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Abstract: Remaining useful life (RUL) prediction of equipment has important significance for
guaranteeing production efficiency, reducing maintenance cost, and improving plant safety.
This paper proposes a novel method based on an new particle filter (PF) for predicting equipment
RUL. Genetic algorithm (GA) is employed to improve the particle leanness problem that arises in
traditional PF algorithms, and a time-varying auto regressive (TVAR) model and Akaike Information
Criterion (AIC) are integrated to establish the dynamic model for PF. Moreover, starting prediction
time (SPT) detection method based on hypothesis testing theory is presented, by which SPT of
equipment RUL can be adaptively detected. In order to verify the effectiveness of the methods
proposed in this study, a simulation test and the accelerating fatigue test of a rolling element bearing
are designed for RUL prediction. The test results show the methods proposed in this study can
accurately predict the RUL of the rolling element bearing, and it performs better than the traditional
PF algorithm and support vector machine (SVM) in the RUL prediction.

Keywords: remaining useful life; particle filter; genetic algorithm; starting prediction time;
time-varying auto regressive

1. Introduction

Remaining useful life (RUL) prediction of the equipment is the key technology for realizing
condition based maintenance (CBM). Equipment RUL plays an important role in the optimization
of maintenance decisions. If the equipment RUL is predicted in advance, industrial accidents can be
avoided effectively. Thus, RUL prediction of equipment has important significance for guaranteeing
production efficiency, reducing maintenance cost, and improving plant safety [1–4].

In recent years, many works about equipment RUL prediction have been reported. These works
can be categorized into model-based and data-driven methods. Model-based methods are to build
mathematical models to describe mechanical system and degeneration process of machinery according
to physical law. In [5], a bearing RUL was predicted by using Paris crack growth model and GA
algorithm. In [6], Oppenheimer et al. constructed a life model based on forman crack growth law of
linear elastic fracture mechanics to predict remaining machine life. In [7] a spall progression life model
for bearing contact was developed by Choi et al., and it was also combined with the crack initiation
life and the crack propagation life models to construct a total life prediction model. However, some
parameters in these model-based methods such as initiation crack and crack toughness, need to be
obtained by large amounts of history information in advance. Thus, the model-based methods are
hardly applied to predict the RUL of machinery in real time.
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Data-driven methods derive the degeneration process model of a machine from data measured
by sensors online and the model parameters can be adjusted according to real time data. Data-driven
methods have strong advantages in RUL prediction, when a mechanical system is complex and
mechanical principle is indeterminacy. In [8], Chen et al. proposed a reliability estimation method
based on logistic regression model, and applied it to predict the RUL of cutting tool. In [9,10],
the artificial neural networks (ANN) were also used in the RUL prediction of cutting tool. In [1],
Dong et al. proposed a statistical model methodology based on segmental hidden semi-Markov models
(HSMMs) to develop a prognosis for the RUL of the hydraulic pumps. In [2], Qian et al. estimated
a bearing degradation by using recurrence quantification analysis and Kalman filter. In addition,
some relevant reaches on the data-driven methods, such as neural network, support vector machine,
relevance vector machine, and Bayesian algorithm can be seen in [11–15].

Among all the data-driven methods, the particle filter (PF) technique is one of the most effective
for nonlinear and non-Gaussian systems, which can accurately estimate the future state of mechanical
systems. In the last decade, PF technique has been widely applied in diagnosis and prognosis fields.
In [16], Orchard and Vachtsevanos utilized PF algorithm to estimate the state probability density
function of a planetary gear in real-time. In [17], Orchard et al. applied a PF algorithm to predict state
of charge of lithium-ion batteries. In [18], Abbas et al. used a PF algorithm in failure prognosis of the
electrical components in automotive systems. In [19], bearing fault signal noise reduction processing
was carried out with a PF algorithm and AR model. In [20], the Rao-Blackwellized PF was combined
with the unscented transform for fault diagnosis and detection of a nonlinear system. However,
there exists some shortcomings in the traditional PF algorithm. Particle leanness is one of the major
drawbacks, and it may lead to misestimation of future states. The simple method to solve the particle
leanness problem is to increase the number of particles. However, computing burdens of PF will be
increased. If computing time of PF is too long, PF is difficult to apply in practical engineering.

For the above reasons, this paper presents a novel equipment RUL prediction method based
on the PF algorithm and genetic algorithm (GA). The major contributions of this paper are: (1) The
reason of particle leanness arises in traditional PF algorithm is analyzed, and the new PF called
GA-PF is presented to solve the particle leanness problem. Compare the GA-PF with the traditional
PF, it can provide more accurate RUL prediction results; (2) Starting prediction time (SPT) detection
method based on hypothesis testing theory is presented, by which SPT of equipment RUL can be
adaptively detected.

The remaining part of this paper is organized as follows; Section 2 introduces the theory of
the traditional PF algorithm, and the GA-PF is also described in detail; Section 3 shows the RUL
prediction framework that is constructed by using the methods proposed in this paper; In Section 4,
a simulation test is designed for evaluating the performance of the RUL prediction method; In Section 5,
the accelerating fatigue test of a rolling element bearing verifies the effectiveness of the methods
proposed in this study; Finally, conclusions are summarized in Section 6.

2. Particle Filter

2.1. Basic Theory of PF

PF is recursive Bayesian filtering estimation based on Monte Carlo algorithm [21]. It can
approximate posterior probability density by a set of weighted samples also known as particles.

The state space model of a nonlinear system is represented as follows:

xt = ft(xt−1, vt) (1)

zt = ht(xt, wt) (2)
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where, Equations (1) and (2) are called state equation and observation equation, respectively; xt and zt

express state and observation vector of the system at t time, respectively; vt and wt are state noise and
observation noise, respectively; ft and ht are nonlinear functions.

Assuming the state vector xt follows one-order Markov process, the prior probability function of
xt can be derived by Chapman-Kolmogorov equation,

p(xt|z0:t−1) =
∫

p(xt|xt−1, z0:t−1)p(xt−1|z0:t−1)dxt−1

=
∫

p(xt|xt−1)p(xt−1|z0:t−1)dxt−1
(3)

where, the notation “:” in Z0:t−1 expresses that from 0 to t − 1.
Updating posterior probability of xt by zt

p(xt|z0:t) =
p(xt|z0:t−1)p(zt|xt)

p(zt|z0:t−1)
(4)

where,
p(zt|z0:t−1) =

∫
p(xt|z0:t−1)p(zt|xt)dxt (5)

Recursive Bayesian filtering consists of Equations (3) and (4). However, in most cases, it is difficult
to obtain posterior probability p(xt|z0:t) by the analytic solution. Instead of the analytic solution, PF
based Monte Carlo algorithm is introduced.

The key idea of PF is to approximate posterior probability density by a set of weighted
particles (samples). Using N particles {xi

0: t ,ωi
t}N

i = 1 to express the posterior probability p(x0:t|z0:t),
{x0:

i
t, i = 0,1 . . . N} is the particle set, and sampled from the posterior probability distribution

p(x0:t − 1|z0:t − 1). The weight of each particle is {ωi
t, i = 0,1 . . . N}, and ∑N

i = 1 ωi
t = 1. Hence,

the posterior probability p(x0:t|z0:t) at time t can be approximated by N particles as follows

p(x0:t|z0:t) ≈
N

∑
i=1

ωi
tδ(x0:t − xi

0:t) (6)

where δ(·) is Dirac-delta function

δ(x0:t − xi
0:t) =

{
1 x0:t = xi

0:t

0 x0:t 6= xi
0:t

(7)

Since it is difficult to obtain samples from the posterior probability distribution directly, the
importance of a sampling method that can easily obtain samples from an importance distribution
is adopted.

The importance distribution is given as

q(x0:t|z0:t) = q(xt|xt−1, zt)q(x0:t−1|z0:t−1) (8)

The importance weight ωi
t for each sample is as follows

ωi
t =

p(x0:t|z0:t)

q(x0:t|z0:t)
∝ ωi

t−1
p(zt|xi

t)p(xi
t|xi

t−1)

q(xi
t|xi

0:t−1, z1:t)
(9)

where, the symbol ∝ indicates to be proportional to.
The normalized importance weight ω̃i

t is

ω̃i
t =

ωi
t

N
∑

i=1
ωi

t

(10)
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The state xt can be estimated as

x̂t ≈
N

∑
i=1

ω̃i
tx

i
t (11)

Using the above method, the state xt can be estimated by the posterior probability. However, with
increasing iterations, the variance of particle weight will become great, most of particles have small
weight. This results in particle degeneracy of the PF algorithm [22]. To solve the particle degeneracy
problem, multinomial resampling technique is utilized, and its procedure is shown as follows.

Multinomial resampling:
Step 1: For i = 1,2, . . . N, draw a sample set {ui} from the uniformly distribution (0,1];
Step 2: For i = 1,2, . . . N, find the variable quantity j (j = 1,2, . . . N) that satisfies

j−1

∑
n=1

ωn < ui ≤
j

∑
n=1

ωn (12)

Step 3: Store the xi
t as a new particle, and the weight of the new particle ωi

t = 1/N.
The degree of particle degeneracy can be appraised using the effective sample size Neff [23]

Ne f f =
1

N
∑

i=1
(ω̃i

t)
2

(13)

From Equation (13), the smaller value of the effective sample size Neff, the more serious the
problem of particle degradation will be. Setting the threshold of effective sample Nr, Nr = m × N,
m ∈ (0,1). If Neff < Nr particle degradation is serious, PF system performs resampling. After the
resampling process, the particles that have small weight are knocked out, and many new particles are
obtained by the particles that have big weight, as shown in Figure 1.
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Figure 1. Illustration of resampling.

The resampling method solves the problem of particle degradation, many new particles are
produced. However, the resampling method brings a new problem. In resampling procedure, only
the particles that have big weight are selected as copy samples, the new particles are replicas of them,
and the particles with small weight are eliminated. In most cases, all the resampling operations are
focused on a few particles with big weight, the particles lose diversity. This problem is also called
particle leanness.

2.2. PF Based on GA

GA is an artificial intelligent algorithm based on natural selection and genetic mechanism
of biological organism evolutionary process [24]. GA mainly includes selection, crossover, and
mutation operations. In GA, every individual fitness degree is evaluated by using fitness function.
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The individuals that have high fitness degree values will be retained, conversely, the individuals that
have low fitness degree values will be eliminated. After the selection operation, the retained individuals
are used to reproduce offspring as parents on the basis of a crossover rate. Lastly, the mutation operator
is carried out by changing some information of offspring individuals. After the above operations, the
new offspring are obtained and the diversity of population is improved. In addition, the features of
the good individuals are passed on to the new offspring.

In this study, the GA method is introduced to replace the traditional resampling operator for
easing the particle leanness problem. The procedure of GA resampling is explained as follows:

Selection operator: In PF, the smaller variance of the particle weight, the state estimation more
accurate will be, thus a selection method is designed according to the variance of the particle weight.
Assume

{
xi

k, ω̃i
k
}N

i=1 is a particle set obtained at time k, and ω̃i
k indicates particle weight. Vk indicates

the variance of the particle weight. q is a threshold which set in advance. If Vk > q, the crossover and
mutation operators need to be performed.

Crossover operation: Separate the particles into two sets by the strategy explained as follows.

A = round(
1

N
∑

i=1
(ω̃i

k)
2
) (14)

where, round(·) indicates the operation which round to the nearest integer. All particles are sorted
with the weight values in descending order. The top A particles with large weight are divided into set
B, and the other particles are divided into set S. Two particles xm

k, xn
k are randomly selected form sets

B and S respectively, and the crossover operator is carried out by using Equations (15) and (16).

x̃n
k = βxn

k + (1− β)xm
k (15)

where, β is parameter which determine the amount of information being exchanged, and can be
calculated as follows

β =
ω̃n

i
ω̃m

i + ω̃n
i

(16)

Mutation operation: In order to better increase particle diversity, a mutation operator is designed.
The mutation operation is performed on the new particles produced in crossover operation.

x̂n
k =

{
2xm

k − x̃n
k P ≥ R

x̃n
k P < R

(17)

where, R ∈ [0,1] is a random variable; P indicates the mutation probability.
After the GA resampling step, the particles in the low probability density region are adjusted to

the high probability density region, and the particle diversity is also improved. The whole procedure
of the GA-PF is presented as follows:

Step 1: Setting time k = 0, for i = 1,2, . . . N, draw the particles xi
0 from the prior probability

distribution, and all of the particles weight are 1/N;
Step 2: At time k > 0, for i = 1,2,3, . . . N, draw the particles xi

k from the importance distribution,
and calculate the particle weight ωi

k by Equation (9), and normalize the particle weight ωi
k by

Equation (10);
Step 3: Perform the selection, crossover, and mutation operations, and normalize the particle

weight again;
Step 4: For i = 1,2, . . . N, perform the state estimation with Equation (11);
Step 5: Set k = k + 1, and obtain new observation data, return to step (2).
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3. RUL Prediction Algorithm

In general, the whole machine life can be divided into five stages as shown in Figure 2: (1) normal
stage; (2) early degradation stage; (3) middle degradation stage; (4) terminal degradation stage;
(5) breakdown stage [25]. The life prediction of machine is often stared from early degradation stage.
However, when the machine is in the early abnormal stage, or the machine fault is slight, the change of
the vibration data is small, it is difficult to detect the starting time of the occurring degradation stage
by watching the graph of observation data. To deal with the above shortcoming, this study proposes
an SPT detection method based hypothesis testing theory.
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Assuming that Vi,m is vibration data set collected from time t1 to tn. i indicates data acquisition
time, and i = 1,2 . . . n; m represents the number of data acquisition. Then the vibration data measured
from time t1 to tn−1 and the vibration data measured at time tn can be expressed as V(1~n−1),m and
Vn,m, respectively. The significant difference between V(1~n−1),m and Vn,m can be detected by using
Equation (18).

R = (Vn,m −V(n−1),m)

√
N1N2 ϕ

(N1 + N2)(N1S2
1 + N2S2

2)
(18)

where, Vn,m and V(1∼n−1),m are the average values of Vn,m and V(1~n−1),m respectively, and

Vn,m =
m
∑
1

Vn,m/m, V(1∼n−1),m =
n−1
∑

i=1

m
∑
1

Vim/m(n− 1); S1 and S2 express standard deviation of

V(1~n−1),m and Vn,m respectively; N1 and N2 indicate the size of V(1~n−1),m and Vn,m, respectively.
If R satisfies Equation (19), there is a significant difference between V(1~n−1),m and Vn,m. That is to

say, tn is judged as machine occurring degradation time, and machine tendency prediction and useful
life prediction are stated from the point of time tn.

R > T(N1 + N2 − 2, a/2) (19)

where, α represents the level of significance, and α = 0.05.
To use the PF technique for machine tendency prediction and RUL prediction, the state model

and observation model described in Equations (1) and (2) need to be established first. In this study,
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TVAR model is chosen to construct the time series model of mechanical vibration signal. Assuming xt

is vibration signal, the TVAR model of vibration signal is given as follows.

xt = −
p

∑
i=1

ai(t)xt−i + et (20)

where, ai indicates time-varying coefficient; p denotes model order; et is residual error of the model.
ai is a linear combination of a set of basic function,

aj(t) = −
m

∑
j=0

aijgj(t) (21)

where, m is extended dimension; aij is weight of basis function; gj(t) express time basis function. This
study chooses DCT basis function shown in Equation (22) to estimate the time-varying coefficient of
the TVAR model.

gj(t) = a(t) cos(jπ(2k + 1)/2N) (22)

a(t) =

{√
1/N t = 0
√

2/N t 6= 0
(23)

In this paper, Akaike Information Criterion (AIC) method is introduced for determining model
order p, and mathematical expression of AIC is given as follows. The model with the smallest AIC
value is the most suitable model for the time series. A detailed description about AIC method can be
found in reference [26].

AIC(p) = ln σ̂2 +
2p

N − r
(24)

where, N is the length of signal; r indicates pre-order of the model.
In addition, the observation model is determined as

Zt = xt + wt (25)

where, xt and zt express state and observation values at time t; wt is observation noise.
After SPT is decided and TVAR model is constructed, the GA-PF introduced in Section 2 is used

to predict machine state and RUL. RUL of machine is calculated as

RUIP = te − tp (26)

where, tp is present prediction time; te indicates the end of lifetime of machine.
The flowchart of RUL prediction by the GA-PF algorithm is shown in Figure 3 and the procedure

is explained as follows:
Step 1: The vibration signal is collected, and the symptom parameters that can sensitively reflect

machine state are calculated;
Step 2: By using Equations (18) and (19), the optimal SPT is obtained;
Step 3: Assuming the optimal SPT and the present prediction time are ts and tp respectively; TVAR

model is constructed by n symptom parameters obtained from time ts to tp;
Step 4: Use the GA-PF to estimate symptom parameter values of the next time period {tp + 1,

tp + 2 . . . } until the estimated symptom parameter is larger than the preset breakdown threshold;
Step 5: RUL value is obtained with Equation (26);
Step 6: Calculating the (n + 1)th symptom parameter at time tp + 1, and TVAR model is updated

with the new symptom parameter;
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Step 7: The new estimation is conducted by using the GA-PF and the updated TVAR model until
the estimated symptom parameter is larger than the preset breakdown threshold, and the new RUL
value is obtained with Equation (26);

Step 8: Loop Step 3 to Step 7 until the calculated symptom parameter value reaches the
breakdown threshold.
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4. Simulation

In order to evaluate the effectiveness of the RUL prediction method, a simulation test is designed.
We simulate vibration data of accelerating fatigue of a rolling element bearing by using MATLAB.
The vibration signal is expressed as Equation (27), and parameters of the vibration signal are as
follows: natural frequency ωn = 3 kHz; sampling frequency fs = 20 kHz; damped coefficient ε = 0.1;
displacement constant x = 2; impact interval is 0.01s; sampling points are 2048. In order to simulate the
whole degradation process of the bearing, the signals are repeated 150 times with the increasing fault
severity, and Figure 4 shows the vibration signals of the whole lifetime. As shown in Figure 5, root
mean square (RMS) is calculated from the simulation vibration data to reflect the degradation process
of rolling element bearing.

y(t) = xe−εωn sin ωn
√

1− ε2t + v(t) (27)

where, v(t) indicates white noise.
In this simulation test, the first 70 RMS data are utilized to construct TVAR model, and the

remaining 80 data points are predicted by the general PF and the GA-PF, respectively. For GA-PF in
the simulation, the threshold q = 0.05; the mutation probability P = 0.5; the number of particle is set
to 1000; Figure 6a,b shows the prediction results by the general PF and the GA-PF, respectively. Root
mean square error (RMSE), as shown in Equation (28), and the degree of particle degeneracy are used
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to evaluate the performance of the general PF and the GA-PF. The degree of particle degeneracy can be
appraised using the effective sample size Neff as shown in Equation (13). The comparison results are
listed in Table 1. To see Table 1, with the increase of particle, the accuracy of prediction is improved,
and the running time is also increased. Considering the time and accuracy, we selected particle number
N = 1000. When N = 1000, RMSE of the GA-PF and the general PF are 0.1865 and 0.3126, the running
times are 1.232 s and 1.139 s, respectively. Although running time of GA-PF is 0.093 s longer than
general PF, but the prediction accuracy of GA-PF is much higher than general PF. Moreover, available
particles of the GA-PF and the general PF are 413 and 205, respectively. This means that the GA-PF
can effectively prevent particle degeneracy and increase particle diversity. Thus, the performance of
GA-PF is better than general PF, the former is more suitable for equipment RUL prediction.

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (28)

where, xi is the simulation data. x̂i is estimate data. n is length of the data.
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Figure 4. Simulation vibration data. (a) the vibration data in early degradation stage; (b) the vibration
data of the whole degradation stage.
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Table 1. Comparison results.

Particle Number RMSE Available Particle Time

General PF

500 0.7852 127 0.456
1000 0.3126 205 1.139
2000 0.2816 276 3.013
500 0.3092 215 0.541

GA-PF
1000 0.1865 413 1.232
2000 0.1772 501 3.251

5. Application to RUL of Rolling Element Bearing

In this section, a rolling element bearing RUL prediction is designed to verify the effectiveness
of the methods proposed in this study. The experimental system for bearing RUL prediction is
constructed as shown in Figure 7. The bearing used for RUL prediction test is N205 with eight rollers,
pitch diameter: 42 mm, roller diameter: 7.5 mm, and tapered contact angle: 0◦. Maximum dynamic
load of N205 is 17.7 kN, to carry out accelerating fatigue tests of the bearing in a few hours, 17 kN load
is exerted on the test bearing by the loading equipment (Shizuoka RCS2-RA13R, IAI Co. Ltd., Shizuoka,
Japan). Figure 8 shows the appearance of the bearing before and after test. During accelerating fatigue
test, the rotation speed of the test system is set at a constant speed of 800 rpm. Accelerometers (PCB
ICP Model 480C02, PCB Piezotronics Inc., New York, NY, USA) are fixed on the bearing housing to
measure the raw vibration signals. The sampling frequency is 20 kHz. The vibration data is measured
every 2 min, each sample includes 20,480 data points. In total, 258 data files are obtained. After being
amplified by the signal conditioner, the vibration signals are transmitted into the computer for storage
and data handing by the data acquisition (KEYENCE NR-200, YOKOGAWA Company Limited, Tokyo,
Japan). When the vibration signal amplitude is greater than 2, the useful life of the bearing ends.
Figure 9 shows the vibration signal of the whole useful time. As shown in Figure 9, the vibration signal
amplitude exceeds 2 at time 23,280 s, in other words, the whole life of the test bearing is 23,280 s.
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In this study, root mean square (RMS) and peak values calculated from the raw vibration signal
are chosen to reflect degradation process of the bearing. The reason is that RMS and peak values can
sensitively reflect the increase of vibration signal energy with the development of the bearing fault.
Figure 10 shows the bearing degradation curves composed by RMS and peak values.
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After vibration signals collection and symptom parameters extraction, RUL prediction of the
rolling element bearing is carried out by using the methods proposed in this study. Firstly, SPT for
bearing RUL prediction is detected by the SPT detection approach introduced in Section 3. As shown
in Figure 10a, the SPT of RMS is detected at 15,840 s. Secondly, TVAR model is constructed with the
first 600 s RMS data from 15,130 s to 15,730 s, and the model order is decided with the smallest AIC
value. Lastly, the GA-PF algorithm with 1000 particles is used to predict RUL of the bearing. The result
of the bearing RUL prediction with RMS data is shown in Figure 11. Similar to RMS, peak values
shown in Figure 10b are also calculated to predict the bearing RUL, and the SPT of peak values are
detected at 15,080 s. TVAR model of peak value is constructed with the data from 15,080 s to 15,680 s.
The peak values prediction results are shown in Figure 12. In the Figures 11 and 12, x-coordinate
indicates prediction times from SPT to the end of the bearing life, and y-coordinate represents the
predicted RUL. To see Figures 11 and 12, the RUL prediction of RMS and peak values can accurately
reflect the changing trend of the bearing RUL. At the beginning of the RUL prediction, both the RMS
and peak values form relatively large prediction errors because of a lack of prediction data. With the
increase of the RMS and peak value data used in the prediction model, the prediction error fluctuation
is gradually reduced, and the predicted RUL is close to the real bearing RUL values.
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For comparison, the general PF and support vector machine (SVM) methods are also used to
predict RUL of the bearing, and the results are shown in Figures 13–16. The performance of three
methods is evaluated based on RMSE, mean relative error (MRE), variance relative error (VRE), and
the effective particle number, and comparison results are listed in Table 2. To see Figures 11–16 and
Table 2, although the general PF and SVM methods can also reflect the changing trend of the bearing
RUL, the prediction errors of the bearing RUL obtained by both the general PF and SVM methods
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are larger than the GA-PF. The reasons can be explained as (1) the general PF has a particle leanness
problem, and cannot estimate the state accurately; (2) The kernel function and regression parameters
of SVM may not be the optimal choice and do not meet the requirements of RUL prediction. Moreover,
the available particle number of the GA-PF is larger than that of the general PF, which means that
the GA-PF can effectively solve the problem of particle degradation and keep the particle diversity.
From the experimental results, we can see that the proposed methods in this paper are effective, and
can be used for equipment RUL prediction.

MRE =
1
n

n

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣ (29)

VRE =
1
n

n

∑
i=1

(

∣∣∣∣ xi − x̂i
xi

∣∣∣∣− EMRE)
2 (30)

Table 2. Comparison of results of different methods.

SP Method RMSE MRE VRE Available Particle

RMS SVM 4.78 0.63 4.75
RMS General PF 4.57 0.58 1.75 233
RMS GA-PF 2.21 0.18 0.13 452

Peak value SVM 7.15 1.07 9.86
Peak value General PF 6.58 0.92 3.11 216
Peak value GA-PF 3.19 0.25 0.05 437
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In order to accurately predict the equipment RUL, this paper proposed a new RUL prediction 
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operator for solving the particle leanness problem. By using crossover and mutation operators of GA, 
the particles in the low probability density region were adjusted to the high probability density region, 
and the particle diversity was improved. Moreover, SPT of equipment RUL was adaptively detected 
by a method based on hypothesis testing theory. Both the simulation test and the accelerating fatigue 
test of a rolling element bearing were designed to verify the effectiveness of the methods proposed 
in this study. The test results showed that the methods proposed in this study could accurately 
predict the RUL of the rolling element bearing, and it performed better than the traditional PF 
algorithm in the RUL prediction. 
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6. Conclusions

In order to accurately predict the equipment RUL, this paper proposed a new RUL prediction
method based on the GA-PF algorithm. GA was employed to replace the traditional resampling
operator for solving the particle leanness problem. By using crossover and mutation operators of GA,
the particles in the low probability density region were adjusted to the high probability density region,
and the particle diversity was improved. Moreover, SPT of equipment RUL was adaptively detected
by a method based on hypothesis testing theory. Both the simulation test and the accelerating fatigue
test of a rolling element bearing were designed to verify the effectiveness of the methods proposed in
this study. The test results showed that the methods proposed in this study could accurately predict
the RUL of the rolling element bearing, and it performed better than the traditional PF algorithm in
the RUL prediction.
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