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Abstract: Quasi-stationary signals have been widely found in practical applications, which have
time-varying second-order statistics while staying static within local time frames. In this paper,
we develop a robust direction-of-arrival (DOA) estimation algorithm for quasi-stationary signals
based on the Khatri–Rao (KR) subspace approach. A partly-calibrated array is considered, in
which some of the sensors have an inaccurate knowledge of the gain and phase. In detail, we first
develop a closed-form solution to estimate the unknown sensor gains and phases. The array is then
calibrated using the estimated sensor gains and phases which enables the improved DOA estimation.
To reduce the computational complexity, we also proposed a reduced-dimensional method for
DOA estimation. The exploitation of the KR subspace approach enables the proposed method to
achieve a larger number of degrees-of-freedom, i.e., more sources than sensors can be estimated. The
unique identification condition for the proposed method is also derived. Simulation results
demonstrate the effectiveness of the proposed underdetermined DOA estimation algorithm for
quasi-stationary signals.

Keywords: DOA estimation; Khatri–Rao subspace; partly-calibrated array; quasi-stationary signal;
underdetermined problem

1. Introduction

Direction-of-arrival (DOA) estimation is an important array signal processing technique which has
found broad applications in radar, sonar, navigation and wireless communication [1]. In the past decades,
a number of subspace-based DOA estimation algorithms have been developed including maximum
likelihood (ML) [2–4], Capon beamforming [5–7], multiple signal classification (MUSIC) [8–10], and
estimation of parameters via the rotational invariance technique (ESPRIT) [11,12]. Among them, MUSIC
is the most popular one for passive localization. However, the recently developed time-reversal
MUSIC algorithm can also implement active detection by utilizing the multistatic data matrix [13–16].
Moreover, [17] provides a learning-by-example approach based on the support vector machine (SVM),
which exploits a multi-scaling procedure to enhance the angular resolution of the detection process
in the region of incidence of the incoming waves. In addition, the sparse signal reconstruction-based
DOA estimation algorithm [18] also shows good performance even with a single snapshot.

The methods mentioned above provide high accuracy DOA estimation when the array is well
calibrated. However, their performances degrade when some of the array sensors are mis-calibrated.
For instance, an array may suffer imperfect calibration [19] and/or mutual coupling [20] which may
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vary over time and environment, yielding perturbations in the sensor gain and phase characteristics.
In this paper, we mainly focus on the calibration problem. Generally, the calibration methods are
classified into three categories, i.e., pilot calibration, self-calibration and auto-calibration. The pilot
calibration methods [21–23] utilize sources with known parameters, such as direction and location,
to estimate the array uncertainties analytically by exploiting the mathematical model of the array
response [24]. These kinds of algorithms have highly accurate estimation performance. However, they
also highly depend on the accurate knowledge of the pilot sources, which may not always be available
in practice. In addition, the pilot calibration may be expensive and time-consuming because of the
off-line operation. The self-calibration methods [19,25] have aroused much interest because they do
not require the pilot sources. The self-calibration methods can estimate the gain-phase uncertainties
and DOA simultaneously, which makes them more attractive. The auto-calibration methods [24,26] do
not use any external source for calibration. Instead, the array elements are transceivers transmitting to
each other and these signals are used to remove the array uncertainties.

In practice, the response of some sensor elements is poorly known or even unknown when the
array sensors are incompletely calibrated. This kind of array is known as partly-calibrated array [27–29].
A number of calibration algorithms have been proposed to ensure robust DOA estimation using
partly-calibrated arrays [19,27–29]. Among them, an iterative method is proposed in [19] to perform
array calibration and DOA estimation simultaneously. This approach, however, is suboptimal and
works properly only when the array perturbations are small. An iterative algorithm is developed
in [27] for DOA and sensor gain-phase joint estimation, where a good initialization is required to
achieve the convergence to the global minimum. In [28], an ESPRIT-like algorithm is developed to
achieve the joint estimation of DOA and unknown gains and phases without any iteration. In [29],
a subspace-based DOA estimation approach is proposed, which is applicable to the partly-calibrated
arrays composed of multiple well-calibrated subarrays of arbitrary known geometry. Moreover, the
displacements of the sensor elements also lead to DOA estimation performance degradation. Utilizing
the stochastic collocation method, a method is proposed in [30] to calculate the cumulative density
functions (cdfs) of the DOA estimates due to a random displacement of one sensor element in an array.
However, it does not achieve a robust DOA estimation result.

Limited by the degrees-of-freedom (DOFs), the number of sources is usually assumed to be less
than the number of sensors, as in [27–29]. Hence, increasing the DOFs has attracted continuing interest.
In the past few years, several algorithms have been developed to deal with the underdetermined
DOA estimation problem, i.e., the number of sources is larger than the number of sensors, either by
exploiting the high-order statistics [31] or the sparse array structures [32–35]. In [36], a Khatri–Rao
(KR) subspace approach is proposed by exploiting the statistical properties of the quasi-stationary
signals, which represent a class of commonly encountered nonstationary signals including speech and
audio signals. The statistics of quasi-stationary signals are locally static over a short time period, but
exhibit difference from one local time frame to another [36,37]. By exploiting such statistical properties,
the KR subspace approach achieves 2(N − 1) DOFs with an N-element uniform linear array (ULA).

In this paper, we propose a DOA estimation algorithm based on the KR subspace approach using
the partly-calibrated array. The proposed method is a kind of self-calibration method. Due to the
existence of the unknown sensor gain and phase perturbations, the conventional KR-MUSIC and
KR-ESPRIT methods [36] generally suffer significant performance degradation. To address this issue,
we develop a KR subspace-based robust DOA estimation algorithm by simultaneously estimating
the unknown gain and phase uncertainties. By utilizing an ESPRIT-like algorithm, the DOA as well
as the unknown gain and phase uncertainties are jointly estimated with closed-form expressions.
As such, unlike other joint DOA estimation and calibration methods requiring iterative solution or
spectral search, the proposed method can be effectively implemented to achieve a high accuracy.
Different to the method in [28], the proposed method achieves higher DOFs by exploiting the KR
subspace. After the array is fully calibrated with the estimated gain and phase errors, it enables the
underdetermined DOA estimation problem to be solved with more sources than sensors. In order
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to reduce the computational complexity, we further propose a reduced-dimensional (RD) method
by designing a RD matrix. Simulation results demonstrate the effectiveness of the proposed DOA
estimation algorithm in the presence of several sensor gain and phase errors even with more sources
than sensors.

The remainder of this paper is organized as follows. In Section 2, we first describe the signal model
with a partly-calibrated array. Using the quasi-stationary signals, the KR subspace is then presented.
In Section 3, we propose an underdetermined DOA estimation algorithm with a partly-calibrated array
for quasi-stationary signals. Furthermore, a RD method is also provided. In Section 4, we discuss the
condition for unique identification and computational complexity of the proposed method. Simulation
results are given in Sections 5 and 6 concludes this paper.

Notations used in this paper are as follows. Lower-case (upper-case) bold characters are used to
denote vectors (matrices). (·)T , (·)∗ and (·)H denote the transpose, conjugate and Hermitian operations
of a matrix or vector, respectively. E[·] stands for the expectation operator. ‖·‖F denotes the Frobenius
norm. trace[A] and rank[A] denote the trace and rank of matrix A, respectively. CM×N denotes an
M× N complex matrix or vector (when N = 1). vec(x) is a vectorization operator that turns a matrix
x into a vector by concatenating all columns. In addition, diag(x) denotes a diagonal matrix with
the elements of x constituting the diagonal entries. IN denotes the N × N identity matrix, 1N and
0N stand for the N × 1 all-one and all-zero vector, respectively. ⊗, � and ◦ denote the Kronecker
product, Khatri–Rao product and Schur–Hadamart product, respectively. ∠(x) stands for the phase of
variable x.

2. Signal Model

In this section, we first describe the partly-calibrated array signal model, then present the KR
subspace utilizing the quasi-stationary signals.

2.1. Partly-Calibrated Array Model

Consider a partly-calibrated ULA with N omnidirectional antennas. We assume that there are K
uncorrelated far-field sources impinging on the array with distinct DOAs θ = [θ1, · · · , θK]

T . For the
DOA estimation problem, it is a common scenario to use the first sensor as the reference. Thus, without
loss of generality, it is practical to assume that the first Nc sensors are well-calibrated, whereas
the last N − Nc sensors are uncalibrated with unknown, direction-independent gain and phase
uncertainties [27,28]. It is worth noting that the algorithm remains effective when the calibrated
sensors are located in arbitrary positions, provided that there is at least one pair of consecutive
calibrated sensors [28]. The complex-valued baseband array received signal vector at time index t
can be modeled as

x(t) = Ās(t) + n(t), (1)

where Ā = Γ(γ)A is the actual array manifold matrix, Γ(γ) = diag(γ) with γ =

[1T
Nc

, ρ1ejϕ1 , · · · , ρN−Nc
ejϕN−Nc ]T corresponding to the unknown sensor gain-phase vector. It is assumed

that the sensor gains are nonzero, i.e., ρn 6= 0, ∀n = 1, · · · , N − Nc. In addition, A = [a(θ1), · · · , a(θK)]

is the assumed array manifold matrix with a(θk) = [1, e−j2πd/λ sin θk , · · · , e−j2πd/λ(N−1) sin θk ]T ∈ CN ,
where d and λ denote the inter-element spacing and the signal wavelength, respectively.
s(t) = [s1(t), · · · , sK(t)]T ∈ CK denotes the zero-mean quasi-stationary signal waveforms, and
n(t) ∼ CN (0, σ2

nI) ∈ CN is the additive white Gaussian noise vector with zero-mean and covariance
matrix σ2

nIN . We further assume that the source signals sk(t), k = 1, · · · , K are independent of each
other. In addition, the source signals and noise are also assumed to be uncorrelated.

2.2. Khatri–Rao Product Subspace

Quasi-stationary signals have a wide distribution in nature, such as speech and audio signals.
Their second-order statistics remain static at a local time frame, however, they vary with different time
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frames. As shown in Figure 1, we illustrate the waveform of a quasi-stationary signal. Similar to [36],
we model a quasi-stationary source signal sk(t) to have M non-overlapped time frames and the length
of each frame is assumed to be L. In this case,

E
[
|sk(t)|2

]
= σ2

mk, ∀t ∈
[(

m− 1
)

L, mL− 1
]

, m = 1, · · ·M, (2)

where σ2
mk is the signal power of sk(t) at the mth time frame. For the mth time frame, the sample

covariance matrix is written as

Rm = E
[
x(t)xH(t)

]
= ĀDmĀH

+ σ2
nIN , (3)

where Dm = Γ
(
[σ2

m1, · · · , σ2
mK]
)

. In practice, due to the finite number of snapshots, the covariance

matrix is evaluated as R̂m = (1/L)∑mL−1
t=(m−1)L x(t)xH(t).
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Figure 1. Quasi-stationary signals. The dashed lines are used to mark the local stationary intervals.

We vectorize R̂m to an N2 × 1 vector as:

ym = vec(R̂m) = Ădm + σ2
ni, (4)

where Ă = Ā∗ � Ā is the generalized manifold matrix, dm = [σ2
m1, · · · , σ2

mK]
T and i = vec(IN). We can

see that the expression of (4) is similar to the signal model in (1). To exploit the second-order properties
of the quasi-stationary signals, we stack ym over all M time frames to yield the following matrix

Y = [y1, · · · , yM] = ĂΨ + σ2
ni1T

M, (5)

where Ψ = [d1, · · · , dM]. Thus, the DOF of the array is extended.
As shown in [36], the noise covariance term σ2

ni1T
M can be eliminated by utilizing the orthogonal

complement matrix P⊥1M
= IM − (1/M)1M1T

M, as

Ỹ = YP⊥1M
= ĂΨP⊥1M

, (6)

the singular value decomposition (SVD) of which is expressed as

Ỹ =
[
Es En

] [ Σs 0
0 0

] [
VH

s
VH

n

]
, (7)

where Es and En are the left singular matrices corresponding to the nonzero and zero singular values,
respectively, Vs and Vn are the respective right singular matrices, and Σs is a diagonal matrix whose
diagonal entries contain the nonzero singular values. Based on the subspace theory, matrix Es spans
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the same subspace as the generalized manifold matrix Ă which is denoted as the signal subspace.
As such, these two matrices can be related by

Es = ĂT, (8)

where T is a K× K nonsingular matrix.

3. The Proposed Method

Due to the unknown sensor gain and phase uncertainties, the conventional KR subspace
approach-based DOA estimation algorithms [36–38] suffer performance degradation or even failed
operation. In this section, we first estimate the unknown gains and phases, then, the DOAs of the
sources are estimated utilizing the ESPRIT-like algorithm based on the KR subspace approach.

3.1. Joint Parameters Estimation

The generalized manifold matrix Ă in (4) can be rewritten as

Ă =
(

Γ(γ)A
)∗
�
(

Γ(γ)A
)

= Γ(γ∗ ⊗ γ)(A∗ �A) = Γ(γ̃)Ã, (9)

with γ̃ = γ∗ ⊗ γ and Ã = A∗ �A.
Similar to the conventional ESPRIT algorithm, the partly-calibrated ULA array is divided into

two overlapping subarrays to exploit the rotational invariance property. Denote γ1 and γ2 as vectors
containing the first and last N − 1 elements of γ, and A1 and A2 matrices with the first and last
N − 1 rows of A, respectively. In addition, we define γ̃1 = γ∗1 ⊗ γ, γ̃2 = γ∗2 ⊗ γ, Ã1 = A∗1 �A and
Ã2 = A∗2 �A. By selecting the first and last N(N − 1) rows of Es, we have the two submatrices Es1

and Es2 as

Es1 = Γ(γ̃1)Ã1T,

Es2 = Γ(γ̃2)Ã2T. (10)

Using the rotational invariance property Ã2 = Ã1Φ with Φ = Γ
([

e−j2πd/λ sin θ1 , · · · , e−j2πd/λ sin θK
]T)

,
we can further obtain the following equation from the result of (10)

Γ(Y)Es2=Es1Π, (11)

where Π = T−1ΦT, Γ(Y) = Γ(γ̃1)Γ(γ̃
−1
2 ) = Γ(γ̃1 ◦ γ̃−1

2 ) with

Y = γ̃1 ◦ γ̃−1
2 = (γ∗1 ⊗ γ) ◦ (γ∗2 ⊗ γ)−1

=
(

γ∗1 ◦ (γ∗2)−1
)
⊗ 1N . (12)

More specifically, Y can be expressed as

Y =
[
1T
(Nc−1),

(
ρ1ejϕ1

)−1
, ρ1ejϕ1 (ρ2ejϕ2 )−1, · · · , ρN−Nc−1ejϕN−Nc−1 (ρN−Nc ejϕN−Nc )−1

]H
⊗ 1N . (13)

In the underlying problem with uncalibrated sensors, both Γ(Y) and Π in (11) are unknown.
As such, the conventional ESPRIT algorithm [39] cannot be applied directly. Here, Γ(Y) and Π can be
estimated by solving the following optimization problem

min
Y ,Π

‖Γ(Y)Es2 − Es1Π‖2
F

s.t. WY = 1(Nc−1)N , (14)
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where W is defined as

W =
[

I(Nc−1)N 0(Nc−1)N×(N(N−1)−(Nc−1)N)

]
.

The equality constraint in (14) is introduced to ensure that the first Nc sensors take the calibrated
gain and phase values. When the calibrated sensors are in arbitrary positions, the matrix W should be
re-arranged to ensure that the corresponding sensors are well-calibrated.

With some simplifications as shown in the Appendix A, the original optimization problem (14)
can be further reformulated as

min
Y

Y H
(
(Es2EH

s2)
T ◦ P

)
Y

s.t. WY = 1(Nc−1)N , (15)

which can be effectively solved using the Lagrange multipliers method. The matrix P is expressed
as P = IN(N−1) − Es1(EH

s1Es1)
−1EH

s1. The detailed derivation of the solution is given in Appendix B.
The solution of the optimization problem (15) is expressed as

Ŷ = Q−1WT(WQ−1WT)−11(Nc−1)N , (16)

where Q = (Es2EH
s2)

T ◦ P. Note that Q is required to be nonsingular to estimate the Ŷ . In the case
of infinite snapshots, Q is a nonsingular matrix. To ensure that Q is also a nonsingular matrix with
finite snapshots in practice, diagonal loading [40,41] is a possible method to handle this problem.
In addition, from the extensive experiments with finite snapshots that we have made, the matrix Q is
always nonsingular. Thus, it is not necessary to use the diagonal loading method for Q in general [28].

Combining with (13), the ith entry of γ̂ can be estimated as

γ̂i =

(
i−1

∏
n=Nc

T (n)
)−1

, i = Nc + 1, · · · , N, (17)

where T (n) = 1
N ∑nN

l=(n−1)N+1 Ŷ∗l , and Ŷ l is the lth element of Ŷ .

By substituting the estimated ˆ̆γ in (A8) into (A1), Π can be estimated as Π̂. Since Π and Φ are
similar matrices, the eigenvalues of Π are the diagonal entries of Φ and the columns of T are the
eigenvectors of Π. Thus, the kth signal DOA can be estimated by

θ̂k = arcsin
(
− λ

2πd
∠(υ̂k)

)
, k = 1, · · · , K, (18)

where υ̂k is the kth eigenvalue of Π̂.

3.2. The Proposed RD Method

Once the unknown sensor gain-phase vector γ̂ is estimated, the sensor array can be calibrated
and the corresponding signal subspace can be expressed as

Ês = Γ( ˆ̃γ−1)Es = ÃT, (19)

where ˆ̃γ = (γ̂−1)∗ ⊗ γ̂.
Owing to the fact that there only exist 2N − 1 distinct rows in Ã, the effective dimension of Ã

can be reduced without any performance loss [36]. Let Ã = GB, where G is an N2 × (2N − 1) RD
matrix and B = [b1, · · · , bK] with bk = [ej2π(d/λ)(N−1) sin θk , · · · , ej2π(d/λ) sin θk , 1, e−j2π(d/λ) sin θk , · · · ,
e−j2π(d/λ)(N−1) sin θk ] ∈ C2N−1.
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With Ês = ÃT and Ã = GB, the RD signal subspace can be expressed as

Êds = ΘGTÊs = ΘGTÃT = BT, (20)

where Θ = (GTG)−1.
To apply the ESPRIT algorithm, we construct two overlapping matrices by selecting the first

2N − 2 and last 2N − 2 rows of Êds, which are denoted as Êds1 and Êds2, respectively. We have

Êds1 = B1T
Êds2 = B2T,

(21)

where B1 and B2 denote the first 2N − 2 rows and last 2N − 2 rows of B, respectively. Obviously, B1

and B2 hold the rotational invariance property, i.e., B2 = B1Φ. Thus, the DOAs can be estimated by
utilizing the ESPRIT algorithm.

Although the proposed method is implemented using a ULA, the proposed method is applicable
on other kinds of arrays which hold rotational invariance property, such as uniformly circle
arrays (UCAs).

4. Condition for Unique Identification and Computational Complexity

First, we discuss the condition under which the true DOA can be uniquely estimated, which is
equivalent to finding the condition for Êds1 and Êds2 to have the full column rank.

Since γ̃ is an N2 × 1 vector with nonzero entries, we have rank[Γ(γ̃)] = N2. Also note that
Ă = Γ(γ̃)Ã = Γ(γ̃)GB, rank[G] = 2N − 1 and rank[B] = min{2N − 1, K}, the rank of Ă is given as

rank[Ă] = min
{

rank
[
Γ(γ̃)

]
, rank[G], rank[B]

}
= min

{
N2, 2N − 1, K

}
. (22)

For a multi-sensor array, N > 1, thus N2 > 2N − 1, and rank[Ă] = min{2N − 1, K}. Then, the full
column rank condition for Ă is guaranteed as long as K ≤ 2N − 1 is satisfied.

Since the DOAs are estimated by exploiting the ESPRIT algorithm, the KR subspaces Ẽds1 and
Ẽds2 will lose one DOF. As a result, the proposed method can resolve up to K ≤ 2(N − 1) sources.
Compared with the standard ESPRIT method which only resolves up to N − 1 sources, the proposed
method is very attractive when there are more sources than sensors.

Next, we discuss the computational complexity of the proposed method. The SVD operation
requires O{N2M2}. To estimate the unknown gain-phase error using (A8), O{N3(N − 1)2(Nc − 1) +
N3(N − 1)(Nc − 1)(N + Nc − 2) + N3(Nc − 1)} is required. In this paper, the ESPRIT algorithm is
applied to perform DOA estimation, the main computational load is the eigenvalue decomposition
(EVD) process which requires O{N3(N − 1)3}. Utilizing the proposed RD method, the dimension of
the signal subspace is reduced from N(N − 1)× K to (2N − 2)× K. Thus, the computational load for
EVD operation becomes O{(2N − 2)3}. We summarize the computational complexities of the two
methods in Table 1. It is clear that the computational complexity is significantly reduced by using the
proposed RD method.

Table 1. Comparison of the computational complexity of two methods.

Method SVD Operation Gain-Phase Error Estimation EVD for DOA Estimation

Proposed method
O
{

N2 M2
} O

{
N3(N − 1)2(Nc − 1) +

N3(N − 1)(Nc − 1)(N +

Nc − 2) + N3(Nc − 1)
} O

{
N3(N − 1)3

}
Proposed RD method O

{
(2N − 2)3

}
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5. Simulation

In this section, simulation results are provided to demonstrate the effectiveness of the proposed
DOA estimation algorithm based on the KR subspace approach using a partly-calibrated array.

In the first simulation, we consider a 10-element (N = 10) partly-calibrated ULA with
half-wavelength interelement spacing. The first five sensors are assumed to be well-calibrated,
i.e., Nc = 5, while the last five sensors are uncalibrated with direction-independent gain and phase
uncertainties, γ = [1T

5 , 0.8ejπ/5, 1.2ejπ/5, 1.53e−jπ/5, 0.75ejπ/4, 1.36e−jπ/3]T . Assume that there exist
four far-field sources with DOAs −25◦, 10◦, 20◦ and 30◦, respectively. The frame period of each source
is set as L = 1024 and the number of frames is M = 50. The signal-to-noise ratio (SNR) is defined
as [36]

SNR =

1
T ∑T

t=1 E
[
‖Ās(t)‖2

]
E
[
‖n(t)‖2

] , (23)

where T = LM. In the following simulation, we use 100 Monte Carlo trials to evaluate the performance
of the proposed method.

In Table 2, we present the performance of the proposed gain-phase uncertainties estimation
algorithm. The mean value and standard deviation results are calculated at a fixed SNR of 10 dB. It is
evident that the proposed gain-phase estimation method achieves accurate gain and phase estimation.

Table 2. Performance of gain and phase estimation.

(a) Gain Estimation Results (b) Phase Estimation Results (Radian)

Index True Value Mean STD Index True Value Mean STD

ρ̂1 0.8000 0.8056 0.0049 ϕ̂1 0.6283 0.6286 0.0055
ρ̂2 1.2500 1.2510 0.0085 ϕ̂2 −1.0472 −1.0473 0.0061
ρ̂3 1.5300 1.5344 0.0118 ϕ̂3 −0.6283 −0.6284 0.0074
ρ̂4 0.7500 0.7608 0.0077 ϕ̂4 0.7854 0.7855 0.0092
ρ̂5 1.3600 1.3700 0.0164 ϕ̂5 −1.0472 −1.0481 0.0099

In Figure 2, the root mean square error (RMSE) of the proposed ESPRIT-like algorithm is compared
with that of the KR-ESPRIT algorithm [36] at different SNRs. Here, the RMSE of DOA estimation is
defined as

RMSE =

√√√√E

[
1
K

K

∑
k=1
|θ̂k − θk|2

]
, (24)

where θ̂k is the DOA estimation of the kth source. As shown in Figure 2, the KR-ESPRIT algorithm
suffers significant performance degradation, while the proposed method shows accurate DOA
estimation results. It also verifies that the proposed RD ESPRIT algorithm achieves almost the same
DOA estimation without performance loss.

To evaluate the effect of frame length on estimation performance, we compare the RMSEs with
different frame period lengths. In this simulation, the proposed RD method is used. Without loss
of generality, the total number of snapshots used in this simulation is fixed as T = ML = 51, 200,
and M varies with 256, 512 and 1024. From Figure 3, we can claim that with the increase of M, the
performance degrades in the low SNR cases. In the high SNR cases, almost the same performance can
be achieved with different frame periods. Note that the estimation of KR signal subspace Es requires
a sufficient number of frames. When L becomes small, the estimation of Es will be distorted, which
leads to a degraded estimation performance in the low SNR cases.
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Figure 2. Root mean square error (RMSE) of DOA estimation versus SNR.
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Figure 3. Estimation performance versus performance with different frame period lengths.

In the next simulation, we consider the underdetermined DOA estimation case. Consider a 5-element
partly-calibrated ULA with γ = [1, 1, 1.2ejπ/4, 1, 0.86e−jπ/6]T. Assume that there exist six sources (K = 6)
with DOAs −35◦,−25◦,−15◦, 0◦, 20◦, and 30◦, respectively. Here, the SNR is set as 10 dB. In addition,
the frame length is selected as L = 1024, and the total number of snapshots is set as T = 51, 200.

The performance comparison using the proposed algorithm method and the proposed RD method
is plotted in Figure 4. It demonstrates that the proposed methods work well even when the number of
sources is greater than the number of sensors. In addition, the proposed RD method achieves almost
the same estimation performance with reduced complexity.

The gain and phase uncertainties estimation with the underdetermined case is presented in Table 3.
The SNR used in this experiment is 10 dB. From Table 3, we can see that the gain-phase uncertainties
estimation still has a solid performance.
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Figure 4. Performance comparison with the underdetermined case.

Table 3. Performance of gain and phase estimation with the underdetermined case.

(a) Gain Estimation Results (b) Phase Estimation Results (Radian)

Index True Value Mean STD Index True Value Mean STD

ρ̂1 1.2000 1.1990 0.0138 ϕ̂1 0.7853 0.7836 0.0093
ρ̂2 0.8600 0.8749 0.0267 ϕ̂2 −0.5236 −0.5269 0.0123

The performance of the proposed DOA estimation method with the underdetermined case is
evaluated by calculating the RMSEs versus SNRs with a different number of targets. As is shown
in Figure 5, with the increased number of sources, the performance is heavily degraded in the low
SNR case. In the high SNR case, the RMSE curves converge and the proposed method achieves
good performance.
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Figure 5. Estimation performance versus performance with different numbers of sources using the
proposed RD method.
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6. Conclusions

In this paper, we proposed a DOA estimation algorithm for quasi-stationary signals based on the
KR subspace approach with a partly-calibrated array. We first developed a closed-form expression
to estimate the unknown sensor gains and phases in the KR subspace. Then, the signal DOAs were
estimated by applying the ESPRIT algorithm. In order to reduce the computational complexity, a RD
method was developed. Finally, we derived the unique identification condition for the proposed
method and the DOFs of the proposed method were also analyzed. We have analytically shown and
verified through simulations that the proposed RD method can estimate the DOAs of more sources
than sensors with a partly-calibrated array. In the future, it will be interesting and practical to study the
correlated/coherent sources scenario based on the KR subspace method with a partly-calibrated array.
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Appendix A

In this Appendix, we provide the detailed derivation for the optimization problem (15).
As shown in (11), Π can be calculated based on the least squares method as

Π =
(

EH
s1Es1

)−1
EH

s1Γ
(

Y
)

Es2. (A1)

Substituting (A1) back to (14) results in

min
Y

‖PΓ(Y)Es2‖2
F

s.t. WY = 1(Nc−1)N , (A2)

where P = IN(N−1) − Es1(EH
s1Es1)

−1EH
s1.

To simplify the objective function in (A2), the following properties of matrix trace are applied [42,43],
i.e., ‖M‖2

F = trace[MHM], trace[MN] = trace[NM] and trace[MΓ(d)NΓ(d)] = dH(MT ◦ N)d for
matrices M, N and vectors d with proper dimensions used. The objective function in (A2) can be
reformulated as

‖PΓ(γ̆)Es2‖2
2 = trace

[(
PΓ(Y)Es2

)H(
PΓ(Y)Es2

)]
= Y H

(
(Es2EH

s2)
T ◦ P

)
Y . (A3)

Note the fact that P is a projection matrix, the equality PHP = P is also used in the above
formula simplification.

Hence, the optimization problem (14) can be simplified as

min
Y

Y H
(
(Es2EH

s2)
T ◦ P

)
Y

s.t. WY = 1(Nc−1)N . (A4)

Thus, the derivation is achieved.
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Appendix B

In this Appendix, we provide the detailed derivation for the solution of the optimization
problem (15).

We use the Lagrange multipliers method to solve the optimization problem (15). The Lagrangian
is defined as

L(Y , λ) = Y HQY + λH
(

WY − 1(Nc−1)N

)
, (A5)

where Q = (Es2EH
s2)

T ◦ P and λ is the Lagrange multiplier with dimension (Nc − 1)N × 1. Let the
partial derivative of (A5) with respect to Y be zero, i.e.,

∂L
∂Y

= 2QY + WTλ = 0N(N−1). (A6)

We have Y = − 1
2 Q−1WTλ. Note that WY = 1(Nc−1)N , λ can be expressed as

λ = −2
(

WQ−1WT
)−1

1(Nc−1)N . (A7)

Then, the solution of the optimization problem in (15) can be given as

Ŷ = Q−1WT
(

WQ−1WT
)−1

1(Nc−1)N . (A8)
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