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Abstract: In this paper, a coarse alignment method based on apparent gravitational motion is
proposed. Due to the interference of the complex situations, the true observation vectors, which are
calculated by the apparent gravity, are contaminated. The sources of the interference are analyzed in
detail, and then a low-pass digital filter is designed in this paper for eliminating the high-frequency
noise of the measurement observation vectors. To extract the effective observation vectors from the
inertial sensors’ outputs, a parameter recognition and vector reconstruction method are designed,
where an adaptive Kalman filter is employed to estimate the unknown parameters. Furthermore,
a robust filter, which is based on Huber’s M-estimation theory, is developed for addressing the
outliers of the measurement observation vectors due to the maneuver of the vehicle. A comprehensive
experiment, which contains a simulation test and physical test, is designed to verify the performance
of the proposed method, and the results show that the proposed method is equivalent to the
popular apparent velocity method in swaying mode, but it is superior to the current methods
while in moving mode when the strapdown inertial navigation system (SINS) is under entirely
self-contained conditions.
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1. Introduction

Initial alignment procedure is of vital importance in the strapdown inertial navigation system
(SINS); the precision of the initial alignment will determine the positioning precision of SINS, and the
poor initial alignment accuracy will end up with poor navigation. Thus, the higher precision of the
initial alignment is fundamental to the more stable inertial positioning [1–3]. In order to acquire the
high performance of initial alignment, many researchers are devoted to explore novel methods, which
are focused on improving the alignment precision and the convergence rate, and a series of valuable
methods are proposed [4–6].

The conventional initial alignment procedure is usually divided into two phases [7,8]. The first
phase is called the coarse alignment process, where an analytical method is utilized to accomplish
this phase. In the coarse alignment process, the large misalignment angles between the body and
navigation frames are roughly acquired, the horizontal misalignment angles will be less than one
degree, and the heading misalignment angle is constrained in several degrees [9,10]. The second phase
is the fine alignment process [11], and the nonlinear error models of strapdown inertial navigation can
be approximated to the linear error models due to the small misalignment angles, which are acquired
by the coarse alignment. In this phase, the sensor’s constant bias noises are estimated by a linear
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Kalman filter and the misalignment angles can be further reduced. Moreover, the horizontal errors and
heading errors are less than 0.01 degree and 0.1 degree, respectively. Therefore, the coarse alignment
is a fundamental of the traditional fine alignment, and the coarse alignment with high performance
will increase the convergence rate of the fine alignment, and the total alignment time can be made
shorter [12,13].

The general coarse alignment method can be divided into two categories according to different
observation vectors. One takes advantage of the apparent gravity to determine the initial attitude of
the SINS [1,14], and the other is based on apparent velocity [10,15]. Currently, the coarse alignment
method based on apparent velocity is widely applied due to the smoothed properties of the apparent
velocity, and an optimization-based method based on Wahba’s problem becomes very popular [16–19].
In this coarse alignment method, the initial coarse alignment procedure had been transferred into an
attitude determination method, and the optimal quaternion was determined by a least-squares method.
Then the time-varying attitude of SINS can be calculated by the chain rule of the determined direction
cosine matrix (DCM). However, there are two major problems in the apparent velocity method; the
first one is that the alignment errors will drift with time due to the integration of the inertial sensors’
outputs. The second one is that the performance of the coarse alignment will be poor without an
additional reference velocity when the linear velocity perturbation exists. These two defects of the
apparent velocity method limit its applications in practical situations. Hence, if the interference of the
apparent gravity can be eliminated from the measurement observation vectors, it will be a good choice
for coarse alignment in some special applications, such as in-motion self-contained coarse alignment.

Different from the apparent velocity method is the apparent gravity method, where the outputs of
an accelerometer are employed to construct the measurement observation vectors directly, and where
the integration process is not needed in this method so that the alignment errors will not drift with
time. Moreover, when the initial position of the carrier is well known, the apparent gravity will be
computed precisely, and it is independent with the carrier’s movements. Based on these features,
the coarse alignment will be carried out whenever there is interference of the unknown velocity of
the carriers, and the precision of the coarse alignment during the whole alignment procedure can be
improved [20,21]. However, there is a drawback with this method, which is that the apparent gravity
is submerged by the external acceleration of the vehicle movements, so it is hard to determine the
misalignment angles according to inertial outputs straightforwardly. In order to address this issue, a
low-pass digital filter is designed for filtering out the high-frequency noises, which distort the effective
apparent gravity [22,23]. However, it is difficult to design a suitable low-pass digital filter for practical
applications, because the external environment is inconstant and the movements of the carrier cannot
be completely eliminated by the digital filter. These complicated noises still exist in the observation
vectors, which is why the development of the coarse alignment based on the apparent gravity method
is hindered.

In [14], a parameter recognition method is developed for coarse alignment based on apparent
gravity. However, it can only be applied in a swaying base case. Inspired by digital filter methods,
a new coarse alignment algorithm based on apparent gravity method is investigated. Considering the
in-motion coarse alignment, firstly, an infinite impulse response (IIR) low-pass is designed in this paper
for filtering out the high frequency, which is resulting from the engine noises and external disturbation.
Then, a parameter recognition and new reconstruction algorithm for extracting the apparent gravity,
which is used to calculate the observation vectors, is developed. Finally, in order to address the outlier
in the measurement observation vectors, a robust filter based on Huber’s M-estimation theory is
designed. All of the improved methods are verified by the designed tests in detail.

This paper is organized as follows: the definitions of the reference frames in this paper are
introduced in the next section. In Section 3, the general mechanisms of the coarse alignment method
based on apparent gravity are summarized, and the observation vectors are defined simultaneously.
In Section 4, an IIR low-pass digital filter is designed, and the power spectrum of the measurement
observation vectors is analyzed. The parameter recognition and observation vectors reconstructed
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methods are developed in Section 5. To show the performance of the proposed method, the simulation,
turntable and vehicle tests are designed in Section 6. Finally, the conclusions of this paper are
summarized in Section 7.

2. Definition of Coordinate Frame

The coordinate frames used in this paper are defined as follows:

1. i-frame: Earth-centered initially-fixed orthogonal reference frame;
2. n-frame: orthogonal reference frame aligned with East-North-Up (ENU) geodetic axes;
3. n0-frame: orthogonal reference frame non-rotating relative to the i-frame, which is formed by

fixing the n-frame at start up in the inertial space;
4. b-frame: orthogonal reference frame aligned with IMU axes;
5. b0-frame: orthogonal reference frame non-rotating relative to the i-frame, which is formed by

fixing the b-frame at start up in the inertial space;
6. e-frame: Earth-centered Earth-fixed (ECEF) orthogonal reference frame;
7. e0-frame: orthogonal reference frame non-rotating relative to the i-frame, which is formed by

fixing the e-frame at start up in the inertial space.

Figure 1 illustrates the coordinate frames.
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3. Mechanisms of Inertial Frame Alignment Based on Apparent Gravitational Motion

It is well known that the main purpose of the SINS initial alignment is to obtain the misalignment
angles of the b-frame with respect to the n-frame, and the DCM is described as Cn

b . If the carrier is in
the stationary case, the DCM Cn

b at time instant t is equal to that at start up, and it can be calculated
easily by the Earth rate and the local gravity. However, in the practical situation, the carrier is not
always in the stationary state, such as the swaying case and the in-motion case, so the misalignment
angles are time-varying. Additionally, the Earth rate and the local gravity are contaminated in these
situations, and it is difficult to calculate the DCM Cn

b at time instant t straightforwardly according to
the inertial sensors’ outputs. To address this issues, the matrix Cn

b has been divided into three matrices
by the chain rule of the DCM:

Cn(t)
b(t) = Cn(t)

n0 Cn0
b0 Cb0

b(t) (1)
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where 
.
C

b0
b(t) = Cb0

b(t)

[
ωb

ib×
]

.
C

n0
n(t) = Cn0

n(t)
[
ωn

in×
] (2)

and, Cb0
b(t) and Cn0

n(t) are the identity matrix at start up, and they can be calculated by the iteration

operations using ωb
ib and ωn

in, respectively [10].

According to the aforementioned analysis, once the DCM Cn0
b0 is known, the DCM Cn(t)

b(t) can be
calculated by Equation (1), and the coarse alignment process will end. Furthermore, it is noted that
the matrix Cn0

b0 is constant during the whole alignment process, and this characteristic is helpful to
improve the precision of the extracted misalignment angles at start up according to some parameters
recognition methods.

The apparent velocity update equation in the n-frame is known as

.
vn

= fn − (2ωn
ie + ωn

en)× vn + gn. (3)

According the matrix multiplication, a three-component vector can be transformed from n-frame
to the b-frame:

fn = Cn(t)
b(t) fb. (4)

Substituting Equations (1) and (4) into Equation (3) yields

Cb0
b(t)f

b − Cb0
b(t)C

b(t)
n(t)

.
vn − Cb0

b(t)C
b(t)
n(t)(2ωn

ie + ωn
en)× vn = −Cb0

n0Cn0
n(t)g

n. (5)

Defining the reference vector and the observation vector as{
α = −Cn0

n(t)g
n

β = Cb0
b(t)

(
fb − Cb(t)

n(t)

( .
vn

+
(
2ωn

ie + ωn
en
)
× vn

)) . (6)

Equation (5) can be rewritten as the vector observations-based measurement model for Cn0
b0 as

β = Cb0
n0α. (7)

Figure 2 shows mechanisms of inertial frame alignment based on apparent gravitational motion.
Figure 2a describes the motion of the n-frame due to the self-rotation of the Earth during the coarse
alignment procedure, where the left orthogonal reference frame represents the n0-frame and the right
orthogonal reference frame represents the n-frame at time instant t. In the two orthogonal frames,
the purple arrow, the green arrow, and the blue arrow represent east, north, and up axes of the
n-frame, respectively.
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The apparent gravitational motion in the n0-frame is shown in Figure 2b, and it can be found that
any two non-collinear vectors, which are projected on the n0-frame, can be obtained at two different
time instants. Then, based on the three-axis attitude determination (TRIAD) algorithm [9], the matrix
Cb0

n0 can be calculated by

Cn(0)
b(0) =


αT(t1)
‖αT(t1)‖

(α(t1)×α(t2))T

‖(α(t1)×α(t2))T‖
(α(t1)×α(t2)×α(t1))T

‖(α(t1)×α(t2)×α(t1))T‖


−1

βT(t1)
‖βT(t1)‖

(β(t1)×β(t2))T

‖(β(t1)×β(t2))T‖
(β(t1)×β(t2)×β(t1))T

‖(β(t1)×β(t2)×β(t1))T‖

 (8)

where ‖ · ‖ represents the normalized operation. If the observation vector β can be acquired accurately,
the DCM Cn(0)

b(0) can be obtained precisely. Thus, how to extract the effective observation vector β̂

from the measurement β̃ is essential in the inertial frame coarse alignment. In the next sections, some
methods for extracting β̂ will be introduced in detail.

4. IIR Low-Pass Digital Filter

According to the aforementioned analysis, the accuracy of the extracted observation vector β̂ is of
vital importance to the coarse alignment. However, it is submerged in complex noises of the external
environment, and it is difficult to compute the initial attitude directly by the measurements of the
inertial sensors. In this section, we will analyze the noise components of the measurement observation
vector β̃, and then an IIR low-pass digital filter will be designed to eliminate the high-frequency noises.

4.1. Measurement Model of the Observation Vector

In this work, the measurement models of the inertial sensors are defined by

f̃
b
= fb +∇b + εb (9a)

ω̃b = ωb + εb + ηb (9b)

where f̃
b

is the actual output of the accelerometer; ∇b and εb, respectively, denote the constant bias
and random noise; ω̃b is the measured angular velocity of the b-frame with respect to the i-frame; εb

and ηb denote the constant bias and random noises in the IMU axes.
According to the measurement models of the inertial sensors, the measurement model of the

observation vector can be calculated by

β̃ = C̃
b0
b(t)̃f

b
(10)

where C̃
b0
b(t) is calculated by Equation (2) using the angular velocity ω̃b.

Let δCb0
b(t) represents the error matrix between C̃

b0
b(t) and Cb0

b(t):

C̃
b0
b(t) = Cb0

b(t) + δCb0
b(t). (11)

Substituting Equations (11) and (9a) into Equation (10) yields

β̃ =
(

Cb0
b(t) + δCb0

b(t)

)(
fb +∇b + εb

)
. (12)

Through some calculation operations, Equation (12) can be expressed as

β̃ = β + C̃
b0
b(t)C

b(t)
n(t)

( .
vn

+ (2ωn
ie + ωn

en)× vn
)
− δCb0

b(t)C
b(t)
n(t)g

n + Cb0
b(t)

(
∇b + εb

)
. (13)
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where the second-order errors have been removed. Due to the short time of the coarse alignment

process and the relative slow moving velocity of the carrier, the term C̃
b0
b(t)C

b(t)
n(t)ω

n
en × vn is much

smaller [22–24], so that it can be ignored from the measurement model. The magnitude of term

2C̃
b0
b(t)C

b(t)
n(t)ω

n
ie × vn is equivalent to the magnitude of the constant bias Cb0

b(t)∇
b, so it does not have

much influence on the alignment results. Within these assumptions, Equation (13) can be simplified as

β̃ = β + C̃
b0
b(t)C

b(t)
n(t)

.
vn

+ δb0 + ςb0 (14)

where  ςb0 = −δCb0
b(t)C

b(t)
n(t)g

n + Cb0
b(t)ε

b

δb0 = Cb0
b(t)∇

b + 2C̃
b0
b(t)C

b(t)
n(t)ω

n
ie × vn

. (15)

Additionally, ςb0 is a high-frequency noise, which is comprised with the engine noise, movement
noise and inertial sensor noise. δb0 denotes the constant bias of the observation vectors.

4.2. IIR Low-Pass Digital Filter for the High-Frequency Noises

Based on the measurement observation vector in Equation (14), it can be found that the
measurement noises are complex, requiring specific methods for different noises to be designed. In this
subsection, we devote to filtering the high-frequency noises of the measurement observation vectors.

In [23], an FIR digital filter has been designed for extracting the true observation vectors from the
measurement observation vectors. Considering that the passband of the filter is very small, the FIR
filter orders are very high, and it is difficult to apply in the practical systems. To address this defect,
we choose an IIR low-pass digital filter for our applications. By using the “fadtool” in MATLAB 2014a
(MathWorks, Inc., Natick, MA, USA), the special parameters, such as sampling rate, desirable passband
and stopband attenuation, and the passband and stopband frequencies, are input in the interactive
interface straightforwardly, so that the IIR low-pass digital filter is easily designed, and the transfer
function of the designed digital filter is also acquired. The parameters of the filter are listed in Table 1,
and the corresponding curves of the amplitude-frequency response and phase-frequency response
are depicted in Figure 3. In Table 1, Apass denotes the desirable passband attenuation, Astop denotes
the desirable stopband attenuation, and Fpass and Fstop are the passband and stopband frequencies,
respectively. Fs represents the sampling rate of the measurement observation vectors.

Table 1. The parameters of digital filter.

Digital Filter Parameters

Apass (dB) 3 Orders Minimum order
Astop (dB) 80 Structure Direct-form II
Fpass (Hz) 0.1 Fs (Hz) 200
Fstop (Hz) 1 Designed method Butterworth
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After some manipulations, the IIR filter transfer function can be simplified as

H(z) =
0.002496− 0.007435z−1 + 0.004887z−2 + 0.004991z−3 − 0.007383−4 + 0.002444z−5

1− 4.983886z−1 + 9.935674z−2 − 9.903705z−3 + 4.935932z−4 − 0.984012z−5 (16)

To confirm our above analysis, vehicle trial data has been filtered out by the designed digital filter,
and the power spectrum of the measurement observation vectors is shown in Figure 4, where the red
line denotes the filtered measurement observation vectors, and the blue line represents the original
measurement observation vectors.
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It can be obviously found that the frequency of the apparent gravitational vectors are much lower
than acceleration disturbances, which are engine noises, variable motion, sensors noises, and so on,
when the vehicle is in motion. The effective frequency of the varying measurement observation vectors
is lower than 0.1 Hz. By using the designed digital filter, the lower frequency part of the measured
observation vectors is retained, and the high-frequency part has been filtered out.

The low-pass digital filter is helpful to eliminate the high interferential frequency noises from the
observation vectors, but there are other interfering noises remaining in the extracted vectors, such as
phase shift interference, spectrum leakage, etc. As known, these defects will degrade the precision of
the extracted observation vectors, and they can also lead to the poor performance of coarse alignment.
To solve these problems, a parameter recognition and observation vector reconstruction method will
be proposed in the ensuing Section 5.

5. Parameter Recognition and Observation Vector Reconstruction

In this section, a novel method to extract the apparent gravitational motion from the observation
vectors, which has been filtered by the IIR filter, will be introduced. According to the analysis of
the features of the apparent gravitational motion, a parameter model has been investigated, and the
corresponding recognition algorithm is developed. Based on the optimal parameters, the reconstructed
algorithm of the observation vectors will be developed, which can enlarge the non-collinearity of the
two observation vectors, and this is helpful to improve the performance of alignment.

5.1. Parameter Model of Apparent Gravity

According to the chain rule of the DCM, Equation (7) can be rewritten as

β = −Cb0
e0Ce0

e(t)C
e(t)
n(t)g

n (17)
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where Cb0
e0 is a constant matrix during the whole alignment process. Due to the short time of the

alignment process and the low velocity of the vehicle, the DCM Ce(t)
n(t) can be approximated to a

constant matrix.
As aforementioned analysis, Equation (17) can be expanded as

β = Cb(0)
n(0)

 0 g cos(L) 0
−g sin(L) cos(L) 0 g sin(L) cos(L)

g cos2(L) 0 g sin2(L)


 cos(ωiet)

sin(ωiet)
1

 (18)

where ωie is the Earth rate, L denotes the geographic latitude, and g represents the magnitude value of
gravity on local latitude. The detail calculation of Equation (18) can be referred to Appendix A. Then,
the parameter model is given by

β =

 γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33


 cos(ωiet)

sin(ωiet)
1

 (19)

where γij(i = 1, 2, 3; j = 1, 2, 3) indicates the unknown constant value.
Let β denotes the filtered observation vector. Since the ideal parameter model has been

constructed, the actual discrete model can be easily given by{
γk+1 = γk

βk+1 = γk+1Mk+1 + $k+1
(20)

where Mk+1 = [cos(ωietk+1) sin(ωietk+1) 1]T, and $k+1 denotes the unknown noises, of which the
covariance is uncertain. In the next subsection, a parameter recognition algorithm will be designed,
and the parameters will be estimated by the developed Kalman filter.

5.2. Parameter Recognition Based on the Adaptive Kalman Filter

According to the analysis above, the statistic information of the measurement noise $k+1 is
unknown, because observation vector β̃ has been filtered by the designed low-pass digital filter and
contains the unknown disturbances. Thus, the traditional RLS algorithm cannot be used to estimate
the parameters, because the precise covariance of the measurement noise is necessary to this method.
Based on [14], a linear Kalman filter based on adaptive technology has been investigated for addressing
the uncertainty measurement noises.

Since the three elements of the observation vectors are uncorrelated, the parameter model can be
divided into three independent forms, which can be conducted by the familiar estimated procedure.
Here, the particular simplified model of the third component of βk+1 is given by{

γz,k+1 = γz,k
βz,k+1 = γz,k+1Mk+1 + $z,k+1

. (21)

The Kalman filter for Equation (21) is summarized as follows:

ez,k+1 = βz,k+1 − γ̂z,kMk+1 (22)

Λz,k+1 = Λz,k +
1

k + 1

[
ez,k+1eT

z,k+1 −Λz,k

]
(23)

Gk+1 = Pz,kMk+1

[
MT

k+1Pz,kMk+1 + Λz,k+1

]−1
(24)

γ̂z,k+1 = γ̂z,k + GT
k+1ez,k+1 (25)
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Pz,k+1 = Pz,k −Gk+1

[
MT

k+1Pz,kMk+1 + Λz,k+1

]
GT

k+1 (26)

where Λz,k+1 is an estimated covariance of the filtered measurement noise based on k + 1 data pairs,
and the term ez,k+1 is the objective function for the measurement residual process.

In the estimation process, the covariance of the measurement noise is estimated in real-time,
and the estimated value is compensated by the algorithm. Thus, the adaptive performance of the
algorithm will be enhanced. Although the Kalman filter can suppress the unknown noises, it will be
poor when the measurement contains the outliers, which is caused by the irregular maneuver of the
vehicle. This interference will degrade the performance of the Kalman filter or even make the filter
diverging. This problem will be addressed in Section 5.3.

5.3. Robust Filter

From Equation (14), we can find that the outliers will be generated when the vehicle is in random
motion or uniform variable motion and, if the vehicle is in uniform rotation motion, there is radial
acceleration in the measurement observation vectors. These disturbances cannot be easily eliminated
by an optimal state estimation method; a common method to address the outliers of the measurements
is the robust estimation method. For the engineering application, the Huber’s M-estimation is a
practical method. In this work, a robust Kalman filter based on M-estimation has been designed for
suppressing the aforementioned noises.

The M-estimation entails minimizing the criterion function of the form:

JM =
n

∑
i=1

ρ
(∣∣∣βk+1 − γ̂kMk+1

∣∣∣
i

)
(27)

where |·|i denotes the ith element of the vector, and ρ(·) denotes a less rapidly increasing function than
the square. This ensure that large residual errors, which correspond to outliers, do not influence the
optimization of JM [25]. It is noted that, if ρ(·) equals the square function, the standard least squares
criterion has been obtained [26]. Furthermore, the following special case based on weighted least
squares criterion can be obtained:

JM =
(

βk+1 − γ̂kMk+1

)T
S
(

βk+1 − γ̂kMk+1

)
(28)

where S is a diagonal matrix, the diagonal entries Si,i determine the weight accorded to the

corresponding data residual
∣∣∣βk+1 − γ̂kMk+1

∣∣∣
i
. A simple but attractive choice for these weights

is the non-linear function given by

Si,i =
1

Λi,k+1
min

1,
ci∣∣∣βk+1 − γ̂kMk+1

∣∣∣2
i

 (29)

where ci is the ith threshold parameter that can be modulated by the practical application. In order to
understand the performance of the function, it is noted that S effectively clips the ith value in JM to a

constant value ci when the ith squared residual
∣∣∣βk+1 − γ̂kMk+1

∣∣∣2
i

exceeds the threshold ci; otherwise,
the value is set equal to the squared residual.

According to the above analysis, the update steps of the adaptive Kalman filter can be re-derived as

Ĝk+1 =
[
Mk+1Dz,kMT

k+1 + P−1
z,k

]
−1Mk+1Dz,k (30)

γ̂z,k+1 = γ̂z,k + ĜT
k+1ez,k+1 (31)
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Pz,k+1 = Pz,k − Ĝk+1

[
MT

k+1Pz,kMk+1 + Λz,k+1

]
ĜT

k+1 (32)

where

Dz,k =

0, if
∣∣∣βk+1 − γ̂kMk+1

∣∣∣2
z
> cz

1
Λz,k+1

, otherwise
(33)

where Dz,k can be regarded as the sensory residual gain or “gating” scale, which determines the
gain on the incoming sensory residual errors, the detailed derivation of robust filter can be referred
to Appendix B. By effectively filtering out any high residuals, Dz,k allows the Kalman filter to
ignore the corresponding outliers in the input βk+1, thereby enabling it to robustly estimate the

state γ̂z,k+1. According to the above method, the term C̃
b0
b(t)C

b(t)
n(t)

.
vn of Equation (13) can be eliminated

from the observation vectors effectively, the apparent gravitational motion is extracted from the
measurements precisely.

5.4. Observation Vectors Reconstruction

Since the optimal parameters of the apparent gravity has been extracted from above methods, the
effective observation vectors can be constructed by Equation (19), which are named the reconstructed
observation vectors. Nevertheless, there is another issue, which is that the collinear properties
of the observation vectors at two different times must be addressed. According to Equation (19),
the reconstructed observation vectors at time instant k + 1 is given by

β̂k+1 = γ̂k+1

 cos(ωie(k + 1)∆t)
sin(ωie(k + 1)∆t)

1

 (34)

where ∆t is the sampling period of the inertial sensors. Due to the constant features of the parameter
matrix, γ̂k+1 is just correlated with the initial attitude at start up and the vehicle position, which can
be shown in Equation (18). Once the alignment starting, it is a constant matrix during the whole
alignment process, and the apparent gravitational motion is just correlated with the Earth rotation.
In this work, to enlarge the non-collinear properties of the two reconstructed observation, β̂k+1 and β̂0

are chosen as the dual-vectors, where

β̂0 = γ̂k+1

 1
0
1

. (35)

Consequently, the entire procedure of the novel coarse alignment algorithm has been established.
For more clarity, the flow diagram of algorithm is shown in Figure 5.
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6. Simulation and Physical Tests

In this work, we considered the practical applications of our method, thus the simulation and
physical tests were designed to verify the algorithm. The experiments are processed in two cases,
which are the swaying case and the in-motion case. Three traditional methods, which are applied
in practical systems, are designed for comparison. They are as follows: (i) the traditional apparent
gravitational method, which is represented as Scheme 1 [20]; (ii) the digital filter method, which is
represented as Scheme 2 [23]; and (iii) the in-motion method based on the apparent velocity, which
is denoted as Velocity Integration Formula (VIF) method [18]. The proposed method in this paper is
denoted as Scheme 3.

6.1. Simulation Tests on the Swaying Base

In this subsection, a simulation test for the swaying base is studied. The sawing rule is
A sin(2π f t + ϕ) + θ, and A and f are the amplititude and frequency of the swaying motion, while ϕ

and θ represent the initial phase and swaying center, respectively. The swaying parameters for the test
are listed in Table 2.

Table 2. The swaying parameters.

Items Pitch Roll Yaw

Amplitude (◦) 10 12 6
Frequency (Hz) 0.2 0.125 0.15
Initial phase (◦) 0 0 0

Swaying center (◦) 0 0 0

The whole coarse alignment of this test lasts for 600 s, and the geographic latitude and longitude
of the vehicle are set as L = 32◦ and λ = 118◦. By using the aforementioned parameters, the outputs
of the inertial sensors can be collected by the back-stepping algorithm of the SINS solution. Then, the
coarse alignment results can be calculated by the generated outputs of the inertial sensors. In this
simulation, the sensor errors are set in Table 3.
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Table 3. Sensor errors.

Axes
Gyro Noise (◦/h) Accelerometer Noise (µg)

Constant Random Constant Random

x-axis 0.01 0.01 500 500
y-axis 0.01 0.01 500 500
z-axis 0.01 0.01 500 500

Without loss of generality, the initial parameters matrix γ̂0 is set as a 3 × 3 null matrix, and the
initial estimation error covariance matrix is set as Pi,0 = diag[10, 000 10, 000 10, 000], and the adaptive
measurement noise is set as Λi,0 = 0.1. The robust filter threshold ci is equal to 0.05 in the simulation
test. The simulation results of the swaying motion are shown in Figures 6–8, and the estimated
parameters matrix γ̂ is shown in Figure 6. The observation vectors, which are employed to different
methods, are depicted in Figure 7, while the alignment errors of four methods are shown in Figure 8.
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In Figure 6, the red dotted line represents the true parameters and the blue line denotes the
estimated parameters. Since the initial attitude is set as [0 0 0]T at start up, the DCM Cb(0)

n(0) is equal to
the 3 × 3 identity matrix, and the true parameter matrix is shown in Equation (18). It can be found
that the second parameters of each row of γ̂ have a faster convergence rate, while the first and the
third ones have wide fluctuation; these features are reasonable because the second element in each
row of γ̂ is the main components of the reconstructed observation vectors, and the small components
are consisted with the first and the third elements in each row of γ̂, when the initial attitude is set as
[0 0 0]T at start up.

In Figure 7, the reconstructed observation vectors of Scheme 3 has confirmed our aforementioned
analysis, and they are smoothed. Due to the existing noises and the defects of the digital filter, the
observation vectors of Scheme 1 and Scheme 2 are fluctuant, but it also can be notes that many
high-frequency noises have be eliminated in Scheme 2. These different features will influence the
performance of coarse alignment directly.

In Figure 8, it is shown that the alignment results of Scheme 3 are more stable than Scheme 1
and Scheme 2, and are equivalent to the current VIF method, which is based on apparent velocity.
For convenient comparison, the partial enlarged views of the alignment errors between 300 s and 400 s
are depicted, where the errors of Scheme 1 have been ignored due to the wide fluctuation.

To verify our analysis, the statistics of three methods between 300 s and 400 s are listed in Table 4.
It can be obviously found that the mean values of the errors of horizontal angles are closer, which
are around 0.028◦ for pitch error and −0.025◦ for roll error. However, as the STD value shows, the
horizontal angles of three methods error of Scheme 3 and VIF method are around 0.0020◦, while the
horizontal angles error of Scheme 2 is greater than 0.004◦, which is more than twice as much as the
other two methods. In the yaw errors, the same features can be found. This reveals that the results of
Scheme 2 are unstable, and the performance of Scheme 2 will decline in the harsh external environment.
It can be also noted that the STD value of yaw errors of Scheme 3 is 0.0904◦, while that of the VIF
method is 0.0098◦, which is much smaller than Scheme 3. This is because the apparent gravity are
more sensitive to the external noises than the apparent velocity, and the simulation condition are ideal.
In the practical cases, there always exist linear velocity disturbation, then Scheme 3 will be better than
the VIF method. This is verified in the next subsections.
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Table 4. The statistics of the alignment errors from 300 s to 400 s (◦).

Methods
Pitch Roll Yaw

Mean STD Mean STD Mean STD

Scheme 2 0.0280 0.0041 −0.0198 0.0062 0.0221 0.5366
Scheme 3 0.0280 0.0019 −0.0257 0.0027 −0.0307 0.0904

VIF 0.0280 0.0020 −0.0269 0.0021 0.0402 0.0098

6.2. Simulation Tests for the Vehicle Motion

In the swaying simulation, it is shown that the performance of Scheme 3 is better than Scheme 2,
and it is equivalent to the VIF method. In this work, the application of the initial alignment under the
in-motion base is considered, and the simulation for the vehicle test is designed in this subsection.
In Table 5, the state of the vehicle motion is listed, the curves of the vehicle motion are depicted in
Figure 9.

Table 5. The process of the vehicle motion.

Time (s) State

0–10 Stationary State
10–20 Accelerated motion(a = 1 m/s2)
20–30 Uniform motion(v = 10 m/s)
30–45 Turn left motion(w = 6◦/s)

45–240 Uniform motion(v = 10 m/s)
240–300 Accelerated and decelerated motion (three times)
300–340 Uniform motion(v = 10 m/s)
340–355 Turn left motion(w = 6◦/s)
355–415 Uniform motion(v = 10 m/s)
415–430 Turn left motion(w = 6◦/s)
430–600 Uniform motion(v = 10 m/s)Sensors 2017, 17, 709  14 of 24 
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Figure 9. Curves of vehicle motion.

To verify the proposed method effectively, the common in-motion states of the vehicle, such as
acceleration, deceleration, uniform motion, and turning motion, are considered. In this simulation,
the velocity of the vehicle is lower than 10 m/s, and the rotating speed is 6◦/s, which are the relative
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proper in-motion cases for initial alignment. Under the cases of this movement, the outputs of the
inertial sensors can be acquired, and the alignment results are shown in Figures 10–12. In Figure 10,
the curves of vehicle motion is depicted, they are attitude, velocity, and the well-defined trajectory. It is
obvious that the moving velocity of the simulation test is not higher than 10 m/s, because the much
higher velocity will contaminate the performance of this coarse alignment.
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Due to the well-known initial condition of the vehicle, the true parameters are certain. In Figure 10,
the estimated parameter matrix is depicted, and the familiar features can be found in Figure 6.
As shown, the second parameter of each row of γ̂ is close to the true parameter, the fluctuation is small,
while the other six parameters are wide fluctuations; the reasons have been analyzed in Section 6.1.
It is also noted that the parameter γ̂12 is tuning during the whole alignment. This is caused by the real
correction of the robust filter, when the new effective measurements are acquired after some outliers,
the parameters will be re-estimated. In addition, the other two parameters γ̂22 and γ̂32 are smoother
than γ̂12; this is because the gravitational apparent motion is projected on β̂x, and the parameters γ̂22

and γ̂32 are not sensitive to the measurements. The analysis has been confirmed with the reconstructed
observation vectors, which is calculated by Equation (32).

In Figure 11, the reconstructed observation vectors of Schemes 1–3 are shown. It can be found that
the digital filter cannot eliminate the outliers caused by the vehicle motion, but the robust filter, which is
proposed by this paper, can address these defects effectively. It can also be noted that the reconstructed
observation vectors β̂x have significant changes, which consisted of the aforementioned analysis.

In Figure 12, the alignment errors are described. Due to the greater errors in Scheme 1, we do not
depict the alignment results of Scheme 1. During the 600 s coarse alignment, the results of Scheme 2
and the VIF method are fluctuating, and they are sensitive to the vehicle motion, thus the results are not
suitable for the follow-on inertial navigation. By using the more precisely reconstructed observation
vectors, the alignment results of the proposed method are steady and accurate.

For showing the performance of the proposed method, the statistics of the alignment errors during
the whole alignment procedure are listed in Table 6.

The statistics of the alignment errors of the proposed method show that the mean value of the
final errors of horizontal angles is less than 0.05◦, and the STD value is under 0.01◦. When the
coarse alignment procedure lasts for 600 s, the mean value of the yaw errors is around 0.2◦, and the
corresponding STD value is under 0.2◦. All of the errors are low enough for the fine alignment.



Sensors 2017, 17, 709 17 of 25

Table 6. The statistics of the alignment errors (◦).

Time(s) 1–100 101–200 201–300 301–400 401–500 501–600

Scheme 3

Pitch
Mean 0.0176 0.0278 0.0248 0.0248 0.0272 0.0293
STD 0.0229 0.0013 0.0006 0.0042 0.0038 0.0047

Roll
Mean −0.0099 0.0148 0.0210 0.0253 0.0304 0.0392
STD 0.0145 0.0028 0.0019 0.0038 0.0070 0.0064

Yaw
Mean 0.2445 −1.6114 −0.3178 0.0065 0.3011 0.2005
STD 18.3219 0.7545 0.1522 0.1637 0.1271 0.1303

6.3. Turntable Test

To verify the performance of the proposed method in practical applications, the practical tests,
including the turntable test and field vehicle test are designed in this subsection and the next
subsection, respectively.

For the turntable test, the equipment is installed as shown in Figure 13a, and the construction of
the turntable test is as shown in Figure 13b. The turntable is designed by the AVIC Beijing Precision
Engineering Institute for the aircraft industry, and the controlling accuracy is ±0.0005◦/s, the accuracy
of the corresponding angle controlling is ±0.0001◦. The IMU used in this test is a navigational-grade
production, the corresponding parameters are listed in Table 7.
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Table 7. Sensor parameters.

Gyroscope

Constant bias < 0.02◦/h(1σ) Nonlinearity of scale factor ≤ 50 ppm(1σ)

Repetitiveness of constant bias < 0.01◦/h(1σ) Repetitiveness of scale factor ≤ 50 ppm(1σ)

Random walk < 0.005◦/
√

h Measuring range −300 ∼ +300◦/s

Accelerometer

Measuring range −20 ∼ +20 g bias < 5× 10−4 g

Threshold < 5× 10−6 g Temperature coefficient of bias < 6× 10−5/◦C
(−40 ∼ +40 ◦C)

Repetitiveness of scale factor < 3.5× 10−5 g(1σ) Repetitiveness of bias < 2.5× 10−4 g(1σ)

Temperature coefficient of scale factor < 6× 10−5/◦C
bandwidth > 800 Hz

(−40 ∼ +40 ◦C)
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In this test, the data from turntable and SINS is collected via serial communication ports as a
response to the external time-synchronization signal. Before the test, all of the system errors, such as
the coupling coincident scale factors of the inertial sensors, installing errors, and so on, are corrected
by the calibration test, so the above-mentioned system errors are ignored.

The outputs rate of the turntable and SINS are set as 200 Hz, and the turntable works under the
swaying condition, the swaying parameters are as common as Table 2. The Kalman filter parameters
are set, as shown in Section 6.1, and the robust filter parameter in this test is set as ci = 0.2,
because the magnitude of the noises are greater than the simulation tests. The coarse alignment
also lasts for 600 s, the reconstructed observation vectors and the alignment errors are depicted in
Figures 14 and 15, respectively.
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In Figure 14, it can be found that the reconstructed observation vectors based on Scheme 2 are
widely fluctuating, which is caused by the drawbacks of the low-pass digital filter. It is obvious
that the reconstructed observation vector, which is acquired by Scheme 3, is smoother than Scheme
2. In addition, it is easily concluded that the smoother observation vector will acquire more stable
alignment results, so the alignment results of Scheme 3 will be smoother than Scheme 2.

In Figure 15, the results of Scheme 1 are ignored due to the great interference of the reconstructed
observation vectors in Figure 14. The alignment errors are showed that the performance of Scheme 3
is superior to Scheme 2, because the reconstructed observation vectors of Scheme 2 are more widely
fluctuating than that which are reconstructed by Scheme 3. Just like in Section 6.1, the partially enlarged
views of the alignment errors between 300 s and 400 s are depicted in Figure 15, it can be found that the
performance of Scheme 2 is inferior to Scheme 3 and the VIF method, and the horizontal performance
of Scheme 3 are familiar with the VIF method. For clear analysis, the statistics of the alignment errors
of the three methods from 300 s and 400 s are listed in Table 8.

Table 8. The statistics of the alignment errors from 300 s to 400 s (◦).

Methods
Pitch Roll Yaw

Mean STD Mean STD Mean STD

Scheme 2 −0.0107 0.0460 0.0004 0.0334 −0.3676 5.2979
Scheme 3 −0.0098 0.0274 −0.0101 0.0211 −0.1696 0.1543

VIF −0.0115 0.0276 −0.0095 0.0210 −0.1424 0.1222

In Table 8, the mean value of pitch and roll errors of three methods are approximated. However,
the STD values of VIF and Scheme 3 are around 0.02◦, it is smaller than Scheme 2, which is larger than
0.03◦. Due to the smoothed feature of reconstructed observation vector of Scheme 3, it can be found
that the STD value of the yaw error of Scheme 3 is 0.1543◦, while it is 5.2979◦ of Scheme 2. These
features reveal that the alignment results of Scheme 2 are unstable, thus the digital filter cannot obtain
the excellent results. Based on the apparent velocity properties, the STD value of the VIF method is
0.1222◦, and the corresponding value of Scheme 3 is 0.1543◦. Moreover, the mean value of yaw error
of Scheme 3 is −0.1696◦, which is −0.1424◦ for the VIF. It is revealed that the performance of VIF
and Scheme 3 is quite equivalent. However, when the alignment is processing under the in-motion
case without additional information, Scheme 3 will be superior to the VIF method, and this test is
investigated in the next subsection.

6.4. Vehicle Test

In this subsection, the field vehicle test of coarse alignment is designed for examining the
performance of Scheme 3. PHINS III, which is produced by iXBlue Corporation (Saint-Germain
en Laye Cedex, France), is utilized as the reference system. The experimental vehicle, installed IMU
and PHINS and construction of vehicle test are shown in Figure 16a–c, respectively. In Figure 16a,
a GPS antenna is used to collect the GPS signal, which is required for PHINS, and then the initial
position of the vehicle is well-known. In Figure 16b, the IMU and PHINS are installed on the surface
of a steel plate, and the power is supplied with a rechargeable battery pack. All of the raw data
of the sensors are logged by the computer. Moreover, a real-time operation system (VxWorks) is
embedded in the navigation computer. Four methods mentioned in this paper are processed by four
real-time tasks of VxWorks. The alignment results are also logged by the computer. Figure 16c gives
the construction of the vehicle test, and the outputs of GPS provide the time-synchronization signal
for IMU and PHINS. The positioning information of GPS is also acquired by PHINS and computers
via serial communication ports. The PHINS data are collected via Ethernet, and the raw data of the
outputs of the inertial sensors are transferred via an RS422 port.
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Figure 16. (a) Experimental vehicle; (b) SINS and PHINS; (c) construction of the vehicle test.

Before the test, the installed error between IMU and PHINS are corrected, and the IMU system
errors, such as the coupling coincident scale factors of the inertial sensors, are also corrected by the
calibration methods. In Figure 17, the curves and trajectory of vehicle motion are depicted, and the
field test is proceeded on our campus. The velocity of the vehicle is under 10 m/s.
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Figure 17. (a) Curves of vehicle motion; and (b) trajectory of vehicle motion.

The field test designed here lasts for 600 s, and the reconstructed observation vectors and the
alignment errors are shown in Figures 18 and 19, respectively. In Figure 18, the reconstructed
observation vectors of the three methods are shown, and the wide fluctuation in Scheme 1 can
be found, which is because the disturbance of the vehicle movement, the external environment, and
the sensors’ noises. Based on the IIR low-pass digital filter, some high-frequency noises are filtered out
from the observation vectors. The enlarged views of the reconstructed observation vectors are shown
that there are a lot of outliers in Scheme 2, these outliers will contaminate the performance of the coarse
alignment. Based on Scheme 3, the outliers are address by the robust filter, and the optimal observation
vectors are extracted by the parameter recognition and the reconstruction algorithm, which shows that
the reconstructed observation vectors of Scheme 3 are more stable. The alignment errors showed in
Figure 19 also verify the precision of the extracted observation vectors of Scheme 3.
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In Figure 19, it is obviously found that the alignment results of Scheme 2 are wide fluctuation and
it does not acquired a stable value after 600 s. In this test, the SINS under an entirely self-contained
mode is considered. Hence, the performance of the VIF method is also poor in this field test, because
the additional information, which is the external reference velocity, cannot be acquired when SINS is
under an entirely self-contained mode. According to the aforementioned analysis, the reconstructed
observation vectors of Scheme 3 have been reconstructed by the designed method, and the precision
of these vectors can be verified by the alignment errors. It is noted that the performance of Scheme
3 is superior to the other two methods, and the errors of pitch and roll are less than 0.2◦ during the
whole alignment procedure. The errors of yaw are constraint in 2◦, when the errors are stable. It is
also can be found that the smaller distortion of the alignment errors of Scheme 3, and this is caused
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by the interference of the vehicle movements, which disturb the measurement observation vectors.
In order to show the precision of Scheme 3, Table 9 summarized the statistics of the alignment errors of
Scheme 3.

Table 9. The statistics of the alignment errors (◦).

Time (s) 1–100 101–200 201–300 301–400 401–500 501–600

Scheme 3

Pitch
Mean 0.0060 0.0164 −0.0243 −0.0417 −0.0252 −0.0076
STD 0.0413 0.0129 0.0236 0.0055 0.0058 0.0142

Roll
Mean −0.0028 −0.0730 −0.1033 −0.1017 −0.1198 −0.0908
STD 0.0250 0.0260 0.0097 0.0054 0.0084 0.0256

Yaw
Mean 5.6825 −0.4104 −0.4767 −0.9022 −1.1007 −0.9433
STD 18.3266 0.7514 0.2104 0.1263 0.0379 0.0460

In Table 9, it is shown that the STD value of the errors of pitch and roll are less than 0.1◦, and the
corresponding value of yaw errors is less than 0.5◦ after the alignment lasts for 100 s. These reveal that
the alignment results of Scheme 3 are available in the practical system.

7. Conclusions

In this work, a coarse alignment method based on apparent gravity are proposed, and the
mechanisms of inertial frame alignment are studied at first. Then, an IIR low-pass digital filter is
utilized to filter the high-frequency noises, which are contained in the measurement observation
vectors. Thirdly, to extract the apparent gravitational motion precisely from the observation vectors,
a parameter recognition and vector reconstructed method are designed. Alternatively, a robust filter is
investigated to address the interference of the gross outliers, which is caused by the varying velocity
movement. Finally, the simulation and physical tests are designed for verifying the performance
of the proposed method. The results of the comprehensive tests show that the performance of the
proposed method is equivalent to the current popular method on a sawing base, which is a VIF method.
However, it is superior to the VIF method on the moving base. Based on the numerical analysis, we can
conclude that the proposed method is available for practical systems, and it also can be designed as a
new gyrocompassing method in future work.
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Appendix A

The derivation of the parameter matrix in Equation (18) is shown in this appendix. According to Equation (17),
the DCM Cb0

e0 can be split into by the chain rules of DCM:

Cb0
e0 = Cb0

n0Cn0
e0 (A1)

where Cb0
n0 is the DCM, which is related to the attitude of SINS at start up. Due to the shorter time of the coarse

alignment, the DCM Cn(t)
e(t) can be approximated to

(
Cn0

e0

)T
. Since the rotation rate ωie of the Earth is well-known,

the DCM Ce0
e(t) can be calculated by

Ce0
e(t) =

 cos(ωiet) − sin(ωiet) 0
sin(ωiet) cos(ωiet) 0

0 0 1

. (A2)

Therefore, it is focused on calculating the DCM Ce(t)
n(t). In Figure A1, we depict the transfer process from the

e-frame to the n-frame.
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It is shown that it needs two step transformations from the e-frame to the n-frame, the first step is to turn
the e-frame 90 + λ degrees around the ze-axis, so that it can be obtain the e’-frame, and then to turn the e’-frame
90− L degrees around xe′-axis. Thus, the procedure can be described as

Ce(t)
n(t) = Ce(t)

e′(t)C
e′(t)
n(t) =

 cos(90 + λ) − sin(90 + λ) 0
sin(90 + λ) cos(90 + λ) 0

0 0 1

 1 0 0
0 cos(90− L) − sin(90− L)
0 sin(90− L) cos(90− L)

. (A3)

After some manipulations, the matrix −Cn0
e0 Ce0

e(t)C
e(t)
n(t)g

n can be described as

−Cn0
e0 Ce0

e(t)C
e(t)
n(t)g

n =

 0 g cos(L) 0
−g sin(L) cos(L) 0 g sin(L) cos(L)

g cos2(L) 0 g sin2(L)

 cos(ωiet)
sin(ωiet)

1

. (A4)

When the initial position is well-known, the above matrix will be calculated precisely.

Appendix B

The derivation of robust filter is shown in this appendix. It is assumed that a common a linear time-invariant
model can be expressed as {

xk+1 = φxk + wk
zk+1 = Hxk+1 + vk+1

(A5)
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where wk and vk+1 are white Gaussian noises, and{
E[wk] = 0, E[wk(wk)

T] = Qk
E[vk+1] = 0, E[vk+1(vk+1)

T] = Rk+1
. (A6)

Then, the general weight least-square criterion can be given by

J = (z−Hx)TR−1(z−Hx) + (x− x)TP−1(x− x) (A7)

where x is one-step prediction of x, and P can be calculated by

P = E
[
(x− x)(x− x)T

]
. (A8)

According to gradients of real valued functions with vector arguments, that is, if x(m× 1), y(n× 1),
A(n×m), and B(n× n), then

∂
(
(y−Ax)TB(y−Ax)

)
∂x

= −2ATB(y−Ax). (A9)

Consequently, the optimization function J can be minimized by

∂J
∂x

∣∣∣∣
x=x̂k+1

= −2HTR−1
k+1(zk+1 −Hx̂k+1)− 2P−1

k,k+1
(
x̂k+1,k − x̂k+1

)
= 0. (A10)

Additionally, the following can be easily acquired:

x̂k+1 = x̂k+1,k +
(

HTR−1
k+1H + P−1

k,k+1

)−1
HTR−1

k+1
(
zk+1 −Hx̂k+1,k

)
. (A11)

According to Equation (28), the weight least-square criterion in Equation (A7) be modified as

J′i,k+1 =
(

βi,k+1 − γi,kMk+1

)2
Si,i +

(
γi,k − γ̂i,k

)TP−1
i,k
(
γi,k − γ̂i,k

)
. (A12)

By minimizing the criterion function in Equation (A12), the following can be obtained:
γ̂i,k+1 = γ̂i,k, if

∣∣∣βk+1 − γ̂kMk+1

∣∣∣2
i
> ci

γ̂i,k+1 = γ̂i,k +

(
Mk+1MT

k+1
Λi,k+1

+ P−1
i,k

)−1
Mk+1
Λi,k+1

(
βi,k+1 − γ̂i,kMk+1

)
, otherwise

(A13)

where the subscript i denotes the ith row of the parameter matrix γ. Consequently, the robust filter can be
rearranged as Equations (30)–(33).
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