0.8578, a6,5 = 0.5954, a6,6 = 0.4046, a7,6 = 0.2966, a7,7 = 1, a7,8 = 0.0989,
a8,8 = 0.9353, a8,9 = 0.0647, a9,9 = 0.9444, a10,10 = 0.7652, a11,10 = 0.2466, a11,11 = 0.7534,
a12,11 = 0.2348, a12,12 = 0.7652, a13,12 = 0.1820, a13,13 = 1, a13,14 = 0.0607, a14,14 = 0.8914,
a14,15 = 0.1086, a15,15 = 0.9073, a15,16 = 0.0927, a16,16 = 0.9206, a16,16 = 0.0794, a17,17 = 0.9163,
a17,18 = 0.0837, a18,18 = 0.8676, a18,19 = 0.1324, a19,19 = 0.9243, a19,20 = 0.0757, a20,20 = 0.9393, and the
other entries ai,j are zero.
f1 = 0.0338, f7 = −0.018, f9 = −0.0025, f10 = 0.0106, f13 = −0.011, f20 = 0.0027, and the other entries
fi are zero.

Mode 6: CCCCCCCCCCCCCCCCCCCC (16C)
a1,1 = 0.7495, a1,2 = 0.2505, a2,2 = 0.9480, a2,3 = 0.0520, a3,3 = 0.9173, a3,4 = 0.0827, a4,4 = 0.7986,
a4,5 = 0.2014, a5,5 = 0.9526, a5,6 = 0.0474, a6,6 = 0.8014, a6,7 = 0.1986, a7,7 = 0.9011, a7,8 = 0.0989,
a8,8 = 0.9353, a8,9 = 0.0647, a9,9 = 0.9444, a9,10 = 0.0556, a10,10 = 0.9217, a10,11 = 0.0783,
a11,11 = 0.9178, a11,12 = 0.0822, a12,12 = 0.9217, a12,13 = 0.0783, a13,13 = 0.9393, a13,14 = 0.0607,
a14,14 = 0.8914, a14,15 = 0.1086, a15,15 = 0.9073, a15,16 = 0.0927, a16,16 = 0.9206, a16,17 = 0.0794,
a17,17 = 0.9163, a17,18 = 0.0837, a18,18 = 0.8676, a18,19 = 0.1324, a19,19 = 0.9243, a19,20 = 0.0757,
a20,20 = 0.9393, and the other entries ai,j are zero.
f4 = 0.7347, f6 = −0.8036, f9 = 0.2167, f11 = −0.2630, f14 = 0.3771, f16 = −0.1885, f19 = −0.0719,
and the other entries fi are zero.

Mode 7: FFFFFFFCFCCCFCCCFFFC
(7F1C1F3C1F3C3F1C)
a1,1 = 0.2491, a2,1 = 0.1558, a2,2 = 0.8442, a3,2 = 0.2481, a3,3 = 0.7519, a4,3 = 0.6040, a4,4 = 0.3960,
a5,4 = 0.1422, a5,5 = 0.8578, a6,5 = 0.5954, a6,6 = 0.4046, a7,6 = 0.2966, a7,7 = 1, a7,8 = 0.0989,
a8,8 = 0.9353, a8,9 = 0.0647, a9,9 = 1, a9,10 = 0.0556, a10,10 = 0.9217, a10,11 = 0.0783, a11,11 = 0.9178,
a11,12 = 0.0822, a12,12 = 0.9217, a13,13 = 1, a13,14 = 0.0607, a14,14 = 0.8914, a14,15 = 0.1086,
a15,15 = 0.9073, a15,16 = 0.0927, a16,16 = 0.9206, a17,16 = 0.9206, a17,17 = 0.7489, a18,17 = 0.3969,
a18,18 = 0.6031, a19,18 = 0.2271, a19,19 = 1, a19,20 = 0.0757, a20,20 = 0.9393, and the other entries ai,j
are zero.
f1 = 0.0338, f7 = −0.018, f8 = 0.0029, f9 = −0.0025, f12 = 0.0035, f12 = 0.0027, f16 = 0.0036,
f17 = 0.0113, f13 = 0.0035, f19 = −0.0136, f20 = 0.0027, and the other entries fi are zero.
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