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Abstract: Rotating machinery is widely used in industrial applications. With the trend towards
more precise and more critical operating conditions, mechanical failures may easily occur. Condition
monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and
security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary
learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme
is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of
raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method
regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix
is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple
and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the
K-nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns
automatically. Two experimental case studies are investigated to corroborate the effectiveness of
the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis
validates that the dictionary learning-based matrix construction approach outperforms the mode
decomposition-based methods in terms of capacity and adaptability for feature extraction.

Keywords: rotating machinery; condition monitoring; intelligent diagnosis; dictionary learning;
singular value decomposition; dimensionality reduction

1. Introduction

As a type of equipment widely used in modern industry, rotating machinery is becoming more
precise and with more complicated structures. The operating conditions have also become more
severe, involving high speeds, high loads, high temperatures, etc. Mechanical sub-systems in rotating
machinery, especially the critical components such as bearings [1], gearbox [2], rotor [3] and fan [4]
are easily subject to failure, resulting in unexpected downtime losses or even disastrous accidents.
Condition monitoring and fault diagnosis (CMFD) technology is a promising tool to realize early fault
alarms and minimize losses.

Among the various approaches used in CMFD technology, the signal-based diagnosis approaches
and data-driven diagnosis approaches attract continuous interest [5,6]. In signal-based approaches,
the foundation is that the fault information can be reflected in the monitored signals, and a diagnosis
result can be made by checking the consistency between real-time data and healthy signal patterns.
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Numerous studies have developed diagnosis algorithms using advanced signal processing techniques
in attempts to enhance diagnostic performance. Intense interest is focused on time-domain analysis,
frequency-domain analysis, time-frequency analysis [7], wavelet transform [8], empirical mode
decomposition (EMD) [9], spectral kurtosis [10] and other techniques. Despite the achieved success,
the analysis procedure always needs to inspect the time waveforms and frequency spectra. Hence, the
diagnosis decisions largely rely on the expertise of operators and the prior knowledge of healthy signal
patterns, which increases the difficulty to popularize this approach for practical industrial tasks [11].
Owing to a large volume of handily available performance history databases, data-driven approaches
have been widely exploited in engineering applications. With the aid of artificial intelligence techniques,
data-driven approaches extract the underlying knowledge of complicated industrial systems from
their historical data. The classification model can be trained by the feature set extracted from data, so as
to identify the fault patterns intelligently when similar faults occur afterwards. From this point of view,
this diagnosis strategy is also referred as intelligent diagnosis [12]. In general, whether the extracted
features are sensitive to mechanical faults plays a key role in the diagnosis performance. According
to existing studies, most reported features mainly include the statistical characteristics, the indices
related to entropy, the energy ratios, etc. [13–16]. Due to the lack of comprehensive exploration of
signal characteristic, it is often difficult to ensure these features can properly reflect the patterns of
raw signal, and the diagnosis ability may be thus degraded. There is, in particular, a need to attempt
more efficient feature extraction methods to facilitate the intelligent diagnosis of mechanical failures,
especially those can adaptively learn the inherent structures and scales of signal.

With their successful application in image processing [17–19], sparse representation (SR) theory
and dictionary learning have drawn attention in the field of machinery fault diagnosis in recent
years [20–24]. The fundamental idea of SR theory is that natural signals can be represented by a sparse
linear combination of atoms in a fixed dictionary [25,26]. As the manually predefined dictionaries may
not well match the characteristics of decomposed signals, the sparsity level of representation coefficients
will be unsatisfactory and the redundant information will be kept. Many efforts have been devoted to
developing adaptive dictionary learning algorithms from raw signals [27,28]. Essentially, dictionary
learning provides self-adaptive tools for extracting and analyzing the characteristics of machinery
signals. Chen et al. proposed a noise reduction method using adaptive dictionary learning to extract
impulse characteristics for bearing and gearbox diagnosis [20]. Tang et al. applied shift-invariant
dictionary learning to detect the latent components and separate the fault-related time series from
original signals [21]. Most of the previous works preliminarily explored the dictionary learning in
signal decomposition, noise reduction and fault signature enhancement, while further studies of its
application to intelligent diagnosis are needed. Liu et al. employed the representation coefficients on
the learned dictionary as the adaptive features, and achieved high classification performance with a
linear discriminant analysis (LDA) classifier for the bearing experiments [22]. Zhou et al. presented a
new approach by means of dictionary learning, energy ratios of latent components and hidden Markov
model (HMM) for diagnosing bearing faults [23].

As a powerful signal processing technique, singular value decomposition (SVD) has exhibited
excellent performance in mechanical fault diagnosis [29–35]. Different from the conventional feature
organization algorithms, the extraction of singular values helps decompose a feature matrix, which
guarantees the stability of the features on the basis of matrix theory. The small fluctuations of the matrix
elements cause almost no disturbances on the singular value. Also, the singular value possesses another
two favorable properties, namely the scale invariance and rotation invariance. Furthermore, as reported
in [30,31], the variation trend of a singular value sequence is associated with the energy distribution
and complexity of components signals in Hankel-based matrix. In general, the singular value denotes
the natural characteristic of matrix. Consequently, this feature is sensitive and qualified to assess the
conditions of machinery signals. However, the selection of matrix construction parameters, i.e., lag time
and embedding dimension, is tough to date [32]. To tackle this problem, many scholars have applied
the adaptive time series decomposition (ATSD) algorithms, such as EMD, local characteristic-scale
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decomposition (LCD), local mean decomposition (LMD), etc., to decompose the signals and get a finite
number of components, which contain the different frequency information from high to low [32–34].
Then, the initial feature matrix can be formed automatically by merging these components. Actually,
the singular values of the matrix based on this strategy mainly reflect the division states of frequency
bands by ATSD. When the signals in different conditions have similar spectral contents, this feature
extraction strategy may not distinguish the condition patterns exactly [35].

In this paper, a novel framework using dictionary learning and SVD is proposed for intelligent
diagnosis in rotating machinery. We investigate the potential of introducing the dictionary learning
scheme as the initial feature matrix extraction method to achieve improved sensitivity and diagnosis
capability of singular values. Specifically, the learned dictionary can reveal the abundantly inherent
information of the analyzed signal, leading to an expected feature space. By applying SVD to the
dictionary matrices, the singular value sequences can be obtained and serve as the feature vectors of
raw signals. Due to the high dimensionality of feature vectors, principal component analysis (PCA)
is chosen to reduce the dimensionality and improve the discriminability [36,37]. The fault patterns
can be visually observed from the scatter plots of the first two or three principal components, and the
intelligent diagnosis results can be made by the K-nearest neighbor (KNN) algorithm. In addition, the
effectiveness and superiority of the proposed feature extraction strategy is investigated in comparison
with that of the traditional EMD-based method.

The remainder of this work is organized as follows: the dictionary learning scheme and SVD are
reviewed in Sections 2 and 3, respectively. Then, an intelligent monitoring and diagnosis method of
rotating machinery using dictionary learning and SVD is proposed in Section 4. Section 5 contains the
description of two fault datasets from bearing and gearbox, the diagnosis procedures, the discussion
and comparison of the results. Finally, the conclusions can be drawn in Section 6.

2. Dictionary Learning Scheme

2.1. Sparse Representation Theory

The basic idea of sparse representation theory assumes that a digital signal can be represented by
a sparse linear combination of the atoms, which are from a fixed over-complete dictionary. Generally
speaking, for an input signal y ∈ Rn, it can be expressed as:

y = Dx + ξ (1)

where D ∈ Rn×K is a matrix called dictionary, which contains K atoms di ∈ Rn, i = 1, . . . , K as its
columns, x ∈ RK is the sparse representation coefficient, and ξ is assumed as additive noise. When the
dictionary D and input signal y are fixed, we hope to obtain the succinct representation coefficient,
which means the majority of the entries in coefficient vector are zero or close to zero. That is, only a
small proportion of atoms will contribute to approximating the input signal. To measure sparsity level
of coefficient vector x, the l0-norms of vector x can be calculated as follow:

||x||0 = ∑ k
j=1
∣∣xj
∣∣0 (2)

which represents the number of nonzero items in x. Then the sparest representation can be transformed
to the following optimization problem:

(P0, ε) min
x
||x||0 subject to ||y−Dx||2 ≤ ε (3)

where the approximation error is assessed by l2-norm and ε is the parameter which depends on the
noisy level of signal. The optimization process is generally called sparse coding. For the overcomplete
dictionary, Equation (3) are underdetermined systems of equation. This is a combinational optimization
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problem and the process of sparse coding is a typical non-deterministic polynomial (NP) hard problem.
Thus, scholars turn to approximate algorithms to look for the sparsest collection.

The matching pursuit (MP) and orthogonal matching pursuit (OMP) are two simplest but efficient
greedy methods. These approaches select the atoms in sequence, according to the correlation between
the columns of dictionary and residual signal. Since sparse coding is an indispensable step in dictionary
learning scheme, the primary ideas of OMP is introduced briefly. Firstly, the algorithm defines an
initial residual r̂(0) = y and a current linear combination of the atoms ŷ(0) = 0; Then, for k = 1, . . . ,
the r̂(k) and ŷ(k) are updated step by step, always keeping y = r̂(k) + ŷ(k); All the atoms in dictionary
D are normalized, that is, ||di||2 = 1. During kth update, an atom which has a maximum correlation
with r̂(k−1) is selected and added to current linear combination. The correlation between atoms and
residual can be measured by the following equation:

ik = argmax1≤i≤K

∣∣∣〈rk−1, di

〉∣∣∣ (4)

In this stage, a current linear combination of the atoms ŷ(k) can be obtained:

ŷ(k) = ∑ k
l=1ak

i ldi l (5)

where the coefficients ak
i can be determined by using least squares methods, that is, minimize∣∣∣∣∣∣y− ŷ(k)

∣∣∣∣∣∣2. Also, an updated residual r̂(k) = y − ŷ(k) should be used in the next iteration. This
iteration can be repeated until the residual satisfies some set threshold or the number of nonzero
elements in x has reach an upper limit. The OMP could generate highly sparse solutions in sparse
coding stage and is further adopted in this paper.

2.2. K-SVD Dictionary Learning

Sparse representation differs from other conventional basis representation models because the
dictionary can provide a wider array of basis functions. This benefit offers more flexibility in signal
representation, and thus more validity dealing with tasks like signal compression, feature extraction
and more. It should be noted that two challenges exist in this model, one involving the sparse
coefficients solving as aforementioned, and the other, designing the dictionary to fit the structure in the
analyzed data. The early dictionaries are chosen as a prespecified set of basis functions, such as discrete
cosine transforms (DCT), wavelets, curvelets, short-time Fourier transforms, etc. This dictionary
designing scheme is simple and always lead to fast algorithms, while the performance largely depends
on how adaptive the atoms are to sparsely represent the input signals, indicating it is necessary to
manual find the signal pattern firstly. Another route for designing dictionary is to adapt the dictionary
with respect to a set of sample signals based on learning. Such dictionary learning process can capture
the inherent characteristic of raw signal as the learned atoms, which is essentially an adaptive methods
regardless of any prior knowledge of signals.

K-singular value decomposition (K-SVD) is a highly efficient dictionary learning method. This
algorithm mainly include two phases. One step is to find a sparse coefficient given a fixed dictionary
which can be regarded as sparse coding. Another step is dictionary update stage based on the acquired
coefficient vectors. The columns of dictionary are updated sequentially in K-SVD. The pivotal steps of
this method will be illustrated briefly.

Given a signal set Y = {yi}N
i=1, yi ∈ Rn and an initial dictionary D ∈ Rn×K, the sparse

representation coefficient vectors xi corresponding to signal samples yi can be gathered to construct
the coefficient matrix X ∈ RK×N . In this problem, we want to get the sparse representation of sample
signals Y based on the changing dictionary D and coefficient matrix X. A desirable dictionary, which
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can decompose the signals sparsely, should be learned in this procedure. The problem can be met
by considering:

min
D,X

N

∑
i=1
||xi||0 subject to ||Y−DX||2F ≤ ε, (6)

where ε is the reconstruction error and the Frobenius norm of a matrix ||A||F is defined as

||A||F = (∑ij A2
ij)

1/2. Firstly, the D is fixed and an optimal coefficient matrix X can be determined.
Then, a second step is conducted to update the dictionary. Here, only one column dk is modified at one
time, while other columns in D are freezed. Also, the corresponding coefficient vector xk

T which is the
kth row in X is changed. We just need to minimize the target function ||Y−DX||2F to realize the atom
updating. This process can be expressed as:

||Y−DX||2F =

∣∣∣∣∣
∣∣∣∣∣Y− K

∑
j=1

djx
j
T

∣∣∣∣∣
∣∣∣∣∣
2

F

=

∣∣∣∣∣
∣∣∣∣∣(Y−∑

j 6=k
djx

j
T)− dkxk

T

∣∣∣∣∣
∣∣∣∣∣
2

F

= ||Ek − dkxk
T ||

2
F, (7)

where Ek means the error for all signal samples when the atom dk is removed. Now, we may intend
to perform singular value decomposition (SVD) on Ek and find alternative dk and xk

T to reduce error.
However, it is to be noted that, a step must be done before SVD to make sure the updated xk

T is not
filled. A variable is define as:

ωk =
{

i
∣∣∣1 ≤ i ≤ K, xk

T(i) 6= 0
}

(8)

The sample signals {yi} that use the atom dk can be indexed by ωk and the positions of nonzero
entries in xk

T can be determined by parameter i in Equation (9). Define Ωk as a matrix of size N × |ωk|,
with ones on the (ωk(i), i)th entries and zeros elsewhere. The multiplication xk

R = xk
TΩk changes the

length of xk
T to |ωk| by removing the zero entries. Similarly, the matrixes YR

k = YΩk, YR
k ∈ Rn×|ωk |

and ER
k = EkΩk, ER

k ∈ Rn×|ωk | only include the sample signals or error columns that use the atom dk.
Therefore, we define: ∣∣∣∣∣∣EkΩk − dkxk

TΩk

∣∣∣∣∣∣2
F
=
∣∣∣∣∣∣ER

k − dkxk
R

∣∣∣∣∣∣2
F

(9)

Figure 1 presents a more understandable explanation of this procedure. This time, we can process
ER

k = U∆VT via SVD. After that, the dk can be changed to the first column of U and xk
R can be replaced

by the first column of V multiplied by ∆(1, 1). All the atoms in D are updated one by one and the
iteration of sparse coding and dictionary learning is repeated until convergence or the number of
iteration reached. Detailed algorithm of K-SVD is given in [27].
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3. Singular Value Decomposition

According to matrix theory, a matrix A (A ∈ Rm×n) can be decomposed into a number of
elementary matrices satisfying mutually orthogonal and unit-rank by SVD, that is: A = U

[
Σ 0
0 0

]
VT

Σ = diag(λ1, λ2, . . . , λr), λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0
(10)

where U ∈ Rm×m and V ∈ Rn×n are two orthogonal matrices, Σ is a diagonal matrix, λi (i = 1, 2, . . . , r)
is the singular value of matrix A. Both the value and variation trend of singular value sequence
reflect the nature characteristic of matrix. Consequently, the singular value can be used to describe
the important information implied in the matrix. Prior to performing SVD, the feature matrix are
traditionally formed based on phase space reconstruction technique. Two reconstruction parameters,
namely the lag time and embedding dimension, have an influence on the initial feature matrix and
further the results of singular value. Unfortunately, no mature theory can be applied to guide the
selection of reconstruction parameters. As a result, the further studies focus on the extraction of feature
matrix which can represent the nonlinear and non-stationary characteristics of raw vibration signals.

4. Proposed Method

In essence, dictionary learning allows more flexibility to extract and analyze the inherent
characteristics of signal, regardless of any prior knowledge. The learning process adapts the basic
atoms in a dictionary of the characteristic patterns of the monitored signals. The underlying structures
and scales of signal, such as periodic impulses and resonance information, can be captured by the basis
atoms. Thus the learned dictionary contains a substantial amount of signature information, delivering
potential benefits in the feature extraction. For this purpose, we propose to introduce the dictionary
learning scheme as the initial feature matrix extraction method for further analysis. The detailed steps
of dictionary learning are described as follows:

(1). Given a signal sample, partition the signal into an amount of overlapping segments and generate
the dataset Y for dictionary learning.

(2). Set the initial parameters, i.e., initial dictionary D0, iteration number K, noise level ε.
(3). Sparse coding: use the OMP algorithm in Section 2.1 to find the sparse representation coefficient.
(4). Dictionary update: update the atoms in the dictionary according to the learning algorithm in

Section 2.2.
(5). Repeat the step (3) and (4) until the number of iteration reach.

A more intuitional workflow is illustrated in Figure 2. The tuned parameters in K-SVD dictionary
learning are given in Table 1. With the above steps, the characteristic patterns in the signal sample can
be fully explored and mined. The dictionary matrix which contains abundant diagnostic information
can be adaptively learned.
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Table 1. Parameters of K-SVD dictionary learning.

Initial
Dictionary Overlap Size Sparse Coding Noise Level Update Iterations

DCT Maximum overlap ratio OMP Wavelet coefficient estimator 20

Following the data-driven diagnostic procedure, a novel intelligent diagnosis method for rotating
machinery is proposed in this work (see Figure 3). At the first step, the sensitive features should
be extracted based on acquired vibration signals to represent different machinery conditions. This
step relies on two stages: dictionary learning and singular value extraction. Dictionary learning is
employed to extract initial feature matrix. Then, the singular value sequence of learned dictionary
matrix can be used as the feature vector of analyzed signal. Technically, the singular value sequence
is of high-dimensionality, implying it is impossible to directly serve as the input for classification
model. Hence, the next step is dimensionality reduction, which mainly includes linear and nonlinear
methods. Although nonlinear dimensionality reduction methods achieved some successful cases
in fault diagnosis, it should be noted that the nonlinear methods suffer from some disadvantages
such as the computational burden and estimation errors [37]. Otherwise, the nonlinear methods may
not outperform the traditional linear ones according to some numerical experiments as reported in
literatures [38]. This framework is not limited to a specific dimensionality reduction approach, as
linear and nonlinear methods may work in different scenarios. For simplicity, this work just apply a
basic approach, PCA, to reduce dimensionality and map singular value sequence to low-dimensional
principal components for pattern recognition. Finally, the K-nearest neighbor (KNN) classifier is
utilized to identify the different machinery conditions automatically. Unlike artificial neural networks
(ANN) and support vector machine (SVM), KNN is a non-parametric classification model and the
training process is to store the training samples directly, which avoids the cost of parameters tuning
and model training in other algorithms.
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5. Experimental Results and Comparisons

To demonstrate the applicability and superiority of proposed method, the analysis of two fault
datasets from bearings and gearbox are conducted, respectively.

5.1. Case 1: Rolling Bearing Fault Diagnosis

5.1.1. Experimental Data

The rolling bearing dataset is from the Electrical Engineering lab at Case Western Reserve
University. Many scholars have utilized this dataset as a standard reference to test their algorithms
over the last decade. The experiment platform consists of a 2 hp motor, a torque transducer,
a dynamometer, and control electronics. The test bearings in SKF6205 type support the motor shaft
(Svenska Kullagerfabriken AB, Gothenburgh, Sweden). A normal condition and three fault conditions,
i.e., inner race fault, ball fault and outer race fault, are tested, during which the vibration signal of
bearing can be collected by acceleration sensors with a sampling frequency of 12 kHz. The single point
faults are introduced to the test bearings with a fault diameter of 7 mils. The experimental speed is
1772 rpm.

In each condition, a large sample are divided into 50 samples, each of which contains 6000 data
points. 20 samples selected randomly are used for training dataset and the remaining 30 samples are
used to test the recognition rate. Totally, there are 80 samples for training and 120 samples for testing
in the four bearing conditions. The time waveforms and frequency spectra of the signal samples in the
four conditions are presented in Figure 4.
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Figure 4. The time waveforms and frequency spectra of vibration signals: (a) Normal condition;
(b) Inner race fault; (c) Ball fault; (d) Outer race fault.

5.1.2. Diagnosis Procedure and Results

As presented previously, the dictionary learning scheme is firstly adopted to generate the initial
feature matrices in this work. Each dictionary with a size of 100× 100 is learned from each sample,
which means 100 atoms, each with the length of 100 points. In principle, increasing the atom length
maps directly to the computational burden and reduces the learning capacity based on existing
dictionary learning algorithms. For fault recognition of rotating machinery, setting atom length large
enough to include one impact will allow more evident fault patterns to be contained by learned
dictionary. In our experiments, it can be find each impact lasts less than 100 points in most cases, if any.

For clarity, the dictionary matrices corresponding to four bearing conditions are shown from
Figures 5–8, respectively. We compare some selected atoms in the dictionary with the raw signal
enlargements. One can perspicuously observe the atoms have caught the underlying structure of raw
signal. In normal condition, no obvious impacts appear in the learned atoms, whereas acute impulses
phenomenon can be noticed in fault conditions. Generally, the mechanisms of generating impulses
may have differences when faults occur in different position. Hence, these impulses exhibit different
fault signatures, which can be utilized for pattern recognition.

Then, the singular value sequences for total 200 samples are extracted from the learned dictionary
matrices. As shown in Figure 9, it is easy to find the gaps of singular value sequences between different
bearing conditions. The variation trends of sequences have excellent separability so that fault diagnosis
using singular value sequences is positively tenable. Furthermore, the new significant features by
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PCA, namely the principal components, are adopted to recognize and classify the bearing conditions.
To compare the proposed method with traditional EMD-based method, we apply EMD to decompose
the sample signals, construct feature matrices and extract singular value sequences. Here, we present
the results after dimensionality reduction. The contribution rate of first few principal components are
listed in Table 2. The scatter plots of the principal components using the two pre-processors are shown
in Figures 10 and 11, respectively.
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Figure 5. The learned dictionary from the sample signal of normal condition: (a) the learned dictionary
matrix; (b) the learned atom and enlargement of the raw signal.
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Figure 6. The learned dictionary from the sample signal of inner race fault: (a) the learned dictionary
matrix; (b) the learned atom and enlargement of the raw signal.
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Figure 7. The learned dictionary from the sample signal of ball fault: (a) the learned dictionary matrix;
(b) the learned atom and enlargement of the raw signal.
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Figure 8. The learned dictionary from the sample signal of outer race fault: (a) the learned dictionary
matrix; (b) the learned atom and enlargement of the raw signal.
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Figure 9. Singular value sequences corresponding to four bearing conditions.
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Table 2. Contribution rate of first few principal components in case 1.

Pre-Processor First PC First Two PCs First Three PCs

Dictionary learning 0.881 0.955 0.976
EMD 0.952 0.988 0.994
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Figure 10. Scatter plots of the principal components after dimensionality reduction using dictionary
learning and SVD: (a) the first two principal components; (b) the first three principal components.
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Figure 11. Scatter plots of the principal components after dimensionality reduction using EMD and
SVD: (a) The first two principal components; (b) The first three principal components.

In both methods, the first two principal components account for up to 95% of the contribution rate,
indicating the reliability of first two or three principal components. From Figure 10, all the samples are
well separated in 2D and 3D space based on dictionary learning and SVD. Nevertheless, there is an
overlapping area between the inner race fault and ball fault, using EMD-SVD pre-processing from
Figure 11.

Through inspecting the time waveforms and frequency spectra in Figure 4, we can find the
frequency components are relatively similar for the two conditions, leading to the similarity of the
frequency band partition. Thus, the major elements in IMF matrices tend to be the same in the two
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conditions, which results in the overlapping area of principal components. The feature matrix based
on this strategy cannot directly reflect the detailed information of vibration signal.

The first three principal components are selected as the feature vector. The 80 training samples are
applied to construct KNN classifier. The diagnosis results of 120 testing samples are given in Figure 12.
The multi-class confusion matrix illustrates the detailed recognition accuracy and misclassified error
for all conditions (inner race fault, ball fault, outer race fault and normal correspond to labels 1, 2, 3
and 4, respectively). Undoubtedly, the diagnosis accuracy using dictionary learning is 100%, while
EMD pre-processor only achieves the 90.8% accuracy, which the particular misclassified errors keep
consistent with the analysis of principal components in 2D and 3D space.
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Figure 12. Multi-class confusion matrices of testing samples: (a) Dictionary learning pre-processor;
(b) EMD pre-processor.

5.2. Case 2: Gearbox Fault Diagnosis Results

5.2.1. Experimental Data

The second dataset is from our gearbox test rig, which includes a single-stage cylindrical straight
gearbox, a DC motor for driving gearbox, a magnetic powder brake for loading and data acquisition
system. Four types of faults on gear and bearing are created inside the gearbox, i.e., the root crack, tooth
broken, outer race fault and roller fault, respectively. Since the high-speed stage are more significant
for a gearbox in terms of lifetime, all the faults are introduced to the high-speed gear and bearing.
The vibration signal of gearbox casing is measured by an accelerometer with a sampling frequency
20 kHz. The speed of motor is 1500 rpm and the load is 11 N·m in the experiments. Detailed schematic
diagram of test rig and damaged components are given in Figure 13.

Like the sample preparation in case 1, there are 50 samples in each data subset, from which 20
samples are split for training and the other 30 samples are tested. Each sample is a section of raw
signal containing 6000 points. The time waveforms and frequency spectra of the signal samples in the
five conditions are presented in Figure 14.
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Figure 13. The single-stage cylindrical straight gearbox test rig: (a) Schematic diagram of gearbox test
rig; (b) The damaged components.
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Figure 14. The time waveforms and frequency spectra of vibration signals: (a) Normal condition;
(b) Root crack; (c) Tooth broken; (d) Outer race fault; (e) Roller fault.



Sensors 2017, 17, 689 15 of 18

5.2.2. Diagnosis Procedure and Results

The above-mentioned procedure is conducted on the gearbox fault datasets again. Due to the
space limitations, we directly show the diagnosis results after dimensionality reduction. From Table 3,
it can be find that the first three principal components can reach a relatively satisfactory contribution
rate over 90% in both two methods.

Table 3. Contribution rate of first few principal components in case 2.

Pre-Processor First PC First Two PCs First Three PCs

Dictionary learning 0.747 0.843 0.907
EMD 0.935 0.973 0.989

As shown in Figure 15, by using dictionary learning pre-processor, almost no overlapping area
can be observed for the first two principal components. And furthermore, all the samples are distinctly
identified for the first three principal components. For comparison, the results by EMD pre-processor
are presented in Figure 16. One can see the distribution areas are very close for the three machinery
conditions, namely root crack, tooth broken and roller fault, both in 2D and 3D space, which may lead
to misclassification.
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Figure 15. Scatter plots of the principal components after dimensionality reduction using dictionary
learning and SVD: (a) The first two principal components; (b) The first three principal components.
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Figure 16. Scatter plots of the principal components after dimensionality reduction using EMD and
SVD: (a) The first two principal components; (b) The first three principal components.
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The diagnosis results adopting first three principal components are illustrated in Figure 17 (root
crack, tooth broken, outer race fault, roller fault and normal correspond to labels 1, 2, 3, 4 and 5
respectively). Similar to scatter plots of principal components, the diagnosis accuracy using dictionary
learning is 100%, while that of EMD is 96%, demonstrating the superiority of proposed method again.
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Figure 17. Multi-class confusion matrices of testing samples: (a) Dictionary learning pre-processor; (b)
EMD pre-processor.

6. Conclusions

In this research, a novel intelligent diagnosis method using dictionary learning and SVD is
proposed for rotating machinery. The main idea of this framework is to extract the initial feature
matrix from the raw signals by a dictionary learning scheme. Actually, the atoms learned in dictionary
matrix are capable of capturing the underlying structures of analyzed signals, and thus preserve
abundant identifying information. The dictionary learning scheme can extract the expected feature
matrix efficiently, while avoiding the selection of lag time and embedding dimension. Afterwards,
the singular value sequence is computed to denote the natural characteristic of the matrix. As the
dimensionality of the sequence is high, the PCA is applied to relieve this dimensionality and generate
the more significant PCs. Finally, the first several PCs are used as fault feature vectors for KNN
classifier to diagnose the faults automatically. The proposed method is especially suited for classifying
and recognizing the machinery conditions, which is verified by two datasets from bearing and gearbox,
respectively. The comparisons with the existing EMD-based method demonstrate the superiority of
this new approach.
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