
sensors

Article

Model-Based Estimation of Ankle Joint Stiffness

Berno J. E. Misgeld *, Tony Zhang, Markus J. Lüken and Steffen Leonhardt

Philips Chair for Medical Information Technology, RWTH Aachen University, Pauwelsstrasse 20,
52074 Aachen, Germany; tony.zhang@rwth-aachen.de (T.Z.); lueken@hia.rwth-aachen.de (M.J.L.);
leonhardt@hia.rwth-aachen.de (S.L.)
* Correspondence: misgeld@hia.rwth-aachen.de; Tel.: +49-241-8023218; Fax: +49-241-80623211

Academic Editor: Vittorio M. N. Passaro
Received: 16 January 2017; Accepted: 23 March 2017; Published: 29 March 2017

Abstract: We address the estimation of biomechanical parameters with wearable measurement
technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in
dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the
lower leg was formulated that is driven by electromyographic signals. The model incorporates
a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever
arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm
is necessary that employs segmental orientation sensor measurements. Because of the model’s
inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed.
The performance of the novel estimation approach was evaluated in silico and in an experimental
procedure. The experimental study was conducted with body-worn sensors and a test-bench that was
specifically designed to obtain reference angle and torque measurements for a single joint. Results
show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as,
joint stiffness during experimental test bench movements.

Keywords: joint stiffness estimation; body-worn sensors; magnetic, angular rate and gravity
sensors; BSN

1. Introduction

An accurate real-time estimation of human joint stiffness would be beneficial in many situations.
For example, active prosthetics, orthotics, or exoskeletons could use information on quantitative joint
stiffness to adjust their control strategies [1]. Currently, such systems are increasingly fitted with
physically adjustable elements [2]. Therefore, the adjustment of, for example, a physically controllable
interaction stiffness in robotic support is a possible area of application. Besides these movement
support applications, time-resolved knowledge of human joint stiffness can be useful in motion
analysis or as a detection system for pathologic movement states, such as spasticity [3].

The stiffness of human lower extremity joints changes naturally during locomotion.
This phenomenon is typically called stiffness modulation and serves as an involuntary adaptation of the
neuromusculoskeletal system to handle contact situations in a highly uncertain environment. Stiffness
modulation is suggested to increase gait stability, or absorb shocks [4]. Although it can be argued that
stiffness is the major component that is changed during human locomotion, other passive elements
(such as viscous damping) also exist. Together with inertia, joint dynamic properties can be generalised
to the concept of mechanical impedance. A mechanical impedance can be regarded as a frequency
dependent and (for most human joints) nonlinear mechanical resistance to excitation of a force (torque)
or a velocity (angular rate). Since its recognition in locomotion in the 1980s [5], mechanical impedance
has been well researched and is suggested to play a major role in the stabilisation of unstable walking
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dynamics and motion learning [4,6,7]. However, this particular study focuses on the estimation of joint
stiffness, which is a major component of joint impedance.

Different dynamic modelling and estimation approaches for the ankle joint have been reported.
Early publications focused mainly on exploration of the so-called quasi-stiffness, which is defined
as the derivative of the torque with respect to the angle [8]. For instance, Kearny and Hunter [9]
presented the estimation of dynamic stiffness transfer functions from experimental measurements
of the ankle; they concluded that a linear modelling approach is not enough to account for ankle
stiffness nonlinearities. In contrast, early models of the lower extremities aim (for example) for the
estimation of joint torques, or calculation of stress rates, or analysis of human movement [10–12].
This was followed by more complex models of the lower extremities, that were extended to the
three-dimensional case and contained active muscle models that were driven by electromyographic
(EMG) measurements [13,14]. However, the linear and nonlinear modelling of single isolated joints
continued to attract interest of researchers. For example, Riener and Edrich examined passive elastic
joint moments for knee and ankle joint [15]. Also, in a test scenario, Lee et al. presented a linear
multivariable analysis on dynamic ankle stiffness for active muscles for a two degrees-of-freedom
(DOF) ankle joint [16]. Various estimation procedures (e.g., linear parameter varying and nonlinear
estimation) are available in the literature. Procedures for the modelling of isolated human joints are
presented, for example, in [17,18]. In contrast, however, very few forward-driven dynamic models that
address isolated joints are available in the literature. Nevertheless, one such example was presented
by Sartori et al., in which the model is driven by EMG data and calibrated to satisfy joint moments
about a single DOF joint [19]. Another example is an EMG-driven musculoskeletal model that is
used to estimate muscle forces and knee joint movement [20]. The advantage of EMG-driven models
is that they can predict joint stiffness changes that occur due to a muscle coactivation. Changes in
muscle activation and muscle-tendon-complex (MTC) kinematics result in changes in MTC stiffness,
which is reflected at the level of the joint [21]. Since the tendons show nonlinear characteristics of force
over displacement, a coactivation of antagonistic muscles leads to a change of overall joint stiffness.
Another advantage of EMG-driven neuromusculoskeletal models is that they are able to take into
account different muscle activation patterns, even when the external kinematics and joint moments are
the same. These were reported in static tasks which require force and position control [22]. Examples
of models to be used in joint stiffness estimation were published by Pfeifer et al. [23] for the human
knee and by Rouse et al. [24] for the human ankle. However, both models are forward simulations and
the model presented in [24] does not incorporate EMG information.

In this study, we present a model-based approach aiming at stiffness estimation to be used in,
for example, ankle orthotic applications [25,26]. To minimise model errors that occur in forward
estimation procedures, our approach employs a nonlinear observer. To our knowledge, no such
approach for the isolated ankle joint has yet been published. Our observer employs a nonlinear
biomechanical model, surface EMG (sEMG) measurements, and joint angle measurements. Since
nonsmooth model dynamics prevent classical observer designs that employ Jacobian linearisation
techniques, we employ a square-root cubature Kalman filter (SCKF) [27]. Moreover, the SCKF was
chosen as it can handle strong model-inherent nonlinearities and model uncertainties. Since the model
takes antagonistic muscles into account, the stiffness estimation is able to reconstruct ankle stiffness
changes due to muscle coactivation effects.

This paper is organised as follows: Section 2 formulates a new model for the lower extremity in
the sagittal plane and Section 3 presents the model-based filtering approach and the experimental
setup. Simulation and experimental results of the procedure are described in Section 4, and Section 5
presents the conclusion and discussion.

2. Dynamic Lower Extremity Modelling

The model of the lower extremity is based on the sagittal plane kinematics of the knee joint that
was presented in [28]. However, the main focus of the present study is the extension of this model
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with ankle and hip dynamic models. The human ankle joint consists of an upper (articulatio talocruralis;
TC) and a lower (articulatio subtalaris and articulatio talocalcaneonavicularis) part. This study focusses
on the modelling of dorsiflexion and plantar flexion, which is mainly achieved by the TC [29–31].
Although the TC is generally considered as a one-degree-of-freedom joint disagreement exists about
the rotation axis/axes. Early studies indicated two discrete axes of rotation [32,33], one at dorsiflexion
and one at plantar flexion. However, a subsequent study identified a single, fixed axis of rotation [34].
More recent research considered a continuously shifting axis of rotation with foot movement [29,30,35].
Nonetheless, some studies support the approach of a single fixed axis [31,36]. Moreover, the modelling
approach with a single hinge joint was successfully employed in several studies that yielded plausible
results [37–41]. Consequently, in the present study we model the TC as a simple hinge joint.

2.1. Ankle Kinematic Model

The local foot coordinate system is set-up with respect to the knee reference system, where the
latter is (later on) related to the global reference system located at the hip. The knee reference coordinate
system is located at the contact points between condyles and tibia plateau at a knee angle of 0◦. Thus,
the y-axis yknee points along the tibia, whereas xknee is anterograde at upright standing. zknee is chosen
so as to span a right-handed coordinate system. A local coordinate system is defined for the rotation of
the foot, which is body-fixed to the foot. However, this allows to rotate the foot with respect to the
global coordinate system. Figure 1 shows the local foot coordinate system, which rotates about the
z-axis zankle. The inclination and orientation of zankle were determined according to the results of [34].

αTC f ml

x f oot

z f oot

y f oot

αTCtla

y f oot

z f oot
x f oot

Figure 1. Rotation axis of the TC and local body-fixed coordinate system of the foot. Left: View at the
coordinate system from the front; αTCtla is the angle between tibia axis and rotation axis. Right: View at
the coordinate system from above; αTC f ml is the angle between mid-line of the foot and the rotation axis.

The origin of the foot coordinate system was placed between both malleoli. The local x-axis x f oot
is perpendicular to z f oot and parallel to the foot sole. y f oot is aligned so as to span a right-handed
coordinate system. The ankle joint angle ϕankle is defined by a rotation of the foot coordinate system
around z f oot with respect to the global y-axis. Furthermore, the zero position ϕankle = 0◦ is defined at
upright standing (yknee is perpendicular to xankle). The angular range of the ankle joint was defined
to lie on the interval −60◦ < ϕankle < 20◦. The resulting transformation of a point p f oot in the local
coordinate system of the foot is defined in homogeneous coordinates with help of the homogeneous
transformation matrix T(ϕankle) To set-up rotation matrices, xtrans and ytrans describe the origin of the
foot coordinate system in the knee coordinate system. Moreover, the rotation angles are defined as
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β = αTC f ml − 90◦ and γ = 90◦ − αTCtla . For actuation of the ankle joint, kinematic considerations are
made for three main muscles: the musculus tibialis anterior (TA) as a primary actuator for dorsiflexion,
as well as the musculus soleus (SOL) and the musculus gastrocnemius (GAS) as the primary actuators for
plantar flexion [42]. The reasons for this decision were: a) to have reliable sEMG signals in the filter,
and b) to limit the dimension of the resulting state-space model (each muscle increases the filter order
by 2.) Figure 2 is an overview of the muscle kinematics used to calculate the lever arms.

Figure 2. Ankle joint model (green: TA, blue: SOL, red: GAS). Dotted lines illustrate the lever arms;
the star indicates the variable centre of rotation that is obtained by projection into the sagittal plane.
TA, musculus tibialis anterior; SOL, musculus soleus; GAS, musculus gastrocnemius

The TA originates from the lateral condyle of the tibia and sets on along the inside of the foot.
Figure 2 shows that the TA is guided by two medially aligned ligaments (retinaculum musculorum
extensorum superius and inferius). The GAS (Note that the GAS model was scaled accordingly, to
account for the medial and lateral part simultaneously) originates from its two heads at the condyles
of the femur where, in case of the SOL, the origin is the posterior-proximal end of the tibia and fibula.
Both muscles are joined in the Achilles tendon which inserts into the posterior surface of the heel
bone (calcaneus). As described in [28], the muscles are approximated by line segments from origin
to fixation point. The fixation of the TA by means of the retinacula is realised by two nodal points
for determination of the effective origin and point of action. These two points were taken from the
literature for the shank and for the foot [43,44], respectively (Figure 2). From the position of the TC
rotation axis and the coordinates of the nodal point, the length of the MTC lMT,i and the lever arms rma,i
can be calculated. The length lMT,i is a result of the sum of the single line segment. The lever arms are
defined as the distance of the rotation axis to the effective direction of the muscle force. The effective
direction lies on the straight line

g : x = p̂global
O,i + λ(p̂global

I,i − p̂global
O,i ), (1)
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where λ is the variable of the straight line equation and p̂global
O,i and p̂global

I,i denote global coordinates of
the projection of the origin and the contact point of the muscle into the sagittal plane. Hence, the lever
arm of the muscle i results in

rma,i =
|(p̂global

IC − p̂global
O,i )× (p̂global

I,i − p̂global
O,i )|

|p̂global
I,i − p̂global

O,i |
. (2)

In Equation (2), p̂global
IC represents the global coordinates of the current rotation axis. Due to

the projection into the sagittal plane, a resulting movement of rotation axis can be observed and is
visualised in Figure 3a,b.

p̂I,SOL(ϕankle)

p̂I,SOL(ϕankle + ∆ϕankle)

p̂I,TA(ϕankle + ∆ϕankle)

p̂I,TA(ϕankle)

p̂IC

(a)

0 0.2 0.4 0.6 0.8 1 1.2
−44.2

−44
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−43

ϕankle = 20◦

ϕankle = −60◦

x [cm]

y
[c

m
]

(b)

Figure 3. Determination of the current centre-of-rotation in the sagittal plane. (a) Determination
of the current centre-of-rotation by a small angle change ∆ϕankle. p̂IC results from the intersection
of the perpendicular lines bisecting straight lines connecting pI,i(ϕankle) and pI,i(ϕankle + ∆ϕankle).
(b) Change of current centre-of-rotation with ϕankle with projection into the sagittal plane.

Note that if the muscle has an effective origin or contact point, these are used to determine the
effective direction. This is, for example, the case for the TA, where the effective origin is in the shank
and the effective contact point is in the foot. In addition, the GAS has an effective origin at the condyles
of the femur given the corresponding knee alignment. Moreover, the GAS is a biarticulate muscle
acting on knee and ankle joint at the same time and, as such, the corresponding variables depend on
the orientation of the ankle and knee joint angles.

Line segment lengths and lever arms of the modelled kinematics were calculated offline over
the whole range of ankle angles ϕankle and knee angles ϕknee at increments of ∆ϕangle = 1◦ and
approximated by fourth-order polynomials. The muscle contraction speed vM can then be calculated
from angular velocity and time-derivative of lMT(ϕankle). For TA and SOL, the time-derivative of
lMT(ϕankle) results in

vM =
dlM
dt

=
d
dt

(
lMT(ϕankle)− lT

cos αp

)
=

dϕankle
dt

d
dϕankle

(
lMT(ϕankle)− lT

cos αp

)
= ϕ̇ankle

dlMT
dϕankle

1
cos αp

,

(3)

with muscle length lM and pennation angle αp. As for the GAS we obtain
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vM =
dlM
dt

=
d
dt

(
lMT(ϕankle, ϕknee)− lT

cos αp

)
=

dϕankle
dt

∂

∂ϕankle

(
lMT(ϕankle, ϕknee)− lT

cos αp

)
+

dϕknee
dt

∂

∂ϕknee

(
lMT(ϕankle, ϕknee)− lT

cos αp

)
=

(
ϕ̇ankle

∂lMT
∂ϕankle

+ ϕ̇knee
∂lMT

∂ϕknee

)
1

cos αp
.

(4)

Note that in Equations (3) and (4) it is assumed that the tendon length lT is constant. However,
whereas taking the Achilles tendon strain into account is important to determine joint stiffness,
computational simplifications are necessary to make the model treatable.

2.2. Hip Kinematic Model

The hip joint is typically modelled as a 3 DOF ball joint [45] or a 1 DOF hinge joint in the sagittal
plane [43]. For the purpose of the present model, only the influence of the sagittal plane orientation
of the hip is considered. Hence, the hip joint is modelled as a hinge joint. The MTC length of the
biarticular muscles that act on the knee and hip joint is influenced by the orientation of the hip
joint. For further simplification, the influence of hip abduction/adduction and outer/inner rotation is
considered to be small as compared to hip flexion/extension and is subsequently neglected. Biarticular
muscle groups that are considered in the knee model presented by Misgeld et al. [28] are the musculus
quadriceps femoris (QF) and the ischiocrural muscles (HAMS). The lengths of their corresponding MTCs
lMT,QF and lMT,HAMS are influenced by the hip angle ϕhip. The hip angle ϕhip is defined as the angle
between the pelvis and proximal extension of the thigh; it is zero in upright standing and has a range
of −20◦ < ϕhip < 150◦, where ϕhip > 0◦ is defined to be flexion. The hip angle is considered in an
analogous way for the GAS calculations.

2.3. Lower Extremity Dynamics

The dynamic model of the lower extremity follows the approach of Yamaguchi and Zajac [46].
In contrast to [46], in our model the ankle joint TC rotation axis is not perpendicular to the sagittal
plane; moreover, other coordinate systems and angles are used. The individual determination of the
centre-of-mass and centre-of-inertia is based on the relative data of de Leva [47]. The kinematics of
the knee joint are based on [28], which assumes a fixed centre-of-rotation for the dynamics; this is
in contrast to the knee kinematics, where the translation of the centre-of-rotation is still considered.
The present model consists of three segments and three hinge joints (Figure 4).

The derivation of the multibody dynamics follows the Euler-Lagrange equation approach. On the
one hand, elastic and viscous joint properties are modelled as external forces. On the other, the potential
energy consists of segmental mass mi in the corresponding centre-of-gravity, and the total kinetic
energy results from the kinetic energy of the three modelled segments. Substitution of potential
and kinetic energy into the Lagrangian functional and subsequent partial differentiation leads to the
Euler-Lagrange equations

M(q)q̈ + D(q, q̇)q̇ + k(q) = τ, (5)

where M(q) denotes the symmetric positive definite inertia matrix, q is the vector of generalised
coordinates, and τ denotes the vector of external forces and torques acting on the lower extremity
model. The matrix D(q, q̇) contains centrifugal and Coriolis terms and is defined as

dkj =
3

∑
i=1

1
2

{
∂mkj

∂qj
+

∂mki
∂qj
− ∂mij

∂qk

}
q̇i. (6)

The last term in Equation (5) relates to potential energy and is defined as

ki =
∂P
∂qi

. (7)
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In order to determine the complete dynamics, the external joint torques are required, these
external torques act on the dynamic system (5) through τ. However, for the hip joint no external
torques are taken into account,because the hip joint is only considered for its influence on the length
of the corresponding MTC that act on the knee joint. The corresponding external torque for the hip
joint, τ1, is unknown. Consequently, the corresponding hip angle q1 is considered as an external input
signal. The equations of motion, given by Equation (5), have to be reduced with respect to the two
unknowns q2 and q3:

M̂(q̂, q1) ¨̂q + D̂(q̂, ˙̂q, q1, q̇1) ˙̂q + k̂(q̂, q1) = τ̂(q̂, ˙̂q, q1, q̇1, q̈1), (8)

with

q̂ =

[
q2

q3

]
, M̂ =

[
m22 m23

m32 m33

]
, D̂ =

[
d22 d23

d32 d33

]
, k̂ =

[
k2

k3

]
,

τ̂ =

[
τ2

τ3

]
− q̈1

[
m21

m31

]
− q̇1

[
d21

d31

]
,

(9)

which is an equivalent representation with respect to the two lower rows of Equation (5). The external
joint torques τj consist of actively generated joint torques τT

j , passively generated joint torques τE
j and

τV
j as well as externally generated torques τext

j like, for example, ground reaction forces. These torques
are combined as

τj = τT
j + τE

j + τV
j + τext

j . (10)

The active torques for each joint are considered as the sum of all active contributions τT
i,j of the

involved muscles i acting on the considered joint j

τT
j =

Nj

∑
i=1

τT
i,j =

Nj

∑
i=1

rmai,j F
T
i , (11)

where Nj is the number of muscles that act on the joint j, rmai,j is the lever arm of the corresponding
muscle that acts on joint j and FT

i is the tendon force that is calculated from the MTC dynamic models.
These include an activation dynamics model and a modified extended Hill-model; these two dynamic
models are not repeated here as they are extensively described in [28]. The inclusion of the passively
generated joint torques is based on a simplification of the extended Hill model [28,48]. For that,
the tendons are assumed to be stiff elements. Therefore, for each single muscle the parallel elastic and
viscous element can be separated from the contractile element and combined into a single elastic and a
single viscous element for each joint, that represents the combined viscoelastic torques around that
joint. The viscous torques τV

j are described by [49]

τV
j = KVj sgn(q̇j)|q̇j|

nVj , (12)

with damping constant KVj for the joint j. The modelling of elastic moment of the knee joint is based
on [15] and is given as

τE
2 = ea1k

+b1k
q1+c1k

q2+d1k
q3 − ea2k

+b2k
q1+c2k

q2+d2k
q3 + ek − τ∗k , (13)

where the additional term τ∗k accounts for the steepest increase of the elastic torque at full
knee extension:

τ∗k = e fk+gkq2 . (14)
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The elastic torque at the ankle joint is modelled by the following form

τE
3 = ea1a+b1a q2+c1a q3 − ea2a+b2a q2+c2a q3 + da. (15)

The nonlinear elastic torques for knee and ankle joint are shown in Figure 5. The dependency of
the joint torques on the alignment of neighbouring joints is clearly shown and is due to the biarticular
nature of the muscle groups involved.

y0

x0

x1

y1

y2

x2

y3

x3

z3

q1

−q2

−q3

Figure 4. Dynamic lower extremity model. System 0: global coordinate system; system 1: reference
frame thigh; system 2: reference frame shank; system 3: reference frame foot (z3 is the rotation axis of
the TC).
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Figure 5. Passive elastic joint torques for knee (left) and ankle (right) joint, based on parameters
presented in [15].

Finally, ground reaction forces (GRF) have to be considered in case the lower extremity has, for
example, contact with the ground. Assuming the point of action pGRF is known, the components of
the GRF vector can easily be translated to model torques

τext
j = ((pGRF − oj)× fGRF)ezj , (16)
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where oj denotes the joint centre and ezj is defined as the unit vector in the direction of the rotation axis
of the joint j. The model is extended with muscle activation dynamics [28,50] and muscle contraction
dynamics of an extended Hill type [28,51]. For the total of six muscles (RF, ST, GAS, VM, SOL, TA) that
are included in the model, the state vector x̃ is used to describe activation and contraction dynamics.
Denoting x1 = q2 = ϕknee, x2 = q3 = ϕankle, x3 = ϕ̇knee and x4 = ϕ̇ankle, the dynamic model of the
lower extremity can be given in the form of a state-space model as

ẋ1 = x3

ẋ2 = x4

[ẋ3, ẋ4]
T = M̂−1(x, u){τ̂(x, u)− k̂(x, u)− D̂(x, u)[x3, x4]

T}
˙̃x = f̃ (x̃, u).

(17)

In Equation (17), x = [x1, x2, x3, x4, x̃T ]T ∈ R16 denotes the state vector and u ∈ R13 is the input
vector, consisting of sEMG-signals, hip angle ϕhip, components of GRF fGRF and three coordinates of
point of action of the force pGRF. Thus, the full state vector is given by

x = [ϕknee, ϕankle, ϕ̇knee, ϕ̇ankle, aRF, aHAMS, aVM, aGAS, aSOL, aTA,

F̄isomRF , F̄isomHAMS , F̄isomVM , F̄isomGAS , F̄isomSOL , F̄isomTA ]
T (18)

where ai is the activation of muscle i and F̄isomi is the isometric force of muscle i, normalised with the
maximal isometric force of muscle i. The input vector is given by

u = [sRF, sHAMS, sVM, sGAS, sSOL, sTA, ϕhip, ϕ̇hip, ϕ̈hip, xCoP, yCoP, zCoP, FGRFx , FGRFy , FGRFz ]
T (19)

where si is the rectified, normalised and filtered sEMG raw signal from muscle i, xCoP, yCoP, zCoP are
the coordinates of the centre of pressure, and FGRFx , FGRFy , FGRFz are the components of the ground
reaction force. Moreover, f̃ (·) : R12 ×R12 7→ R12 denotes the nonlinear activation and contraction
dynamics [28]. The output equation consists of joint angle measurements y = [x1, x2]

T ∈ R2.
The state-space model given by Equation (17) can be reformulated in a compact form as

ẋ = f (x, u) + n (20)

y = Cx + m, (21)

where f (·) : R16 ×R13 7→ R16 is a nonsmooth, nonlinear vector field and C ∈ R2×16 is the output
measurement matrix. Also considered are system noise n ∈ R16 in Equation (20) and measurement
noise m ∈ R2 in Equation (21). The noise signals are assumed to be uncorrelated, mean free, white
Gaussian processes with E[nnT ] = Qn and E[mmT ] = Rm. Figure 6 is a block diagram of the lower
extremity dynamic model. Note that the input sEMG-signals to the diagram are the bandpass and
linear envelope filtered signals that are generated from the raw sEMG measurements (the process of
sEMG signal filtering is described in Section 3.2).
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f̄isom
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Knee- and
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Torque
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rma
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τtot

Dynamicsϕhip
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ϕ̇
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ϕ̇

ϕ

sEMG , f̄isom ,
lMT , vM , fT
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since the GAS is spanning
two joints

τi = (τi,knee , τi,ankle )
T ,

i = act, pas, ext, tot
ϕ = (ϕhip , ϕknee , ϕankle )

T ,

ϕ̇ = (ϕ̇hip , ϕ̇knee , ϕ̇ankle )
T

External
torques

τext
fGRF

pGRF

Figure 6. Block diagram of the lower extremity dynamic model. The dashed boxes are unchanged
compared to the model presented in [28], expcept for the additional muscles (SOL, TA). The bold boxes
are fundamentally extended or new.

3. Methods and Material

This section presents the model-based filtering approach used to minimise the influence of
modelling errors and measurement noise. In addition, the experimental setup and procedures
used for the validation study are described. The filter of choice is cubature Kalman filter, since
it increases numerical accuracy towards numerically problematic operations, such as the quadratic
terms associated with the prediction of the covariance matrices [27].

3.1. Cubature Kalman Filter and Square-Cubature Kalman Filter

The cubature Kalman filter (CKF) was first presented in [27]. The CKF is different from, for example,
the extended Kalman filter (EKF) or the unscented Kalman filter (UKF). A comparison between the
CKF and UKF shows that the CKF is contained as a special case in the unscented transform [27].
However, in contrast to the UKF, the CKF does not use any negatively weighted sampling points
and is, therefore, well suited for a numerically more stable implementation, the so-called square-root
cubature Kalman filter (SCKF). The CKF is based on the nonlinear state-space model represented by a
discretised version of Equations (20) and (21)

xk+1 = fd(xk, uk) + nk, (22)

yk = hd(xk) + mk (23)

and on Bayes’ equations. In Equations (22) and (23), k denotes sampling instances of discrete time,
xk is the discrete state vector and yk is the discrete measurement vector. The associated noise
covariances Qk and Rk are the discretised versions of the noise covariances in Equations (20) and (21).
fd(·) : Rn ×Rm 7→ Rn and hd(·) : Rn 7→ Rp are nonlinear nonsmooth vector fields. For the prediction
step the predictive probability density results in

p(xk+1|Dk) =
∫
Rn

p(xk+1, xk|Dk)dxk

=
∫
Rn

p(xk|Dk)p(xk+1|xk, uk)dxk.
(24)
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where Dk = {ui, yi}k
i=1 denotes the input measurement pairs up to time k and p is the probability

density. The posterior density is given by

p(xk+1|Dk+1) = p(xk+1|Dk, uk+1, yk+1)

=
1

ck+1
p(xk+1|Dk, uk+1)p(yk+1|xk+1, uk+1)

=
1

ck+1
p(xk+1|Dk)p(yk+1|xk+1),

(25)

where ck denotes the normalising constant, given by

ck+1 =
∫
Rn

p(xk+1|Dk)p(yk+1|xk+1)dxk+1. (26)

The observation density p(yk+1|xk+1) is determined by Equation (23). It should be noted that
the multi-dimensional integrals of Equations (24) and (26) are not always solvable in complete form.
However, for processes with a Gaussian probability distribution, Bayes’ equations can be brought to a
recursive form, where only the expected value and the covariance are to be determined. The solution
of the multidimensional integral is reduced to the form of nonlinear function · Gaussian distribution.
For the expected value and the covariances, the following equations are obtained

x̂k+1|k =
∫
Rn

fd(xk, uk)N (xk; x̂k|k, Pk|k)dxk, (27)

Pk+1|k =
∫
Rn

fd(xk, uk) f T
d (xk, uk)N (xk; x̂k|k, Pk|k)dxk − x̂k+1|k x̂T

k+1|k + Qk, (28)

ŷk+1|k =
∫
Rn

hd(xk)N (xk+1; x̂k+1|k, Pk+1|k)dxk+1, (29)

Pyy,k+1|k =
∫
Rn

hd(xk+1)h
T
d (xk+1)N (xk+1; x̂k+1|k, Pk+1|k)dxk+1 − ŷk+1|kŷT

k+1|k + Rk, (30)

Pxy,k+1|k =
∫
Rn

xk+1hT
d (xk+1)N (xk+1; x̂k+1|k, Pk+1|k)dxk+1 − x̂k+1|kŷT

k+1|k, (31)

where N (x; x̂, P) denotes a Gaussian distribution with mean value x̂ and variance P. The idea of the
CKF is to approximate the integrals given in Equations (27)–(31) for the nonlinear vector fields with
sets of weighted points. For these points ξ i and the weightings ωi, we ask for an arbitrary function
g(·) : Rn 7→ Rn and an argument x ∈ Rn

∫
Rn

g(x)N (x; 0, I) ≈
l

∑
i=1

ωig(ξ i), (32)

where I is the unity matrix of dimension n. In the CKF, the points are determined with a third-degree
spherical-radial cubature rule. Then the points are given as

ξ i =

√
l
2
[1]i, (33)

ωi =
1
l

, i = 1, 2, ...l = 2n, (34)

where [1]i denotes the ith point that is obtained by permutation and sign change of the components of
the n-dimensional generator (1, 0, . . . , 0)T for the set of points
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[1] =




1
0
...
0

 ,


0
1
...
0

 , . . .


0
0
...
1

 ,


−1
0
...
0

 ,


0
−1

...
0

 , . . .


0
0
...
−1


 . (35)

The integrals given in Equations (27)–(31) can be solved with the Equations (32)–(34) for Gaussian
distributions. The resulting CKF algorithm is according to the UKF algorithm [52], with the exception
of the CKF cubature sampling points X i which are chosen in a different way as

X i =

{
0 for i = 0
√

Pxξ i + x̂ for i = 1, ..., 2n
(36)

W(m)
i = W(c)

i =

{
0 for i = 0
1

2n for i = 1, ..., 2n .
(37)

Comparison of the sigma points of the UKF and the cubature points of the CKF shows that the CKF
is a special case of the UKF [27]. However, in contrast to the unscented transformation, the CKF gives
a mathematical justification for an accurate sampling of the weighted Gaussian integrals. To avoid
numerical difficulties associated with limited numerical precision, the CKF is formulated in its SCKF
version that avoids computation of the squareroot of the covariance matrices (positive definiteness
of covariance matrices is ensured). In the following, for convenience, the SCKF is presented in a
compact form.

The SCKF is initialised with S0|0 that denotes the root factor of the error covariance Pk|k = Sk|kST
k|k.

In the filter prediction phase, the cubature points are determined and propagated through the state
equation and the predicted state is estimated

X i,k|k = Sk|kξ i + x̂k|k, i = 1, ..., 2n, (38)

X ∗i,k+1|k = fd(X i,k|k, uk), i = 1, ..., 2n, (39)

x̂k+1|k =
1

2n

2n

∑
i=1

X ∗i,k+1|k. (40)

The prediction of the error covariance and accordingly its root factor Sk+1|k with Pk+1|k =

Sk+1|kST
k+1|k follows a triangularisation(S = tria(A) denotes the triangularisation of the matrix A,

with e.g., a QR-decomposition)
Sk+1|k = tria([X∗k+1|k SQ,k]), (41)

with Qk = SQ,kST
Q,k and moreover

X∗k+1|k =
1√
2n

[X ∗1,k+1|k − x̂k+1|k X ∗2,k+1|k − x̂k+1|k . . . X ∗2n,k+1|k − x̂k+1|k]. (42)

The first steps of the filter correction phase can be formulated analogous to the filter
prediction phase

X i,k+1|k = Sk+1|kξ i + x̂k+1|k, i = 1, ..., 2n, (43)

Y i,k+1|k = hd(X i,k+1|k), i = 1, ..., 2n, (44)

ŷk+1|k =
1

2n

2n

∑
i=1

Y i,k+1|k, (45)

Syy,k+1|k = tria([Yk+1|k SR,k]) (46)
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with Rk = SR,kST
R,k and

Yk+1|k =
1√
2n

[Y1,k+1|k − ŷk+1|k Y2,k+1|k − ŷk+1|k . . . Y2n,k+1|k − ŷk+1|k] . (47)

The cross-covariance is estimated explicitly (not as a root factor)

Pxy,k+1|k = Xk+1|kYT
k+1|k, (48)

where
Xk+1|k =

1√
2n

[X 1,k+1|k − x̂k+1|k X 2,k+1|k − x̂k+1|k . . . X 2n,k+1|k − x̂k+1|k]. (49)

The Kalman gain matrix and the innovation are calculated as (The operator/denotes right-hand
side matrix divisions. Thus, B/A is short for the solution of xA = B with a least squares approach).

Kk+1 = (Pxy,k+1|k/ST
yy,k+1|k)/Syy,k+1|k, (50)

ỹk+1 = yk+1 − ŷk+1|k, (51)

where finally state and error covariance root factor update is given by

x̂k+1|k+1 = x̂k+1|k + Kk+1ỹk+1, (52)

Sk+1|k+1 = tria([Xk+1|k − Kk+1Yk+1|k Kk+1SR,k]). (53)

3.2. Experimental Setup

The experimental setup consists of body-worn sensor systems and a custom built test-bench.
Two synchronised sensor systems were used that were attached to the body of a test person.
A surface electromyography (EMG) measurement was conducted with the MyoMuscle system
(Noraxon Inc., Scottsdale, AZ, USA) following the SENIAM (Surface ElectroMyoGraphy for the
Non-Invasive Assessment of Muscles) guidelines to place the electrodes [53]. Segmental orientation
was measured with nine-degrees-of-freedom (9DOF) magnetic-angular-rate-gravity (MARG) sensors
of the MyoMotion system (Noraxon Inc., Scottsdale, AZ, USA). Both systems consist of wireless sensor
nodes attached to the test person, that allow the user to move freely during stiffness determination
tests. The sensor systems allow for synchronised recordings with a standard computer (MyoResearch
software, Noraxon Inc., Scottsdale, AZ, USA). sEMG signals are sampled at a sampling frequency of
1500 Hz (16 bit analog-digital conversion) and low-pass filtered (corner frequency 500 Hz), as well
as high-pass filtered (corner frequency 10 Hz). The segmental orientation angles with respect to an
inertially fixed reference system are provided with a sampling frequency of 100 Hz. The experimental
setup is shown in Figure 7 and consists of a personal computer with data acquisition and real-time
operating system (DS1104, dSpace GmbH, Paderborn, Germany) and test-bench integrated sensors.
These sensors are mounted to the rotational axis of the test-bench and are used to determine the torque
(DR-2477, Lorenz Messtechnik GmbH, Alfdorf, Germany) and the rotational angle (HDmag MHAD
50, Baumer Group, Fraunfeld, Switzerland). For the determination of a joint torque, a known axial
reference inertia is employed in combination with a nonlinear dynamic model. The parameters of this
nonlinear dynamic model were determined in an experimental identification procedure, described
in [54]. Thus, by subtracting all of the test-bench torques from the torque sensor signal, the human
joint torque that acts externally on the test-bench can be extracted and used as a reference for the
filter validation. Finally, the neuromusculoskeletal model and the SCKF were implemented in Matlab
(The MathWorks, Natick, MA, USA).
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Graphical user
interface
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Computer

Inertial
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SOL

TA
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Figure 7. Overview of the test-bench used to validate ankle joint stiffness estimator, with torque sensor
(blue), angle sensor (green) and optional integration of an actuator (red) (left). The photograph (right)
shows a a test person with body-worn sensors.

4. Simulation and Experimental Results

The model-based stiffness estimator was validated in simulations and in an experiment including
five test persons. However, for the in silico tests the model was parameterised with values from
literature [15,43,44,55]. Further parameters were taken from [28]. A table with model parameters and
sources is given in the Appendix, Tables A3 and A4.

4.1. Simulation Study

Simulation tests were conducted in static and dynamic situations. In the static case, the focus
of investigation lies in the varying length and lever arms of single muscles that are investigated
depending on the kinematics of the lower extremity model. Of interest are the biarticulate muscles,
also with regard to changes in the neighbouring joints. In case of the ankle joint, this is the GAS.
Figure 8 shows the lever arm of the GAS with respect to the ankle joint.

In addition to the lever arms that were calculated via the distance to the joint centre, lever arms
that were calculated with the principle of virtual displacements are shown, where for the torque

FT
i ∂lMTi = τT

i,j∂ϕj, (54)

the lever arm of the muscle i at the joint j can be stated as

rmai,j =
∂lMTi

∂ϕj
. (55)

The lever arm calculated from the principle of virtual displacements shows an offset when
compared to the lever arms that were calculated from the model. On the one hand, these differences
might be due to anatomical limitations in the attachment of the muscles and/or the reduction to the
two-dimensional case. On the other hand, the fact that the lever arm is calculated via a rotation with a
constant generalised coordinate axis might be the reason for the differences in the observed lever arm.
However, the main shape of the two lever arms curves are similar. Other than the GAS, the ankle joint
contains the uniarticular muscles SOL and TA for which the muscle and the lever arms are shown in
Figure 9. As before, the model-calculated lever arms are compared to lever arms computed with the
principle of virtual displacement.
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Figure 8. Lever arm of the GAS at the ankle joint. Left: Lever arm dependent on ϕankle and
ϕknee. Right: Lever arm depending on ϕankle at different values of ϕknee (solid lines: lever arms
determined via the distance to the joint centre; dashed lines: lever arms calculated with the principle of
virtual displacements).
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Figure 9. MTC of the TA and the SOL (left), lever arm of the SOL (middle) and lever arm of the
TA (right).

For the other muscles acting on the knee, analogous results are obtained. Moreover, the muscle
length and lever arm values are in accordance with published values [56–58]. In the Appendix,
Figure A1 compares the muscle length to data from the literature. We conclude that a hinge model
approach is sufficient for ankle joint modelling. After static simulation tests, the SCKF was verified in
dynamic in silico tests. For that, the model of Equations (20) and (21) was discretised at a sampling
time of Ts with the resulting discrete state-space equations

xk+1 = xk + Ts f (xk, uk) + nk (56)

yk = Cxk + mk, (57)

where nk and mk are the corresponding discretised versions of the system and measurement noise
processes. In the simulation model, in comparison to the filter model, additive white Gaussian noise is
added to the states and to the measurements. Moreover, the external hip velocity and acceleration are
obtained from the hip position by means of differentiation (a low pass with relatively high crossover
frequency is used to limit to the influence of high frequency noise). This filter is thereby implemented
by using the following transfer function

G(s) =
s( s

30 + 1
) ( s

300 + 1
)2 . (58)

To test the stiffness estimation in an appropriate dynamic situation, all three angles (hip, knee and
ankle) are initialised with an initial state of 0. Note that the hip flexion-extension angle is important for



Sensors 2017, 17, 713 16 of 26

the full-order model for knee and ankle. The muscles that are considered in the lower extremity model
are then activated in different patterns over a time window of 5 s, followed by a resting phase of 5 s.
Figure 10 presents an example of the SCKF for the full-order nonlinear model.
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(b)
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Figure 10. Application of the square-root cubature Kalman filter (SCKF) to the sagittal plane lower
extremity kinematic model. ϕhip = 20◦ · sin (π

2 rad/s · t). (a) Estimation of knee and ankle angle.
(b) Estimation of knee and ankle angular velocity. (c) RMS errors of angle and angular velocity
estimations. (d) Estimation of knee and ankle torques.

During the experiment, the hip angle is changed in a sinusoidal manner with an amplitude of 20◦

and a frequency of π
2 rad/s. Filter internal states are used to calculate an overall ankle and knee torque,

which is compared to the torque of the lower extremity model. As can be seen in Figure 10, the filter
shows good state estimation performance, with slightly larger errors in the angular rates compared
to the angles. Angular errors (RMS) remain below 0.4◦ and angular rate errors (RMS) remain below
0.7 rad/s. Ankle and knee torques are estimated quite accurately, also during dynamic situations
(e.g., during muscle activation).
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4.2. Experimental Study

The substantial extension of the lower extremity dynamic model is the ankle model. To validate
the ankle joint stiffness estimator under real-world experimental conditions, the test-bench described in
Section 3.2 was used to provide reference measurements for ankle joint stiffness and angle. Before the
measurement, Ag/AgCl surface electrodes were placed on the corresponding muscles and body-worn
sensors of the MyoMuscle system were attached to a test person. In addition, the orientation of foot,
shank and thigh was determined by applying 9DOF MARG sensor nodes of the MyoMotion system
with straps to the respective segments. The lower extremity SCKF filter model had to be adapted to the
experimental setup. Due to a connection of the ankle joint rotational axis with the rotational axis of the
test-bench, there are no ground reaction forces. Furthermore, the torque sensor, used in the test-bench,
measures additional external torques from the reference mass and viscous friction. These external
torques were determined by employing a nonlinear dynamic model of the test-bench and subtracted
from the sensor signal [28,54]. Finally, the dynamic model of the SCKF was reduced by assuming
constant knee and hip angle values q2 = ϕknee and q1 = ϕhip, respectively. This simplification is
assumed to be valid, since the test persons were instructed to sit upright and not to move their knee or
their hip. Thus, in the model q̇1 = q̈1 = q̇2 = q̈2 = 0 is assumed with subsequent simplifications in the
model dynamics.

After model parameterisation and preparation of the experimental setup, a study with five
male test persons was conducted (age [years]: 29 ± 5.7, height [cm]: 181.6 ± 1.82, weight [kg]:
79.2± 8.58). During the experiments, the test persons were instructed to conduct a number of different
extensions/flexions after an initial maximum voluntary contraction test of muscles with relevance
to the ankle joint. sEMG signals were then normalised to maximum voluntary contraction before
they were applied to the filter. Characteristic experimental movements included plantar flexion and
dorsiflexion, as well as coactivation of flexors and extensors. An overview of the experimental test
protocol is given in the Appendix (Table A1). An example of such an experiment with test person ID004
is shown in Figure 11; as can be seen, the SCKF is able to reconstruct the ankle torque based on surface
EMG and segmental orientation measurements. Ankle joint torques of up to 12 Nm were generated
during the measurements. Moreover, the joint torque estimation is accurate for muscle coactivation
(phase (e) in Figure 11) as well as a dynamic cyclic movement (phase (f) in Figure 11). In addition to
the model-based estimation of the ankle joint torque, the quasi-stiffness κankle was computed from the
model states

κankle =
∂τT

ankle
∂ϕankle

=
∂

∂ϕankle

(
N

∑
i=1

rmai,ankle FT
i

)

=
∂rmaankle

∂ϕankle
FT

ankle + rmaankle

∂FT
ankle

∂ϕankle
,

(59)

where rmaankle = [rma1,ankle , rma2,ankle , . . . , rmaN,ankle ]
T and FT

ankle = [FT
1 , FT

2 , . . . , FT
N ]

T denote the lever arms
and the forces of the muscles that were considered in the model, respectively. In the resulting stiffness
in Figure 11, peaks on the ankle joint stiffness κankle can be observed that are of unphysiological value
and dynamics. We assume that the noisy sEMG signals which are given to the contraction dynamics
are responsible for the high dynamics in the observed stiffness values. If an average mean stiffness
value is determined, stiffness values show good agreement with published values [59,60]. For a
quantitative investigation of the estimation quality, a statistical analysis was conducted. The results
(Figure 12) show the deviation of the estimated filter torque from the reference torque of the test-bench
at maximum plantar flexion. The average RMS error is 1.27 Nm. In addition to these results, in the
Appendix, Table A2 lists the estimation errors obtained for the different test persons.
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Figure 11. Exemplary results of the experimental validation of test person ID004. (A) Normalized,
rectified and averaged EMG input signals. (B) Estimation of ankle angle with (a) plantar flexion;
(b) maximum plantar flexion; (c) dorsiflexion; (d) maximum dorsiflexion; (e) coactivation of flexors and
extensors; and (f) dynamic plantar flexion/dorsiflexion. (C) Estimation of ankle torque. (D) Estimation
of ankle stiffness.
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Figure 12. Statistical results for the test persons at maximum plantar flexion. Upper figure: Average
mean and standard deviation of test-bench torque measurements. Lower figure: Average mean and
standard deviation of RMS errors between estimation test-bench reference.

5. Discussion and Conclusions

The goal of this study was to develop a novel model-based estimator for the determination
of ankle joint stiffness, employing body-worn sensors only. For this, an existing sagittal plane
dynamic model of the human knee was extended to describe a full sagittal plane model of the
lower extremity. The dynamic model is thus driven by a measured hip angle (and corresponding time
derivatives), where ankle and knee torques are estimated based on sEMG and segmental orientation
data. To minimise the influence of measurement noise and model errors that would occur in a forward
simulation, a nonlinear state-observer was developed. The filter of choice was the square-root version of
the CKF because of its ability to handle nonsmooth, highly nonlinear dynamic systems, and no necessity
to process Cholesky decompositions of the covariance matrix. The SCKF was able to reconstruct knee
and ankle joint torque/quasi-stiffness in simulations, as well as ankle joint torque/quasi-stiffness in
an experimental series with five test persons. However, in different ankle joint dynamic experiments
a decreasing estimation performance was observed. Since this decrease in the performance was
non-consistent with multiple measurements within the group of test persons, a general observer
problem for measurements with higher dynamics can be excluded. An improved test bench is required
to further investigate observed effects. In the current setup, the rotation axis of the test-bench is fixed,
whereas the axis of the TC is moving. This might lead to involuntary inversion/eversion movements
that could be responsible for the individually observed errors. Moreover, the estimation of the ankle
joint stiffness shows unphysiologically high peaks, whereas the average mean of the estimated ankle
joint stiffness lies within the physiological range. An obvious explanation for this effect is a noisy
sEMG measurement, including movement artifacts. An additional explanation might the uncertainty
in the muscle model time constants that lead to activation mismatches. To improve the performance of
the model one option would be segmental parameterisation of a certain subset of model parameters.
A combination of segmental parameterisation and calibration procedures, as described in [14,20],
might improve the quality of our model. Moreover, a comparison of an extended model with elastic
tendons to our model (concentrated visco-elastic elements) should be investigated. We are currently
investigating these items, as well as application of the full-order observer for combined knee/ankle
stiffness estimation.
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and Markus J. Lüken contributed to the experimental study. Steffen Leonhardt supervised the work and critically
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Figure A1. Muscle-tendon length lMT of the considered biarticulate muscles. Left: Length in
dependence of the angle of the two joints, which the muscle acts on. Middle/right: Length depending
on the angle of the neighbouring joint at different fixed values for the neighbouring joint angles (solid
lines: length from the proposed model, dashed lines: length after [61]).
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Appendix B. Experimental Protocol

Table A1. Overview of the experimental protocol.

Movement Description Approximate
Duration (s)

0 Maximum voluntary contraction Maximum voluntary contraction of involved muscles 5

1 Plantar flexion Loose stretching of the foot 5

2 Maximal plantar flexion Stretching the foot as far as possible 5

3 Dorsiflexion Loose upward flexion of the foot 5

4 Maximal dorsiflexion Flexing the foot upward as far as possible 5

5 Coactivation Tensing of all muscles around the ankle, 10thereby locking foot in a fixed position

6 Dynamic plantar/dorsiflexion Dynamic switching between stretching and upward flexion 10

Appendix C. Experimental Performance

Table A2. Overview of the estimation errors obtained during the experiments.

ID Peak Error
(Nm)

Test-Bench
Torque at
Peak (Nm)

Peak Error
Excluding Dynamic
Movement (Nm)

Test-Bench Torque at Peak
Excluding Dynamic
Movement (Nm)

001 6.7238 −11.0530 3.6368 10.5838
002 6.4308 12.3142 4.6228 21.2717
003 5.6401 12.4584 5.6401 12.4584
004 4.0512 −4.6143 4.0512 −4.6143
006 8.1544 22.45 8.1544 22.45

Appendix D. Model Parameters

Table A3. Model parameters I.

Parameter Descriptionri Value Source

αRF Pennation angle of RF 13.9◦ [55]

αHAMS
Pennation angle of HAMS, represented here by the
semimembranosus 15.1◦ [55]

αGAS
Pennation angle of GAS, represented here by the
medial head of GAS 9.9◦ [55]

αVM Pennation angle of VM 29.6◦ [55]

αSOL Pennation angle of SOL 28.3◦ [55]

αTA Pennation angle of TA 9.6◦ [55]

vM,maxRF Maximum contraction speed of RF 0.76 m/s [55]

vM,maxHAMS

Maximum contraction speed of HAMS,
represented here by the semimembranosus 0.69 m/s [55]

vM,maxGAS

Maximum contraction speed of GAS, represented
here by the medial head of GAS 0.51 m/s [55]

vM,maxVM Maximum contraction speed of VM 0.97 m/s [55]
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Table A3. Cont.

Parameter Descriptionri Value Source

vM,maxSOL Maximum contraction speed of SOL 0.44 m/s [55]

vM,maxTA Maximum contraction speed of TA 0.68 m/s [55]

lthigh Length of thigh individual Reg. Equations
from [62]

lshank Length of shank individual Reg. Equations
from [62]

l f oot Length of foot individual Reg. Equations
from [62]

lthighm

Distance from distal end of thigh to its centre of
mass individual Reg. Equations

from [47]

lshankm

Distance from distal end of shank to its centre of
mass individual Reg. Equations

from [47]

ldorsum Length of dorsum individual Based on [46]

l f ootm,x

x coordinate of centre of mass of foot with respect
to the foot reference frame individual Based on [46]

l f ootm,y

y coordinate of centre of mass of foot with respect
to the foot reference frame individual Based on [46]

mthigh Mass of thigh individual Reg. Equations
from [47]

mshank Mass of shank individual Reg. Equations
from [47]

m f oot Mass of foot individual Reg. Equations
from [47]

Ithigh Principal moments of inertia of thigh individual Reg. Equations
from [47]

Ishank Principal moments of inertia of shank individual Reg. Equations
from [47]

I f oot Principal moments of inertia of foot individual Reg. Equations
from [47]

Table A4. Model parameters II.

Parameter Descriptionri Value Source

αTC f ml

Angle between talocrural joint axis and midline of
foot, projected onto the horizontal plane 84◦ [34]

αTCtla

Angle between talocrural joint axis and long axis
of tibia 80◦ [34]

a Principle axis length of the femur condyle ellipse 3.31 cm [63]

b Semi-axis length of the femur condyle ellipse 2.71 cm [63]

α f c
Angle between femur axis and femur condyle
semi-axis 14◦ [63]

ltp Tibia plateau length 5.3 cm [63]

αtp
Angle between perpendicular with respect to tibia
axis and tibia plateau 3◦ [63]
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Table A4. Cont.

Parameter Descriptionri Value Source

ltt
Distance between tibia plateau edge and
tibial tuberosity 4.5 cm [63]

αtt
Angle between tibia axis and tibial
tuberosity appendage 15◦ [63]

lpl Patella tendon length 6.5 cm [63]

lp Patella length 3.94 cm [64]

tp Patella width 1.63 cm [64]

pshank
O,SOL

Coordinates of origin of SOL in shank reference
frame [cm] [−2.92, 24.67, 0.06] [43]

p f oot
I,SOL

Coordinates of insertion of SOL in foot reference
frame [cm] [−3.65, −2.88, 0.56] [43]

p f oot
I,GAS

Coordinates of insertion of GAS in foot reference
frame [cm] [−3.68, −2.89, 0.28] [43]

pshank
O,TA

Coordinates of origin of TA in shank reference
frame [cm] [−1.55, 21.75, 1.34] [43]

pshank
Oe f f ,TA

Coordinates of effective origin of TA in shank
reference frame [cm] [2.56, 2.57, −0.93] [43]

p f oot
I,TA

Coordinates of insertion of TA in foot reference
frame [cm] [18.50, −5.10, −3.30] [43]

p f oot
Ie f f ,TA

Coordinates of effective insertion of TA in foot
reference frame [cm] [7.57, −4.20, −1.96] [44]

FM
opt,i Maximum isometric force of muscle i individual Exp.

det.

Parameters of passively generated
viscoelastic torques individual Exp.

det.
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