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Abstract: This paper considers the problem of direction-of-arrival (DOA) estimation of coherent
signals on passive coprime arrays, where we resort to the fourth-order cumulants of the received
signal to explore more information. A fourth-order cumulant matrix (FCM) is introduced for the
coprime array. The special structure of the FCM is combined with the array configuration to resolve
the coherent signals. Since each sparse array of a coprime array is uniform, a series of overlapping
identical subarrays can be extracted. Using this property, we propose a generalized spatial smoothing
scheme applied to the FCM. From the smoothed FCM, the DOAs of both the coherent and independent
signals can be successfully estimated on the pseudo-spectrum generated by the fourth-order MUSIC
algorithm. To overcome the problem of occasional false peaks appearing on the pseudo-spectrum,
we use a supplementary sparse array whose inter-sensor spacing is coprime to that of either existing
sparse array. From the combined spectrum aided by the supplementary sensors, the false peaks are
removed while the true peaks remain. The effectiveness of the proposed methods is demonstrated by
simulation examples.
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1. Introduction

A coprime array consists of two uniform sparse arrays, from which a virtual uniform linear array
(ULA) can be constructed from the spatial differences between any two sensors [1,2]. The spatial
autocorrelations at all lags are estimated on the virtual ULA. The increased degrees of freedom
has been used to identify O(MN) sources from only O(M + N) physical sensors [3,4]. Due to
the simplicity of the array configuration, and the ability to resolve many more signals than the
number of sensors, coprime arrays have attracted considerable interest in the DOA estimation
applications [5–7]. In real scenarios, due to multi-path propagation or smart jammers, signals from
different DOAs may become partially correlated, or coherent (fully correlated) in the extreme case [8].
The correlated/coherent signals pose a great challenge to the DOA estimation on coprime arrays.
Since the spatial autocorrelations are estimated from the sample mean of the sensor-to-sensor signal
multiplications, the presence of coherent signals indicates that the spatial autocorrelations contain
cross-terms, which strongly affects the structure of the signal subspace. Incorrect extraction of the
signal subspace brings about a failed DOA estimation.

The spatial smoothing preprocessing scheme was developed for a physical ULA to resolve
coherent signals [9]. On coprime arrays, such scheme was employed to construct a correlation matrix
for the virtual ULA [2]. However, the scheme cannot eliminate the cross-terms and hence the coherent
signal problem is not solved. Recently, BouDaher et.al. proposed an algorithm to locate coherent
targets using an active sensing approach on the coprime multiple-input multiple-output radar [10].
However, their method cannot be used for the DOA estimation on passive coprime arrays.
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The fourth-order (FO) array processing methods were developed for the DOA estimation of
non-Gaussian signals [11,12]. The main interests in using the FO cumulants relies on the increased
degrees-of-freedom provided by the virtual coarray, and the higher resolution brought by the larger
effective aperture [13–15]. Currently, the FO processing methods are used in coprime arrays [16] or
nested arrays [17] to increase the virtual aperture. However, as the authors stated, their algorithms
cannot handle coherent signals.

In our work, the scenario where the independent and coherent signals coexist is considered.
We first formulate an FO cumulant matrix (FCM) with a special form, from which the DOA estimation
can be carried out by the fourth-order MUSIC (4-MUSIC) algorithm [11]. Unfortunately, the FCM
cannot be used for DOA estimation of the coherent signals directly. The particular form of the FCM
is combined with the array configuration to resolve coherent signals. Since each sparse array is
uniform, a series of overlapping identical subarrays can be extracted. Taking one such subarray from
each of the sparse arrays, we can build a coprime subarray. An FCM is inherently defined on such
coprime subarray, whose size is determined by the subarray sensor numbers. On two similar coprime
subarrays, the FCMs share the same structure. Analogous to the spatial smoothing scheme applied
to the correlation matrix of a ULA, we propose a generalized spatial smoothing scheme applied to
the FCM. When the smoothed FCM is adopted by the 4-MUSIC algorithm, both the independent and
coherent signals can be successfully estimated.

Occasionally, the pseudo-spectrum generated from the smoothed FCM encounters a false-peak
problem. Some false peaks may appear at the directions where none of the true signals reside,
interfering with the extraction of the true signals. We analyzed the causation of this phenomenon.
To overcome this challenge, a supplementary sparse array can be added, whose inter-sensor spacing is
respectively coprime to each of the existing sparse arrays. On the combined pseudo-spectrum aided
by the supplementary sensors, the false peaks are removed.

This paper is organized as follows. In Section 2, we briefly review the coprime array configuration
and then formulate the signal model. In Section 3, the FO cumulants as well as the form of the FCM
are detailed, and the impact of coherent signals on the FCM is investigated. In Section 4, a generalized
spatial smoothing scheme on the FCM is proposed to resolve coherent signals. Section 5 provides
a method to remove the false peaks on the pseudo-spectrum. The effectiveness of the new approach is
demonstrated in Section 6. Section 7 concludes the paper.

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices).
E{·} represents the statistical expectation. (·)T and (·)H , respectively, denote the transposition and
conjugate transposition of a vector or a matrix. (·)∗ is the element-wise complex conjugate. ⊗ denotes
the Kronecker product. rank(·) denotes the rank of a matrix. ‖x‖ is the 2-norm of the vector x. We use
diag(x) to denote a diagonal matrix that uses the elements of x as its diagonal elements.

2. Signal Model

As illustrated in Figure 1, a typical coprime array consists of two sparse uniform arrays, denoted by
Array A and Array B, respectively. Let M and N be coprime integers, the sensors of the two sparse
arrays are located at (with common sensors for both sparse arrays):

xA = {MiAd | iA = 0, 1, . . . , LA − 1} , (1)

xB = {NiBd | iB = 0, 1, . . . , LB − 1} . (2)

In (1), iA and iB are the indices of the sensors, the unit inter-sensor spacing d = λ/2 with λ as the
half-wavelength, and LA and LB are the number of sensors of Array A and B, respectively. Typically,
LA ≥ N and LB ≥ M. Denote this coprime array by Coarray AB.
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Figure 1. The coprime array configuration.

Suppose a narrowband signal from the DOA θ̄ impinges on the coprime array. The normalized
DOA of the signal θ is defined as θ = 2πd sin θ̄/λ, which indicates the phase difference of the planar
wave at the unit spacing d. The steering vectors of for the individual sparse arrays are

a (θ) =
[
1, ejMθ , . . . , ejM(LA−1)θ

]T
, (3)

b (θ) =
[
1, ejNθ , . . . , ejN(LB−1)θ

]T
. (4)

Let Q narrowband signals impinge on the array from the distinct DOAs
{

θq
}Q

q=1, and the complex
amplitude of the qth signal at snapshot time t is sq(t). The noise-corrupted measurement vectors on
the two sparse arrays are

yA (t) =
Q

∑
q=1

a(θq)sq(t) + wA(t) = As (t) + wA(t), (5)

yB (t) =
Q

∑
q=1

b(θq)sq(t) + wB(t) = Bs (t) + wB(t). (6)

In (5), wA and wB are additive noise, s(t) =
[
s1(t), . . . , sQ(t)

]T is the vector of complex amplitudes,
and the matrices A and B are the collections of steering vectors of Array A and B, respectively

A =
[
a(θ1), . . . , a(θQ)

]
, (7)

B =
[
b(θ1), . . . , b(θQ)

]
. (8)

The assumptions on the signals and noises are listed below.

1. The noise vectors wA and wB in (5) are zero-mean complex white Gaussian, with arbitrary
correlation matrices. The noises are statistically independent of s(t).

2. The complex amplitude of each signal follows a circularly-symmetric complex non-Gaussian
distribution. A variety of modulations like quadrature amplitude modulation (QAM) or
phase-shift keying (PSK) meet this assumption [11]. Under this assumption, the FO cumulants of
the signal are non-zero [14].

3. Both statistically independent and coherent signals exist. We divide the signals into G groups.
The signals in the same group are coherent, and the signals belonging to different groups are
statistically independent.

Suppose that there are Qg coherent signals in the gth group (Qg = 1 for the independent signal
case and ∑G

g=1 Qg = Q) with the DOAs θg = [θg1 , . . . , θgQg
]T . Since the complex amplitudes of coherent

signals are linearly dependent [9], we can write the group signal vector by

sg(t) = ηgσg(t). (9)



Sensors 2017, 17, 682 4 of 19

In (9), ηg = [ηg1 , . . . , ηgQg
]T represents the complex coefficients along the respective propagation

paths and hence the elements are non-zero. σg(t) is a scalar representing the complex amplitude of the
source of the gth group at snapshot time t.

Because Array A and B are both sparse and uniform, direction ambiguity exists on the sparse
arrays. If a collection of F signals with the DOAs {θ f }F

f=1 satisfies θ f = θ1 + 2πm f /M for the distinct
non-zero integers {m f }F

f=2, these DOAs are ambiguous on Array A because their steering vectors
are identical

a(θ1) = a(θ2) = . . . = a(θF). (10)

If F signals are coherent, and their propagation coefficients are {η f }F
f=1, it is necessary to

assume that

η1 + η2 + . . . + ηF 6= 0. (11)

This assumption guarantees that the ambiguous signals do not vanish on the individual sparse
arrays; otherwise, the collection of coherent signals are cancelled out on Array A since η1a(θ1) + . . . +
ηFa(θF) = 0 holds for every snapshot. In real cases, the probability for a collection of signals to be
vanishing is extremely low. We assume that the signals are non-vanishing on both Array A and B.

In the DOA estimation using coprime array, one needs to estimate
{

θq
}Q

q=1 from Ts snapshots of

the measurements {yA(t), yB(t)}Ts
t=1. The existing methods rely on the sensor-by-sensor correlations of

the received signal [1]—for example, the signals on the iAth sensor of Array A and the iBth sensor of
Array B. Suppose the samples on the two sensors (omitting the additive noises) are, respectively,

yA(iA, t) =
Q

∑
q=1

sq(t)ejMiAθq , (12)

yB(iB, t) =
Q

∑
q=1

sq(t)ejNiBθq . (13)

When the Q signals are statistically independent, E{sp(t)s∗q(t)} = 0 for p 6= q. The correlation becomes

E {yA(iA, t)y∗B(iB, t)} =
Q

∑
q=1

E|sq(t)|2ej(MiA−NiB)θq . (14)

Taking all the integer combinations (iA, iB), MiA − NiB traverses all the integers between −MN
and MN. The rearranged spatial autocorrelations are therefore a superposition of Q sinusoids on
an virtual ULA of sizeO(MN). A much larger correlation matrix can be constructed to resolveO(MN)

signals by the subspace-based methods like MUSIC [1,2].
However, the presence of coherent signals indicates that E {yA(iA, t)y∗B(iB, t)} contains cross-terms.

For example, if two signals from θp and θq are coherent, the following component included in the
correlation is non-zero:

E{sp(t)s∗q(t)}ej(MiAθp−NiBθq). (15)

Since θp 6= θq, the cross-term is not corresponding to any sinusoid component on the virtual
ULA. When the rearranged spatial autocorrelations are used to form a correlation matrix as in [2]
or [18], the signal subspace structure is strongly contaminated, leading to a failed DOA estimation.
A demonstrative example of a failed DOA estimation is given in Figure 4a in the simulations.

Based on the above signal model, in Section 3, we formulate an FCM of the coprime array signal
that can be adopted for the fourth-order DOA estimation. Then, a generalized spatial smoothing
scheme, which is crucial for resolving coherent signals from the FCM, is introduced in Section 4.
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3. Formulation of FO Cumulant Matrix

In this section, we begin by revising the FO cumulants of a random vector. Next, we formulate
an FCM for the coprime array signal. The subspace structure of the FCM is carefully analyzed.

3.1. FCM of Complex Amplitude Vector

Under the assumption that the complex amplitudes of signals are symmetrically distributed,
the FCM of the vector s(t), denoted by Ψ(s), is well defined and given in [11]

Ψ(s) = E
{
(s(t)⊗ s∗(t)) (s(t)⊗ s∗(t))H

}
− E {s(t)⊗ s∗(t)} E {s(t)⊗ s∗(t)}H (16)

− E
{

s(t)sH(t)
}
⊗ E

{
s(t)sH(t)

}∗
.

In the gth coherent group, the FCM of the group complex amplitude vector sg(t) is similarly
formulated as in (16), and is denoted by Ψ(sg). Since the elements in sg(t) are linearly dependent,
substituting (9) into (16), the FCM of sg(t) becomes

Ψ(sg) =
(

ηg ⊗ η∗g

)
Ψ(σg)

(
ηg ⊗ η∗g

)H
. (17)

In (17), ηg ⊗ η∗g is a vector of length Q2
g, and Ψ(σg) is a scalar, in detail

Ψ(σg) = E {σ(t)σ∗(t)σ∗(t)σ(t)}− 2E {σ(t)σ∗(t)} E {σ∗(t)σ(t)} . (18)

Ψ(σg) represents the FO cumulant of the source σg(t). When the source follows a circularly symmetric
non-Gaussian distribution, Ψ(σg) is non-zero. To sum up, Ψ(sg) is a Q2

g ×Q2
g matrix with rank one,

which describes the FO cumulants of the vector sg.

3.2. FCM of Coprime Array Signal

Defining an auxiliary vector

z(t) = yA(t)⊗ y∗B(t), (19)

the following matrix is the FO moments of the array signal:

Γ4(z) = E
{

z(t)zH(t)
}

= E
{
(yA(t)⊗ y∗B(t)) (yA(t)⊗ y∗B(t))

H
}

. (20)

The autocorrelation matrices of the received signal on Array A and Array B, and the
cross-correlation vector between sparse arrays are the second-order moments of the array signal,
respectively formulated as

Γ2(yA) = E
{

yA(t)yH
A (t)

}
, (21)

Γ2(yB) = E
{

yB(t)yH
B (t)

}
, (22)

µ2(z) = E {yA(t)⊗ y∗B(t)} . (23)

We now introduce a matrix consisting of the FO cumulants of the received signal. The matrix is
a combination of the FO and second-order moments defined above, formulated as

Φ = Γ4(z)− µ2(z)µH
2 (z)− Γ2(yA)⊗ Γ∗2(yB). (24)
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Each element in Φ is a FO cumulant of the received signal. Since the additive noises are statistically
independent of the signal, and the FO cumulants of the Gaussian noise are identically zero [19],
substituting (5), (16), (20) and (21) into (24) yields

Φ = E
{(

(As(t))⊗ (Bs(t))∗
) (

(As(t))⊗ (Bs(t))∗
)H
}

−E
{
(As(t))⊗ (Bs(t))∗

}
E
{
(As(t))⊗ (Bs(t))∗

}H (25)

−E
{

As(t)sH(t)AH
}
⊗ E

{
Bs(t)sH(t)BH

}∗
= (A⊗ B∗)Ψ (s) (A⊗ B∗)H .

The special structure of Φ informs the array configuration and the FO property of the sources.
Most importantly, A⊗ B∗ is built up by the steering vectors of impinging signals, which implies the
DOAs. In the remainder of this paper, Φ is referred to as the FCM of Coarray AB.

In practical situations, the theoretical FCM is unknown and has to be estimated. If the signal is
second-order and fourth-order ergodic, the empirical estimates of the moments in (20) and (21) can be
derived by the sample second-order statistics and the sample fourth-order statistics [14]

Γ̂4(z) =
1
Ts

Ts

∑
t=1

(yA(t)⊗ y∗B(t)) (yA(t)⊗ y∗B(t))
H , (26)

Γ̂2(yA) =
1
Ts

Ts

∑
t=1

yA(t)yH
A (t), (27)

Γ̂2(yB) =
1
Ts

Ts

∑
t=1

yB(t)yH
B (t), (28)

µ̂2(z) =
1
Ts

Ts

∑
t=1

yA(t)⊗ y∗B(t). (29)

The empirical estimation of the FCM Φ̂ [11] can be constructed with the sample moments in (26),
matching the structure in (24)

Φ̂ = Γ̂4(z)− µ̂2(z)µ̂H
2 (z)− Γ̂2(yA)⊗ Γ̂∗2(yB). (30)

3.3. Subspace Structure of FCM

In (25), since the cumulants of sums of independent processes are the sums of the individual
cumulants [11], the FCM Φ is the sum of FCMs of the individual coherent groups

Φ =
G

∑
g=1

Φ(g),

Φ(g) = (A(g)⊗ B∗(g))Ψ
(
sg
)
(A(g)⊗ B∗(g))H , (31)

where Φ(g) is the FCM of the gth group, A(g) and B(g) are the steering vector matrices for the gth
group on Array A and B, respectively:

A(g) =
[
a(θg1), . . . , a(θgQg

)
]

, (32)

B(g) =
[
b(θg1), . . . , b(θgQg

)
]

. (33)

When Φ is eigen-decomposed, it forms a signal-subspace (with the projection operator Π) spanned
by the eigenvectors corresponding to the large eigenvalues, and a noise-subspace (with the projection
operator Π⊥) spanned by the eigenvectors corresponding to the small eigenvalues. The two subspaces
are orthogonal.
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From (31), the signal subspace of Φ(g) is spanned by the column vectors in the matrix
A(g) ⊗ B∗(g). The signal subspace of Φ is the direct sum of the signal subspaces of each Φ(g).
Obviously, A(g)⊗ B∗(g) includes the column vectors {a(θgq)⊗ b∗(θgq)}

Qg
q=1. We can resort to the

4-MUSIC algorithm [11] to estimate the DOAs in the following manner. For a signal from the DOA
θ, the vector a(θ)⊗ b∗(θ) is in the signal subspace of Φ, then there exists a null at θ on the so-called
null-spectrum:

h(θ) =
∥∥∥Π⊥ (a(θ)⊗ b∗(θ))

∥∥∥2
. (34)

The pseudo-spectrum, or 1/h(θ), is used to locate the DOAs by searching for the maxima on it.

3.4. Impact of Coherent Signals on FCM

For an independent signal, itself constitutes a group, say the gth group, with Qg = 1. As in (17),
Ψ(sg) becomes a non-zero scalar. The contribution of the independent signal to the FCM as in (31) is

Φ(g) =
(
a(θg1)⊗ b∗(θg1)

)
Ψ(sg)

(
a(θg1)⊗ b∗(θg1)

)H . (35)

Clearly, the signal subspace of Φ(g) is spanned by the vector a(θg1)⊗ b∗(θg1). Then, a peak
appears at θg1 on the 4-MUSIC pseudo-spectrum.

For a group with multiple coherent signals that Qg ≥ 2, Ψ(sg) is a Q2
g ×Q2

g matrix with rank one.
Then, the signal subspace of Φ(g) has only one dimension. Substituting (17) into (31), we derive

Φ(g) = (A(g)⊗ B∗(g))
(

ηg ⊗ η∗g

)
Ψ(σg)

(
ηg ⊗ η∗g

)H
(A(g)⊗ B∗(g))H . (36)

In (36), the one-dimensional signal subspace of Φ(g) is spanned by the vector

(A(g)⊗ B∗(g))
(

ηg ⊗ η∗g

)
. (37)

The vector in (37) is a linear combination of the Q2
g column vectors

{
a(θgp)⊗ b∗(θgq)

}Qg

p,q=1
. In the

coherent signal case, the column vectors in A(g)⊗ B∗(g) are merged. Hence, the signal subspace
of Φ(g) has only one dimension. The 4-MUSIC algorithm therefore fails to locate the DOAs of
coherent signals.

4. Generalized Spatial Smoothing on FCM

In this section, we introduce a generalized spatial smoothing scheme applied to the FCM Φ.
The scheme leads to a successful estimation of the coherent signals.

Since the two sparse arrays are both uniform, we can divide each of them, for example,
Array A into overlapping subarrays. Every subarray contains KA continuous sensors, with sensors
{0, 1, . . . , KA − 1} forming the 0th subarray, sensors {1, . . . , KA} forming the 1st subarray, etc. Similarly,
Array B is divided into overlapping subarrays of size KB. Choosing the uth subarray of Array A
and the vth subarray of Array B, a coprime subarray can be formed, and is denoted by the (u, v)
sub-coarray. The subarray indices can be chosen from u = 0, 1, . . . , LA − KA and v = 0, 1, . . . , LB − KB.
An illustration of the (u, v) sub-coarray is in Figure 2.

For a DOA θ, the partial steering vectors on the uth subarray of Array A, and the vth subarray of
Array B are denoted by

au(θ) =
[
ejMuθ, . . . , ejM(u+KA−1)θ

]T
, (38)

bv(θ) =
[
ejNvθ, . . . , ejN(v+KB−1)θ

]T
. (39)



Sensors 2017, 17, 682 8 of 19

#0 #LA-1

uth subarray of Array A

#u #u+1… #u+KA-1 …

#0 #LB-1#v #v+1… #v+KB-1 …

vth subarray of Array B

Figure 2. (u, v) sub-coarray formed by two sparse subarrays.

The matrices of the collection of partial steering vectors in the gth group are denoted by

Au(g) =
[

au(θg1), . . . , au(θgQg
)
]

, (40)

Bv(g) =
[
bv(θg1), . . . , bv(θgQg

)
]

. (41)

On the (u, v) sub-coarray, an FCM is inherently defined analogous to (25). The size of the
sub-coarray FCM is determined by the sub-coarray size KA, KB. As in (31), the sub-coarray FCM can
be decomposed into the sum of contributions from each group

Φu,v = ∑G
g=1 Φu,v(g),

Φu,v(g) = (Au(g)⊗ B∗v(g))Ψ
(
sg
)
(Au(g)⊗ B∗v(g))H .

(42)

Comparing the uth subarray and the 0th subarray on Array A, and comparing the vth subarray
and the 0th subarray on Array B, a relationship exists between the following matrices:

Au(g) = A0(g)Ωu
A(g), (43)

Bv(g) = B0(g)Ωv
B(g). (44)

In (43), Ωu
A(g) and Ωv

B(g) are the uth and vth power of the following Qg ×Qg diagonal matrices,
respectively:

ΩA(g) = diag
[
ejMθg1 , . . . , e

jMθgQg
]

, (45)

ΩB(g) = diag
[
ejNθg1 , . . . , e

jNθgQg
]

. (46)

Comparing the (u, v) sub-coarray with the (0, 0) sub-coarray, the following relation exists

Au(g)⊗ B∗v(g) =
(

A0(g)Ωu
A(g)

)
⊗
(

B∗0 (g)Ω−v
B (g)

)
= (A0(g)⊗ B∗0 (g))Ωu,−v(g),

(47)

where Ωu,−v(g) = Ωu
A(g)⊗Ω−v

B (g) is a Q2
g×Q2

g diagonal matrix. Therefore, Φu,v(g) can be written as

Φu,v(g) = (A0(g)⊗ B∗0 (g))
[
Ωu,−v(g)Ψ

(
sg
)

Ω−u,v(g)
]
(A0(g)⊗ B∗0 (g))H . (48)

We observe that Φu,v(g) and Φ0,0(g) share the same signal subspace, and are related by a ‘rotation’
of the matrix Ψ(sg).

The generalized spatial smoothed FCM of coprime array is defined as the sum of FCMs on all of the
similar sub-coarray:

Φ̄ =
LA−KA

∑
u=0

LB−KB

∑
v=0

Φu,v. (49)
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Denote Ψ̄(sg) as the smoothed FCM of the group complex amplitude vector sg(t), written as

Ψ̄(sg) =
LA−KA

∑
u=0

LB−KB

∑
v=0

Ωu,−v(g)Ψ
(
sg
)

Ω−u,v(g). (50)

Substituting (42), (48) and (50) into (49), the smoothed FCM Φ̄ of the coprime array signal is

Φ̄ = ∑G
g=1 Φ̄(g),

Φ̄(g) = (A0(g)⊗ B∗0 (g)) Ψ̄(sg) (A0(g)⊗ B∗0 (g))H .
(51)

In (50), Ψ̄(sg) is rank-enhanced after spatial smoothing compared to Ψ(sg). Consequently in (51),
the smoothed FCM Φ̄ is rank-enhanced. The effect of the generalized spatial smoothing scheme on the
FCM is analogous to the spatial smoothing scheme on the correlation matrix of a ULA [9].

An important theorem is in place here. We show that with some restrictions, the vectors{
a0(θq)⊗ b∗0(θq)

}Q
q=1 for all the signals are in the signal subspace of Φ̄.

Theorem 1. In the gth group, if LA − KA + 1 ≥ Qg and LB − KB + 1 ≥ Qg, the vector a0(θgq)⊗ b∗0(θgq)

for any one of the DOAs {θgq}
Qg
q=1 is in the signal subspace of Φ̄(g).

Proof. See Appendix A.

Corollary 1. Let Qmax = max(Q1, . . . , QG). If LA − KA + 1 ≥ Qmax, LB − KB + 1 ≥ Qmax, then the
vector a0(θq)⊗ b∗0(θq) for any one of the DOAs {θq}Q

q=1 is in the signal subspace of the smoothed FCM Φ̄.

Proof. Following Theorem 1 and that Φ̄ = ∑G
g=1 Φ̄(g), the signal subspace of Φ̄ is the direct sum of all

the signal subspaces of Φ̄(g), g = 1, . . . , G.

Corollary 1 indicates that, if the numbers of overlapping subarrays on both sparse arrays are
no less than the largest number of the coherent signals, the vectors

{
a0(θq)⊗ b∗0(θq)

}Q
q=1 for both the

independent and coherent signals are in the signal subspace of Φ̄. Then, one can eigen-decompose Φ̄ to
acquire a noise subspace with the projection operator Π̄⊥. The vector a0(θ)⊗ b∗0(θ) for any signal with
a DOA θ is orthogonal to the noise subspace. From the smoothed FCM, the null-spectrum produced
by 4-MUSIC is defined as

h̄(θ) =
∥∥∥Π̄⊥ (a0(θ)⊗ b∗0(θ))

∥∥∥2
. (52)

On the pseudo-spectrum 1/h̄(θ), both the independent and coherent signals create peaks at their
respective directions.

Remark: the sub-coarray FCM Φu,v in (42) is a principle sub-matrix of the full-coarray FCM Φ.
The indices of columns (and rows) of the principle sub-matrix Φu,v in Φ are

(u : u + KA − 1) · LB + (v : v + KB − 1). (53)

The generalized smoothing process can be accomplished by summing all the proper principle
sub-matrices with the indices in (53) from Φ.

The generalized spatial smoothing scheme is obviously at the expense of a reduced effective
array aperture. In fact, the size of the FCM Φ is LALB × LALB, while the smoothed FCM Φ̄ is only
KAKB × KAKB. Considering the algorithmic complexity, the eigen-decomposition of the FCM Φ̄ takes
O(K3

AK3
B) operations. The complexity is equivalent to MUSIC on a ULA with a similar extent to the

coprime array.
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5. Removing False Peaks

On the pseudo-spectrum from the smoothed FCM, some false peaks occasionally arise at the
directions where none of the true signals resides. An example of the false peaks is in Figure 5 in
the simulations. In this section, we explain the false peak phenomenon and provide a technique to
remove them.

5.1. Explanation of the False Peaks

When the generalized spatial smoothing scheme is applied to enhance the rank of Ψ̄(sg)

in (51), not only the vector a0(θgq)⊗ b∗0(θgq) for the signal DOAs {θgq}
Qg
q=1, but also the cross-terms{

a0(θgp)⊗ b∗0(θgq)
}

p 6=q
appear in the signal subspace of Φ̄(g). These cross-terms are not

corresponding to any signal component and should not create peaks on the pseudo-spectrum. However,
the steering vectors a0(θ) and b0(θ) are ambiguous due to the sparsity of Array A and B. We show
that a false peak may appear as a result of the direction ambiguity. Because two independent signals
will not create such cross-terms, in the remainder of this section, the discussion is limited to a single
coherent group. For simplicity, we omit the group index g.

Since Array A is M-sparse and Array B is N-sparse, the steering vectors are ambiguous.
In particular, for θp on Array A and θq on Array B,

a0(θp) = a0
(
θp + 2πm/M

)
, (54)

b0(θq) = b0
(
θq + 2πn/N

)
, (55)

where m, n are arbitrary integers. The ambiguity can be illustrated more clearly by the array beam
patterns. In Figure 3, since Array A and B are both sparse and uniform, their beam patterns have
multiple grating lobes.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
 / 

Grating lobes of sparse arrays

Array A
Array Bq p

Figure 3. An illustration of the beam patterns on Array A and B. The solid line represents the grating
lobe of Array A, the dotted line represents the grating lobe of Array B. The true directions θp and θq

are marked by the highest lobes, while the lower lobes are the grating lobes. Theoretically, the lobes of
each array should have the equal height.

If it happens that a grating lobe of the Array A beam pattern and a grating lobe of the Array B
beam pattern overlap at the direction ϕ, i.e., for a pair of non-zero integers (m, n),

ϕ = θp + 2πm/M, (56)

ϕ = θq + 2πn/N, (57)

the cross-term of the steering vectors becomes

a0(θp)⊗ b∗0(θq) = a0(ϕ)⊗ b∗0(ϕ). (58)
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When the smoothed FCM Φ̄AB of Coarray AB is eigen-decomposed with the noise subspace
projection operator Π̄AB, the null-spectrum at ϕ becomes

h̄AB(ϕ) =
∥∥Π̄⊥AB (a0(ϕ)⊗ b∗0(ϕ))

∥∥2

=
∥∥Π̄⊥AB

(
a0(θp)⊗ b∗0(θq)

)∥∥2
= 0,

(59)

since the cross-term a0(θp)⊗ b∗0(θq) is in the signal subspace of Φ̄AB. A false peak at ϕ will appear on
the pseudo-spectrum.

One remark is in place here. In (56), the direction ϕ needs not to be strictly equal to θp + 2πm/M
or θq + 2πn/N. Once a grating lobe of the beam pattern a0(θp) and a grating lobe of the beam pattern
b0(θq) overlap around ϕ, a false peak still appears.

Furthermore, the grating lobe beamwidths of the beam patterns of a0(θp) and b0(θq) are 2π/MKA
and 2π/NKB, respectively. If KA ≥ N and KB ≥ M, the beamwidths of the grating lobes are narrower
than 2π/MN. From the observation that M, N are coprime numbers, the grating lobes of the beam
patterns a0(θp) on Array A and b0(θq) on Array B may overlap at one direction within [−π, π] at most,
which means that the cross-term a0(θp)⊗ b∗0(θq) may produce at most one false peak.

5.2. Supplementary Sparse Array

Suppose that a supplementary sparse array, namely Array C, is deployed with its sensors
positioned at

xC = {RiCd | iC = 0, 1, . . . , LC − 1} . (60)

In (60), R is an integer, which is respectively coprime to M and N, and LC is the number of sensors
in Array C. Now, Array A and Array C can form a new coprime array, denoted by Coarray AC.
An FCM ΦAC can be derived for the array signal. Dividing Array C into identical subarrays of size KC,
we can perform the generalized spatial smoothing scheme on ΦAC to obtain the smoothed FCM Φ̄AC.
Denoting the noise subspace projection operator by Π̄⊥AC, the null-spectrum of Coarray AC is

h̄AC(θ) =
∥∥∥Π̄⊥AC (a0(θ)⊗ c∗0(θ))

∥∥∥2
, (61)

where c0(θ) =
[
ejR0θ , . . . , ejR(KC−1)θ

]T
.

If KA ≥ R and KC ≥ M both hold, on the pseudo-spectrum 1/h̄AC(θ) derived from Coarray AC,
the cross-term a0(θp)⊗ c∗0(θq) may produce at most one false peak, denoted by ϕ′. The false peak is
induced by the following cross-term:

a0(θp)⊗ c∗0(θq) = a0(ϕ′)⊗ c∗0(ϕ′). (62)

We can derive an important theorem for the position of the false peaks.

Theorem 2. From the same pair of coherent signals θp, θq, if the cross-term a0(θp)⊗ b∗0(θq) produces a false
peak at ϕ on the pseudo-spectrum of Coarray AB, and the cross-term a0(θp)⊗ c∗0(θq) produces a false peak at
ϕ′ on the pseudo-spectrum of Coarray AC, then ϕ 6= ϕ′.

Proof. The proof is by contradiction. On Coarray AC, the direction ambiguity indicates the following
relations for a pair of non-zero integers (m, r):

ϕ′ = θp + 2πm/M, (63)

ϕ′ = θq + 2πr/R. (64)
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If ϕ = ϕ′, combining (56) and (63), we can deduce that n/N = r/R. Since N and R are coprime
numbers, (m, n, r) are within a range such that ϕ, ϕ′ are between [−π, π], the equation holds only
when n = r = 0, which is contradictory to the non-zero assumption on the integers n, r.

Theorem 2 indicates that, on two different coprime array configurations, the false peaks created
by the same pair of coherent signals do not overlap on the pseudo-spectrum. This property can be
used for removing the false peaks.

5.3. Removing False Peaks by Combined Spectrum

To remove the false peaks induced by the direction ambiguity, we use the property for which the
false peaks do not overlap. From the three sparse arrays A, B and C, any two sparse arrays constitute
a coprime array. Therefore, we may derive three null-spectra: h̄AB(θ) from Coarray AB, h̄AC(θ) from
Coarray AC and h̄BC(θ) from Coarray BC. A combined null-spectrum can be generated from the
individual null-spectra:

h̄ABC(θ) = h̄AB(θ) + h̄AC(θ) + h̄BC(θ). (65)

A necessary condition for the existence of a peak at θ on 1/h̄ABC(θ) is that θ is corresponding
to a null at any one of the three null-spectra. In fact, if θ is the DOA of a true signal, there always
exists a null at θ on any one of the three null-spectra, h̄AB(θ) = h̄AC(θ) = h̄BC(θ) = 0. However,
from Theorem 2, the false peak positions are different. Consequently, the false peaks are removed on
the combined pseudo-spectrum θ on 1/h̄ABC(θ).

6. Simulation Results

In this section, we present some simulations that demonstrate the DOA estimation of coherent
signals using the generalized spatial smoothing scheme. We also exhibit the false peak phenomenon,
and the removal of false peaks by the combined spectrum. The ability of estimating more signals than
the number of sensors is verified, and the performances under various signal-to-noise ratio (SNR) and
number of snapshots are studied as well.

6.1. Effectiveness of Generalized Spatial Smoothing

A coprime array is used to verify the generalized spatial smoothing scheme. Array A (M = 6)
has LA = 9 sensors, and Array B (N = 5) has LB = 10 sensors. The unit inter-sensor spacing is
half-wavelength. We consider ten narrowband signals impinging on the coprime arrays, in which
four of them are independent signals, and the other six signals are divided into three coherent groups,
with two signals in each group. The signal types are either Quadrature PSK or quaternary QAM, the
powers of all sources are equal, and the coefficients along all the propagation paths have the equal
amplitude, but with random complex phases. The noise is additive complex Gaussian, and the SNR
on the sensors is set to be 0 dB (SNR is defined as the power of one signal to the noise power). In the
estimation of the FCM Φ in (25), 2000 snapshots are used. In the generalized spatial smoothing
scheme, Array A is divided into subarrays of size KA = 6, and Array B is divided into subarrays of
size KB = 7.

Figure 4a is the spectrum derived from the method in [2], which is most widely used on coprime
arrays currently. The cross-terms induced by the coherent signals contaminate the structure of the
signal subspace, and the DOA estimation consequently fails. In Figure 4b, the 4-MUSIC algorithm
is applied to the FCM Φ. We can see that the four peaks corresponding to the independent signals
appear, but the DOA of coherent signals are not resolved. On the contrary, if the generalized spatial
smoothing scheme is used on the FCM, the peaks for both independent and coherent signals are clearly
present in Figure 4c. It is exemplified that the DOA of coherent signals can be estimated from the
smoothed FCM.
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(b) 4-MUSIC with FCM Φ
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(c) 4-MUSIC with smoothed FCM Φ̄

Figure 4. The pseudo-spectra produced by 4-MUSIC are the blue curves. The true DOA of independent
signals are marked by dashed vertical lines, and the true DOA of coherent signals are marked by dotted
vertical lines.

6.2. Removing False Peaks

In the second simulation, there exists a coherent group with three signals at the normalized
DOAs [−0.6π, 0.2π, 0.3π], another coherent group with two signals at [−0.5π,−0.3π], and four
other independent signals at [−0.4π,−0.1π, 0.1π, 0.25π] in the environment. The signal types,
source amplitudes and propagation coefficients are set up as in the first simulation. We first derive the
pseudo-spectrum using the smoothed FCM of Coarray AB in Figure 5a. Both independent and coherent
signals are estimated on the spectrum. However, there also exist multiple false peaks, which seriously
affect the extraction of the true signals.

A supplementary sparse array, namely Array C, with sparsity R = 7 and LC = 8 sensors is
deployed, and we can construct a new coprime array with Array A and Array C. Let Array C be
divided into subarrays of size KC = 5, and the pseudo-spectrum using the smoothed FCM of Coarray
AC is displayed in Figure 5b. We can see that the peaks corresponding to the true signals are still
there, while the directions of the false peaks are different from that in Figure 5a. Combining the three
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null-spectrum using (65), the pseudo-spectrum is displayed in Figure 5c. We can see that all the signals
are found on the spectrum, while the false peaks are removed. Thus, we have shown the effectiveness
of removing false peaks by the combined spectrum.
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(a) Pseudo-spectrum of Coarray AB
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(c) Pseudo-spectrum combining three null-spectra

Figure 5. The pseudo-spectra using the smoothed FCM of two sparse arrays have false peaks as in
(a,b). Combining the null-spectra of the three coprime arrays following (65) can remove the false peaks
as in (c).

6.3. Estimating More Signals Than Sensor Numbers

In the third simulation, we demonstrate the ability of estimating more signals than the number of
sensors, which still holds using the FCM-based approach. The array configuration, parameters and
the estimation of FCM follow the second simulation. The number of signals is thirty-five, in which
six signals are coherent. In Figure 6, we can see that the DOAs of the individual signals are correctly
estimated, and even the number of signals exceeds the number of sensors. In the newly proposed
FCM-based method, the size of the spatial smoothed FCM is O(MN); therefore, 4-MUSIC can process
O(MN) signals using O(M + N) sensors.
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Figure 6. Twenty-seven sensors are used in the array configuration. Thirty-five signals (more than the
number of sensors) exist in the environment, where six of them can be divided into three coherent pairs.

6.4. Performance Study

In the fourth simulation, we briefly study the root-mean-square error (RMSE) of the DOA estimates
using the new method. The array configuration follows the second simulation. Suppose that ten
signals with the equal power arrive at the coprime array, in which four signals are coherent, and the
other six signals are statistically independent. We consider the cases that the number of snapshots
varies from 16 to 4096. The noise follows a complex Gaussian distribution and SNR varies from−14 dB
to 4 dB. Under each case, 500 trials were taken to calculate the average RMSE of all the DOA estimates.
The result is shown in Figure 7.
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Figure 7. Average RMSE of all the DOA estimates. Each line indicates a fixed snapshot number, and the
SNR varies within a line.

We can conclude from the figure that the performance drops when the SNR decreases, as well as
when the number of snapshots reduces. If the snapshot number is sufficiently high, the requirement
for SNR can be relaxed. This is due to the fact that Gaussian noise vanishes in the FO cumulants if the
number of snapshots is large.

7. Conclusions

In this paper, the problem of direction-of-arrival (DOA) estimation of coherent signals on passive
coprime arrays is investigated. We resort to the fourth-order cumulants to explore more information
about the received signal. Formulating a fourth-order cumulant matrix (FCM) for the signal on
a coprime array, a new estimation scheme based on the fourth-order MUSIC algorithm is developed.

The special structure of the FCM is combined with the array configuration to resolve the coherent
signals. Using the property that the individual sparse arrays are uniform, on either of the sparse arrays,
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a series of overlapping identical subarrays can be extracted. Then, taking individually one subarray
from each of the sparse arrays, a coprime subarray is constructed. We revealed that the FCMs of any
two similar coprime subarrays share the same structure. Analogous to the spatial smoothing scheme
applied to the correlation matrix on a uniform linear array, we propose a generalized spatial smoothing
scheme applied to the FCM. The scheme yields a smoothed FCM with rank-enhancement. The DOAs
of both the independent and coherent signals can be estimated using the smoothed FCM.

To remove the false peaks induced by the direction ambiguity, we use a supplementary sparse
array for assistance. On the combined spectrum aided by the supplementary array, the false peaks are
removed while the true peaks remain. Simulation examples are given to demonstrate the effectiveness
and performance of the proposed approach. Future work includes considering the case of mixed
independent, partially correlated and coherent signals. A few simulations were executed to verify
the ability of the proposed method to handle this case. However, theoretical guarantees are not
provided yet.

Acknowledgments: This work was supported in part by the National Natural Science Foundation of China
(Grant No. 61571260). The authors are grateful to the helpful suggestions from Prof. Arye Nehorai and Mianzhi
Wang of Washington University in St. Louis, MO, USA.

Author Contributions: Y. Hu, Y. Liu and X. Wang conceived and designed the schemes; Y. Hu and Y. Liu
performed the experiments and analyzed the data; Y. Hu, Y. Liu and X. Wang wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Theorem 1

Substituting (17) into (50), we derive

Ψ̄(sg) =
LA−KA

∑
u=0

LB−KB

∑
v=0

Ωu,−v(g)
(

ηg ⊗ η∗g

)
Ψ(σg)

(
ηg ⊗ η∗g

)H
Ω−u,v(g). (A1)

Since Ψ(σg) is a non-zero scalar, we can omit it without affecting the rank of Ψ̄(sg). The following
discussion is limited to the gth group. For simplicity, the group index g is omitted.

Equation (A1) can be written as

Ψ̄(s) = ∑LA−KA
u=0 ∑LB−KB

v=0 Ωu,−v (η⊗ η∗) (η⊗ η∗)H Ω−u,v

= ∑LA−KA
u=0 ∑LB−KB

v=0 ζu,vζH
u,v,

(A2)

where ζu,v is a Q2 × 1 vector, written as

ζu,v = Ωu,−v (η⊗ η∗) = (Ωu
Aη)⊗ (Ωv

Bη)∗ . (A3)

The summation in (A2) can be written in the vector inner-product form

Ψ̄(s) =
LA−KA

∑
u=0

LB−KB

∑
v=0

ζu,vζH
u,v = WWH , (A4)

where W is a matrix with Q2 column vectors

W =
[
ζ0,0, ζ0,1, . . . , ζ0,LB−KB , . . . , ζLA−KA ,LB−KB

]
=
[
Ω0

Aη, . . . , Ω
LA−KA
A η

]
⊗
[
Ω0

Bη, . . . , Ω
LB−KB
B η

]∗
= WA ⊗W∗B.

(A5)
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In (A5), WA and WB are both Q × Q matrices. Each of them can also be written as the
multiplication of a diagonal matrix and a Vandermonde matrix:

WA =
[
Ω0

Aη, . . . , Ω
LA−KA
A η

]
= diag(η) ·VA, (A6)

WB =
[
Ω0

Bη, . . . , Ω
LB−KB
B η

]
= diag(η) ·VB, (A7)

where the Vandermonde matrices VA and VB are

VA =


ejM0θ1 . . . ejM(LA−KA)θ1

...
. . .

...
ejM0θQ . . . ejM(LA−KA)θQ

 , (A8)

VB =


ejN0θ1 . . . ejN(LB−KB)θ1

...
. . .

...
ejN0θQ . . . ejN(LB−KB)θQ

 . (A9)

Substituting (A4) and (A5) into (51) yields

Φ̄ = (A0 ⊗ B∗0 )WWH (A0 ⊗ B∗0 )
H

= ((A0WA)⊗ (B∗0W∗B)) ((A0WA)⊗ (B∗0 W∗B))
H = ΥΥH ,

(A10)

where

Υ = (A0WA)⊗ (B∗0W∗B)

= (A0 · diag(η) ·VA)⊗ (B∗0 · diag(η∗) ·V∗B) .
(A11)

In (A10), the structure of the signal subspace of Φ̄ is determined by the the rank of W, and the
column vectors in A0 ⊗ B∗0 . From (A5), rank(W) = rank(WA) · rank(WB). In order to determine the
rank of W, the ranks of WA and WB are carefully discussed in the following two cases.

Case I: The DOAs are non-ambiguous on the individual sparse arrays, which means that the
steering vectors on Array A {a0(θq)}Q

q=1 are distinct, and the steering vectors on Array B {b0(θq)}Q
q=1

are also distinct.
In (A6), since the elements of η are non-zero, diag(η) is a full rank diagonal matrix. In the

Vandermonde matrix VA, each row vector is the transposition of a steering vector of length LA−KA + 1
and is distinct to one another. When LA − KA + 1 ≥ Q, the Vandermonde matrix has full row rank.
Hence, rank(WA) = Q. Similarly, rank(WB) = Q when LB − KB + 1 ≥ Q. W is henceforth a full rank
matrix with rank Q2.

In (A10), the vectors {a0(θq)⊗ b∗0(θq)}Q
q=1 are Q columns in the matrix A0 ⊗ B∗0 . When WWH has

full rank, they are clearly in the signal subspace of Φ̄.
Case II: The DOAs are ambiguous. For demonstrating purpose, we assume that two DOAs θ1

and θ2 satisfy θ1 = θ2 + 2πm/M for a non-zero integer m. In this case, a0(θ1) = a0(θ2) on Array A.
We also assume that the other steering vectors {a0(θq)}Q

q=3 are distinct. In (A11), we can delete the
repeated column vector a0(θ2) in A0 and the repeated row vector in VA, at the same time, combining
the coefficients η1, η2 to obtain

A0 · diag(η) ·VA =
[
a0(θ1), a0(θ3), . . . , a0(θQ)

]
diag

[
η1 + η2, η3, . . . , ηQ

]


ejM0θ1 . . . ejM(LA−KA)θ1

ejM0θ3 . . . ejM(LA−KA)θ3

...
. . .

...
ejM0θQ . . . ejM(LA−KA)θQ


= Ã0 · diag(η̃) · ṼA.

(A12)
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In (A12), Ã0 is constructed by deleting the column vector a0(θ2) from A0, the Vandermonde
matrix ṼA is deleting the row vector

[
ejM0θ2 , . . . , ejM(LA−KA)θ2

]
from the Vandermonde matrix VA.

The remaining row vectors are distinct. The diagonal matrix diag(η̃) = diag
[
η1 + η2, η3, . . . , ηQ

]
is

still full rank since η1 + η2 6= 0 from the non-vanishing assumption. Hence, the matrix diag(η̃) · ṼA
has full rank.

Similarly, when the DOAs are ambiguous on Array B, we can delete the repeated column vectors
in B0 to obtain a full rank matrix B̃0, and delete the repeated row vectors in VB to obtain a full rank
matrix diag(η̃) · ṼB. Equation (A11) becomes

Υ =
(

Ã0 · diag(η̃) · ṼA
)
⊗
(

B̃∗0 · diag(η̃∗) · Ṽ∗B
)

=
(

Ã0 ⊗ B̃∗0
) (

diag(η̃) · ṼA
)
⊗
(
diag(η̃∗) · Ṽ∗B

)
.

(A13)

Analogous to Case I, the matrices diag(η̃) · ṼA and diag(η̃) · ṼB are of full rank. Since Ã0 and B̃0

are removing only the repeated steering vectors, for any DOA θ, the vector a0(θ)⊗ b∗0(θ) is still in the
matrix Ã0 ⊗ B̃∗0 . Hence, the vectors {a0(θq)⊗ b0(θq)}Q

q=1 are in the signal subspace of Φ̄.
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