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Abstract: Detecting the signals of the primary users in the wideband spectrum is a key issue for 
cognitive radio networks. In this paper, we consider the multi-antenna based signal detection in a 
wideband spectrum scenario where the noise statistical characteristics are assumed to be 
unknown. We reason that the covariance matrices of the spectrum subbands have structural 
constraints and that they describe a manifold in the signal space. Thus, we propose a novel signal 
detection algorithm based on Riemannian distance and Riemannian mean which is different from 
the traditional eigenvalue-based detector (EBD) derived with the generalized likelihood ratio 
criterion. Using the moment matching method, we obtain the closed expression of the decision 
threshold. From the considered simulation settings, it is shown that the proposed Riemannian 
distance detector (RDD) has a better performance than the traditional EBD in wideband spectrum 
sensing. 

Keywords: cognitive radio; wideband spectrum sensing; information geometry; Riemannian 
distance; Riemannian mean; moment matching 

 

1. Introduction 

In today’s increasingly crowded wireless spectrum environment, cognitive radio (CR) networks 
are considered a promising technology to mitigate the contradiction between fixed spectrum 
allocation and efficient utilization, which has received sustained attention in recent years [1,2]. In 
order to access the spectrum holes without interfering with the primary user (PU) in the network, 
the secondary user (SU) is required to perform accurate spectrum sensing. 

As a key problem in CR networks, spectrum sensing technology has been extensively studied. 
Several classical spectrum sensing methods, such as energy detection (ED), matched filtering (MF) 
detection and cyclostationary detection have been proposed. Although ED is easy to implement, it is 
sensitive to noise uncertainty [3]. The MF method requires waveform information about the primary 
signal [4] and cyclostationary detection needs to know the cyclic frequencies of the primary signal [5]. 
Compared with the classical methods, eigenvalue-based spectrum sensing methods for multi-antenna 
systems require less prior information about noise and signal. Due to the correlation of the primary 
signal in multi-antenna reception, some spectrum sensing algorithms are designed according to the 
covariance matrix of the received data vectors, and the corresponding test statistics are constructed 
by applying the eigenvalues of the covariance matrix. To date, some typical detectors have been 
proposed in the literature, including the largest eigenvalue detector (LED) [6], maximum-minimum 
eigenvalue (MME) detector [7], the scaled largest eigenvalue (SLE) detector [8], and the arithmetic to 
geometric mean (AGM) detector [9]. In practical application scenarios, the CR system may suffer 
from unknown interference in the wideband spectrum and the imperfections of the sensor hardware 
[10–12]. Thus the independent and identically distributed (i.i.d.) noise assumption in 
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eigenvalue-based algorithms may not be realistic. Moreover, it is possible for a number of 
asynchronous independent PUs to access the same frequency band at the same time. Accordingly, 
the CR sensor needs to sense the wideband spectrum in the case of the unknown noise characteristics 
and unknown number of PUs. 

Meanwhile, in CR networks, spectrum sensing for wideband is also an important topic worthy 
of study. In [13], the wideband spectrum sensing (WSS) problem is partitioned into four basic 
elements to study, namely, system modeling, performance metrics, sampling schemes and detection 
algorithms. In the context of this paper, we choose the detection probability of the primary signal in 
each subband of the wideband spectrum as the performance metric. We assume independent PU 
occupancy across subbands and that the detections of primary signals in each subband are 
independent with each other. For the above independent channel-by-channel detection mode [13], 
we can employ the more easily achieved partial band Nyquist sampling scheme to complete the 
wideband spectrum data acquisition. 

In this paper, unlike traditional spectrum sensing algorithms based on a generalized likelihood 
ratio test (GLRT) [9,14], we consider the rethinking of WSS problem from the perspective of 
information geometry. As a promising cutting-edge discipline, information geometry studies the 
problems in the field of statistics and information science by applying modern differential geometry 
method on Riemannian manifolds. It has been widely used in machine learning, medical imaging, 
radar signal processing, signal classification and other research areas [15–20]. Inspired by these 
studies, we consider using the information geometry theory to design the spectrum sensing method, 
rather than the normed linear space theory. From the view of Lie group theory, the covariance 
matrix of sensing data is a Toeplitz Hermitian positive definite matrix, which forms the negative 
curvature space [21]. By constructing statistical models on the manifold, we can exploit the 
Riemannian distance for hypothesis testing, regardless of the specific characteristic assumptions 
about signal and noise. On the other hand, in multiband detection, there may be a plurality of 
vacant subbands available for estimating noise. Considering the geometric features of the matrix 
manifold, we use the Riemannian mean instead of the arithmetic mean for the joint estimation with 
multiple covariance matrices. To the best of the authors’ knowledge, this is the first time the 
information geometry is used to solve the WSS problem. 

The rest of the paper is organized as follows: in Section 2, we describe the system model in 
detail, introduce the key concepts of information geometry—Riemannian distance and Riemannian 
mean, and propose the Riemannian distance-based test statistic. Section 3 presents theoretical 
analysis and finds thresholds for the proposed detector using random matrix theory. In Section 4, 
we show the numerical results of the proposed algorithm. Finally, the main results of this paper are 
drawn in Section 5. 

2. System Model and the Proposed Detection Scheme 

2.1. System Model 

Consider a CR system performing spectrum sensing on a spectrum of B Hz equipped with K 
antennas in each sensing node, as depicted in Figure 1. In the context of this article, we focus on the 
spectrum sensing of a single SU. It is worth noting, however, that in the cooperative spectrum 
sensing model, our methods are still applicable if the data of different nodes can be collected at the 
fusion center. It is assumed that the bandwidths of subbands are known to the CR receiver and the 
whole band is divided into L subbands. In the sensing time sT , the receiver collects N samples in 
each subbands, the n-th observed data in the i-th subband is [ ] 0 1i n n N x , ,..., . Every subband 
sampling vector is composed of K-antenna data 1[ ] [ [ ] [ ]]x K T

i i in x n x n , ..., . Then, the spectrum sensing 
problem in each subband can be expressed by the following two hypotheses: 

0 ,

1,

   [ ] [ ]    0 1
   [ ] [ ] [ ]    0 1
i i i

i i i i i

n n n N

n n n n N

  

   

x w
x Η s w





 : , , ...,
 : , , ..., ,
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where 0 , i  (null hypothesis) stands for the absence of PUs and 1 , i  for the presence of PUs. 
Here, [ ]i nw  is the n-th noise sample in the i-th subband over the K antennas. In our sensing 
scenario assumption, the number of concurrent PU transmissions is P which is unknown to the 
sensing node. The K×P matrix (1) ( )[ ]H h h P

i i i , ...,  represents the channels between the P PUs and the 
receiving antennas in the i-th subband. The P×1 vectors (1) ( )[ ] [ [ ] [ ]]s P T

i i in s n s n , ...,  denote the n-th 
samples of the transmitted signal from the PUs in the i-th subband. We assume that the transmitted 
samples ( ) [ ]p

is n  follow an i.i.d. zero mean complex Gaussian distribution, and are independent 
from the noise. 

The entire collected observations of i-th subband is defined as a K×N matrix 
[ [0] [ 1]]i i i N X x x, ..., , where the noise matrix is the K×N matrix [ [0] [ 1]]W w wi i i N ,..., , and the 

signal matrix is the P×N matrix [ [0] [ 1]]S s si i i N ,..., . 
By the above assumptions, we define the covariance matrix of i-th subband as 

[ [ ] [ ]] H
i i in nR x x , where  ( )H  denotes the conjugate transpose. With N received samples in a 

finite sensing time, the CR receiver calculates the K×K sample covariance matrix ˆ H
i i iR XX  to 

complete the sensing problem. 
In our sensing problem assumption, the noise samples subject to zero mean complex Gaussian 

distribution, and the noise covariance matrix in i-th subband is assumed to be iΨ . Under the 
hypothesis 0 , i , the sample covariance matrix is a complex Wishart matrix subject to ( , )K iN Ψ . 
Under the hypothesis 1 , i , the sample covariance matrix is denoted as: 

0,
ˆ:   H

i i i i iR WW Ψ  (2) 

1,
ˆ: .  H H

i i i i i i iR H S S H Ψ  (3) 

With the uncorrelated assumption about iS , and the transmission power of the p-th PU defined 
as ( ) ( ) ( )( [ ] [ ] )p p p H

i i is n s n   , Equation (3) can be written as: 

( ) ( ) ( )

1

ˆ .
P

p p p H
i i i i i

p




 R h h Ψ  (4) 

The sensing performance is evaluated by the detection probability DP  and the false alarm 
probability FP , respectively, corresponding to the correct detection of the presence of primary 
signal at hypothesis 1  and wrongly claiming of the presence of primary signal at hypothesis 0 . 

 
Figure 1. The CR system model with multiple PUs and k antenna SUs.  
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2.2. Riemannian Distance and Riemannian Mean 

In information geometry theory, we consider that   is a set of probability density functions 

 p xθ , where x  is a sample of n dimensional complex random variable X , i.e., n x X  . And 

θ is the m dimensional parameter vector, i.e., m θ  . Generally, the probability distribution 
space can be described by its parameter set  . The statistical model S  is expressed as: 

  x θ θ mS p   ,  (5) 

Under certain topological structures, S  can form a differentiable manifold, called statistical 
manifold , where θ  is defined as the natural coordinate of the statistical manifold [22]. From 

the point of view of information geometry, the probability distribution  R̂K iN ,  can be 

parameterized separately by the respective covariance matrix. Then  R̂K iN ,  can be considered 

to be located on the statistical manifold which takes covariance matrix as coordinate. In particular, 
ˆ
iR  is a Toeplitz Hermitian positive definite matrix with the noise and signal models under 0  

and 1 . The set of covariance matrices constitutes a complex symmetric positive definite (SPD) 
matrix space denoted by  Sym n , , which is also defined as SPD manifold. The parameter space 

  of zero-mean multivariate Gaussian distribution and  Sym n ,  are isomorphic. Therefore the 

statistical manifold can be described by  Sym n ,  due to the mapping relationship between them 
[23]. Many articles have focused on the research of the geometry structure of complex symmetric 
positive definite matrix manifold. It is a completely connected, complete Riemannian manifold with 
non-positive sectional curvature, called the Cartan-Hadamard manifold, whose geodesic exists and 
is unique [21]. In all curves connecting the two points A Bθ θ  on the manifold, the geodesic is the 
shortest one. This shortest distance, called the Riemannian distance between θ A  and θ B , can be 
used to describe the similarity of the two distributions. The Riemannian distance between two 
elements in  Sym n ,  is given in [19] as follows: 

   

 
 

 

22 1 2 1 2
1 2 1 2 1

21
1 2

2 1
1 2

2

1
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log

log

= log
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i
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D

Tr



 











   



R ,R R R R

R R

R R

,

 (6) 

where   is the Frobenius norm and i  is the n eigenvalues of the matrix 1
1 2
R R . Compared with 

Kullback-Leibler divergence, 2D  has better properties, such as symmetry, satisfying triangle 
inequality and so on. 

Let R  be the midpoint between two points 1R  and 2R  in space. In the normed linear space, 

the midpoint calculation corresponds to the arithmetic mean  1 2= + 2R R R . On the manifold, it is 

found that for  Sym n , , the local curvature is not constant and not positive, so the calculation of 
the midpoint must depend on the corresponding geometric mean rather than the arithmetic mean. 
Using the Riemannian distance we can define the midpoint satisfying    2 2

1 2R R R RD D, , . The 

formula for calculating the midpoint with the geometric means is given as 

 1/21/2 1/2 1/2 1/2 1/2
1 1 2 1 1=  R R R R R R  in [19]. For the N points on  Sym n , , the Riemannian mean is 

defined by Riemannian distance: 
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 2

1

1arg  min .
R

R R R
N

kSym n
k

D
N



 ,
,  (7) 

The geometric representation of the Riemann mean is given in Figure 2. In the field of 
information geometry research, Riemannian mean computation is an important problem. In [17], a 
Riemannian mean computation method based on the gradient descent algorithm is proposed. The 
Riemannian mean is iteratively computed by using the gradient descent algorithm along the 
geodesic direction of the manifold: 

 1/2 1/2 1/2

1
log

1/2 1/2
1 .

R R R

R R R
N

t k t
k

t t te
  








  (8) 

In (8), 0   controls the iteration speed and  1 2k k NR , ,...,  are the N matrices on the 
manifold. tR  is the estimate of the Riemannian mean calculated from t iterations. The detailed 
process of iterative computation is given in Algorithm 1. 

Algorithm 1: Iterative Calculation of the Riemannian Mean By a Gradient Descent Algorithm 
Input:  1 2k k NR , ,...,  and  . 

Output: Estimates of Riemannian mean R . 
Initialize: 1t  ; 1 1R R . 
repeat 

Compute gradient of objective function  1/2 1/2 1/2

1
log

N

t k t
k

f  



  R R R ; 

Obtain 1/ 2 1/ 2
1

f
t t te  
 R R R ; 

Update 1t t  ; 
until convergence. 

 
Figure 2. The Riemannian mean of N points on the manifold. 

2.3. The Riemannian Distance Based Test Statistic 

In our sensing scenario assumptions, the specific form of iΨ  is arbitrary and unknown, but 
the iΨ  of different subbands are identical. This assumption of noise means the different subbands 
suffer from the same unknown interference or the imperfections of the sensor hardware. It is 
difficult to design the test statistic according to the probability distributions of the received data 
under 0  under such assumptions. We consider the sample covariance matrix of the vacant 
channel in the wideband spectrum as an estimate of the unknown iΨ , called the reference matrix. 
Then we calculate the Riemannian distance between the covariance matrix of the channel under test 
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and the reference matrix. Thus, the solution to the detection problem is transformed from the 
traditional statistical inference method (which is accomplished by hypothesis testing the probability 
distribution of the statistical model via the N observations of X ) into the information geometry 
method (which is accomplished by computing the geodesic between the two points on manifold). 

There are several ways to get the reference matrix. One is to extract noise-only data samples in 
the system's agreed free time and frequency bands. If the interval between the free time and the 
sensing time is short enough, or the free bands is close enough to the bands under test, they can be 
considered to have the same noise covariance characteristics. Besides, we can select one or more 
subbands with the lower power spectral density (PSD) as the vacant noise-only subbands as 
detailed in [24]. The sample covariance matrix of the vacant subband is set to be the reference 
matrix for the Riemann distance based detection method. 

If the reference matrix is ˆ
VR , then the test statistic is defined as: 

 
 

 

2
1/2 1/2

2
1

2

1

ˆ ˆ ˆlog

ˆ ˆlog

log

R R R

R R

RD V i V

V i

K

k
k

T



 









 ,

 (9) 

where ˆ
iR  is the K×K sample covariance matrix of the subband to be tested, and  1k k K  ,...,  is 

the eigenvalue of the matrix 1ˆ ˆ
V i
R R . The proposed Riemannian distance detector is: 

0 ,

1,

 

 

i

i

RDT 



 ,  (10) 

where   is the pre-set detection threshold. 
In summary, we propose the process of spectrum sensing algorithm based on Riemannian 

distance in wideband: 

1. Determine the vacant subband. If there is only one vacant (noise-only) subband, then its 
sample covariance matrix H

V V VΨ X X  is calculated and used as a reference matrix ˆ
V VR Ψ . 

If there are multiple vacant subbands, such as A, then the Riemannian mean VΨ  of the noise 
covariance matrices  1i i AΨ ,...,  of the multiple vacant subbands can be used as the 
reference matrix: 

 
 2

1

1ˆ arg  min .
Ψ

R Ψ Ψ Ψ
A

V V iSym n
i

D
A



  ,
,  (11) 

2. Compute the sample covariance matrix ˆ H
i i iR X X  of the i-th subband to be tested. 

3. Obtain the test statistic    2 2

1

ˆ ˆ logR R
K

RD i th subband V i k
k

T D 


 , , , where k  is the eigenvalue of 

1ˆ ˆ
V i
R R  with ordered 10 K     . 

4. Compare the test statistic with the threshold, and get the sensing result: 

0 ,

1,

 

 
.

i

i

RD i th subbandT 




,  (12) 

In the above sensing method, the main computational complexity lies in the covariance matrix 
inversion calculation. The difficulty of inversion depends on the value of K, which is the number of 
antennas. As we will present in the Section 4, even with small K, the proposed Riemannian distance 
detector still shows good detection performance. If K is large, the matrix inversion calculation may 
not be easy. Then the alternative methods noted in [19] may be a better choice. It should be noticed 
that in Equation (6), we can calculate the square root matrix instead of the inverse matrix. In [19], a 
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square root of positive definite matrix computing method is given. Using the Schulz iteration, the 
intractable matrix inversion can be avoided. 

3. Threshold and Probability of False Alarm 

The FP  performance and DP  performance of the proposed Riemannian distance detector 
depend on the probability distribution of the test statistic Equation (9) under 0  and 1 . 
However, the analytical forms of the probability distribution under both hypotheses are hard to be 
obtained. In this section we derive the accurate closed-form approximation of FP  to get the 
decision threshold. And the DP  performance will be presented and discussed through numerical 
simulations in Section 4. 

3.1. Moments of Test Statistics under 0  

We consider a moment matching method to approximate the probability density function (PDF) 
of the test statistics. Therefore, we need to obtain the exact moments of RDT  under 0 : 

   2

1
log .

pK
p

RD k
k

T 


   
   

   
E E  (13) 

In this section, we will give a detailed calculation process of the moments of test statistics 
under 0 . First, we show the joint PDF of the eigenvalues in Equation (9) according to the random 
matrix theory. Then we use the joint PDF to solve the moments of test statistics which can be 
regarded as the eigenvalue function. The calculation of the first order moments will be presented as 
an example. And the closed-form solution to the p-th moment will be given at last. 

Consider the case where the number of reference matrices is A = 1, then the reference covariance 
matrix and the sample covariance matrix of the i-th subband in the expression of the test statistic 
R DT  under 0  follow the distributions respectively: 

ˆ ( )V K VNR Ψ , ,  (14) 

0
ˆ ( )  i K VN underR Ψ  , , ,  (15) 

where ˆ
VR  is independent of ˆ

iR . The joint PDF of the eigenvalues  1k k N  , ...,  of the matrix 
1ˆ ˆ
V i
R R  has been given under the assumption that the dimensions of two complex Wishart matrices 

are equal [25,26], which is: 
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1 2 2
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N KK K
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K i kK
k k iN N N k

K
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 , , ...,  (16) 

In the case of a known joint probability density of k , we can refer to the moment calculation 

method in [27] to solve the moments of the eigenvalue function    2
1 2

1
log

K

K k
k

T    


, ,..., . In 

general, if the joint probability density (16) can be written as: 

       0
1

.λ Φ λ Ψ λ
K

k
k

f C  


   (17) 

Then the expectation of the function  k   for k  can be solved as follows: 

0
1

( ) U
K

k
k

C 


 
 

 
 ,  (18) 
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where  Φ λ ,  Ψ λ , U  are K×K matrices. The  i j,  elements in  Φ λ  and  Ψ λ  are  i j  

and  i j , respectively. The  i j,  element in U  can be expressed as: 

       
0

.i j i ju d      


  ,  (19) 

By introducing the function   sxx e  , we can use Equations (17) and (18) to solve the required 
moments: 

    2 2
1
log log

1

.
K

k kk

K
s s

k

e e
 



    
 
   (20) 

By p -th order derivatives of (20) at 0s  , we have the p-th moment of  1 2 KT   , ,..., : 

   2
1
log2

0
1
log .

K
kk

p pK
s

k sp
k

d
e

ds


 




                  
   (21) 

We take  
     0

2N

N N N

K
C

K K N



  

 as the normalized coefficients determined by N, K, and 

choose       Φ λ Ψ λ V λ , where  V λ  is a Vandermonde matrix. Choosing  
 21

N K
k

k K

k


 








, 

   2log ks
k e    , we can get: 

 
2log ( )

0
1 1

( ) .Uk

K K
s

k
k k

e C s  
 

   
    

   
    (22) 

The element  i ju s ,  in matrix  sU  corresponds to the sub-item in (19) as follows that: 
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,
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Then (19) can be written as: 

 
 

 2
2

log
2

0

.
1

N K i j
s

Ni j
u s e d




    




,
 (24) 

For the differential operation in (22), we can use the rules for the matrix determinant in [28]: 

     
1

U U
K

k
k

d
s s

ds 

 ,  (25) 

where    k sU  is the matrix that coincides with  sU  except that every entry in the k-th row 

(equivalently, columns could be used) is differentiated with respect to s. 
Then we take the first moment calculation as an example, for p = 1: 

        0 0 0
1

0 .U U
K

RD s k
k

d
T C s C

ds 


    (26) 

 0
i j

u ,  and   0si j

d
u s

ds ,  are the two types of matrix elements in    0kU : 



Sensors 2017, 17, 661 9 of 18 

 

 
 

 
2

2
0

0 1 1
1

N K i j

Ni j
u d B N K i j N K i j






    

         


, , ,  (27) 

 
 

 
2

2
0 2

0

log
1

N K i j

s Ni j

d
u s d

ds


 



    

 


, ,  (28) 

where  B x y,  is the Beta function. Thus the  i j,  element of    0kU  can be denoted as and the 

function  k jI x,  is defined by: 

   
 

  
2

2
2

0

0 log .
1

U
N K i j

k jk Ni j
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.
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Similarly, the result of p-th moment can be obtained. There will be an integral term with the 
following form when computing the p-th moment: 
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In Appendix A we give a detailed derivation for the integral form such as 
 

 
1

0

log dt
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x
q

x y

t
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 . 

To sum up, we can get the exact analytical p-th moment. 

3.2. Gamma Approximation Approach 

With the exact analytical p-th moment obtained in Section 3.1, we can use the gamma 
distribution function to approximate the test statistic under 0  according to the moment matching 
method in [29]. 

Using the gamma approximation, we only need to compute the first and second moments to 
obtain the mean and variance of the test statistic as follows: 

   

       
2 22 2

1

2 1

T RD

T RD RD

T M

T T M M







    


 



 ,
 (32) 

where  M p  is the p-th moment of RDT . Suppose the test statistic satisfies the gamma distribution 

with shape parameter Tk  and scale parameter T  and 
RDT
F  is denoted as the cumulative 

distribution function (CDF) of RDT . According to the CDF of a gamma distribution defined in [30], 

RDT
F  is derived as: 
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T

k x
F x k
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,
; , ,  (34) 

where  T Tk x  ,  is the upper incomplete gamma function. 
Denoting   as the decision threshold, then the probability of false alarm under 0  is: 
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 1 .
RDF T T TP F k   ; ,  (35) 

So we can use the inverse of the gamma cumulative distribution function to compute the 
decision threshold: 

 1 1 .
RDT F T TF P k   ; ,  (36) 

Although the threshold calculation method we derived seems to be complex enough, such 
complexity may not be a serious problem in the spectrum sensing process. As we can see in the 
deduction process above, the threshold depends on the desired FP  and the system parameters N, 
K. These parameters should be predefined in the CR node. Therefore threshold calculation does not 
need to be real-time. Even if the system is required to operate under different parameter set, we can 
still calculate the threshold of different parameter sets in advance and make a query table for 
real-time mode changing. 

4. Numerical Results 

In this section, we give the performance evaluation of the proposed algorithms by means of 
Monte Carlo simulations. First, we examine the accuracy of the FP  approximation method and the 
decision threshold calculation. Then we compare the detection performance of RDD with some 
conventional EBDs in different scenarios. In addition, we show the performance of RDD when 
Riemannian mean method is applied in multiple vacant subbands situation. In this section of the 
simulation, we choose the value of N, K according to the practical system. Due to the limited 
sensing time and sampling rate, N generally takes tens to hundreds, while K is generally less than 
eight because of hardware size. We choose the exponential correlation model [31] as the noise 
covariance matrix: 

   0 0 1Ψ i j

i j
  , , ,  (37) 

where   denotes the degree of noise correlation. And each subband has the same noise covariance 
matrix, i.e., 0i Ψ Ψ  for 1 2i L , ,..., . 

In addition, we assume that the channel matrix iH  of the subband is composed of 

independent Gaussian random variables and satisfies the normalization conditions 
2 1i H . In each 

Monte Carlo realization, the channel matrix is generated randomly. The PU signals in the simulation 
follow the i.i.d. zero mean complex Gaussian distribution, and are independent from the noise. 

The received SNR of p-th primary signal in the i-th subband is defined as: 
2( )

( )
p
i ip

i
i

SNR





H
 (38) 

where ( )p
i  is the transmission power of the p-th PU, and i  is the noise power in the i-th subband, 

which satisfies  i iTr K  Ψ . In the case of multiple PUs, we set different SNRs for different PUs 
due to the fact that the distance between multiple PUs and SU are not the same in the practical 
sensing situations. 

4.1. Decision Threshold and FP  

In Table 1, we present the numerical simulation of the moments computing method proposed 
in Section 3.1. It is worth noting that the joint PDF of the eigenvalues defined by (16) holds for any 
value of the covariance matrix parameter   in two complex Wishart distributions ( )K N  , . 
Hence, in the simulation, we can specify some combinations of the sample size N and antenna 
number K, and then generate the complex Wishart matrix with arbitrary covariance matrix to 
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calculate the test statistic under 0 . In Table 1, the accuracy of the theoretical calculation is verified 
by comparing the simulated and theoretical values of the first and second moment of the test statistic 
RDT  under 0 . 

Table 1. Numerical results of RDT . 

 ,N K
  RDT  

Simulated 

 RDT  
Analytical 

 2
RDT  

Simulated 

 2
RDT  

Analytical 

 30,4
 

1.1708 1.1695 1.5489 1.5474 

 50,4
 

0.6750 0.6756 0.5147 0.5151 

 50,8
 

2.8708 2.8667 8.5091 8.4914 

 80,8
 

1.7135 1.7424 3.1125 3.14 

In Figure 3, we give the simulation values of the CDF of the test statistic and the theoretical 
value of the gamma distribution approximation at the specified (N,K). This figure shows that the 
gamma distribution approximation based on the moment matching method proposed in Section 3.2 
achieves good performance. Moreover, our approximation algorithm are perfectly matched to the 
simulation values for different (N,K). 

 
Figure 3. Cumulative distribution functions (CDFs) of the test statistics for (N,K) = (30,4) and (N,K) = 
(50,8). 

We plot the decision threshold as a function of FP  for the specified (N,K) in Figure 4. The 
simulation value curve is obtained by Monte Carlo method. Meanwhile, the theoretical value of FP  
can be obtained directly by (35). The figure shows the perfect agreement between the theoretical 
computing and simulation results. Therefore, the sensing algorithm can get the corresponding 
decision threshold under the specified (N,K) and the desired FP . In this way, the detector can satisfy 
the constant false alarm rate (CFAR) requirements of the CR system. 
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Figure 4. Decision threshold   vs. FP  for (N,K) = (50,4) and (N,K) = (80,8). 

4.2. Detection Performance 

First, the Receiver Operating Characteristic (ROC) curve is used to compare the performance of 
the proposed detector and other detectors when the number of reference matrices is A = 1. The ROC 
curve gives the detection probability DP  as a function of the false alarm probability FP . By 
changing the threshold  , the operating point of the detector can be chosen anywhere along its ROC 
curve. 

Considering that the noise variance, noise covariance matrix and the number of PUs are both 
unknown in our assumption, blind detection is necessary. Among the conventional EBDs, the SLE 
detector and the AGM detector are two typical blind detectors [32]. According to the classification of 
EBD in [29], they correspond to arithmetic mean detector (ARMD) and arithmetic-geometric mean 
detector (AR-GEMD), respectively. Both detectors operate in a single-band spectrum sensing 
scenario and do not require noise-only subband for detection. In order to deploy these two EBDs in 
multi-band detection, we use the pre-whitening technique [33] to improve their sensing performance 
in multi-band with unknown noise. By replacing ˆ

iR  by 1ˆ ˆ
V i
R R  for the EBD in the i-th subband, we 

can compare the performance of EBD and the proposed RDD in the simulation. 
The ROC curves of the detectors when there is one primary signal are plotted in Figure 5 where 
(1) 3SNR dB  , 0.4   and (N,K) = (100,4). It is clear that the proposed detector outperforms the 

two EBDs under the assumption of correlated noise. 
Figures 6 and 7 show the ROC curves when the number of PUs is assumed to be P = 3 and P = 5 

respectively. The SNRs of multiple PUs are defined as ( 1) ( ) 1i iSNR SNR dB   . In the case of different 
combinations of N and K, we can see the same performance differences between RDD and EBDs as 
in Figure 5. It should be seen that ARMD performs better than AR-GEMD in the case of single PU 
but worse in the case of multiple PUs. As noted in [9,14], the rank of received covariance matrix is 
assumed in the derivation of the GLR-based detector. In our signal model, the number of PUs has an 
effect on the rank of the covariance matrix, resulting in the EBD method being selective to P, as 
shown in the figures. By contrast, RDD is not sensitive to the number of PUs because we do not 
make any assumptions about P in the proposed algorithm. From the geometric point of view, the 
detection performance of RDD depends on the Riemannian distance between ˆ

iR  and ˆ
VR . 

Although the combination of different primary signals will lead to the position change of ˆ
iR  on the 

manifold, the distance-based detection method remains effective. 
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Figure 5. The ROCs comparison for (N,K) = (100,4). Assuming P = 1, 0.4  , and (1) 3SNR dB  . 
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Figure 7. The ROCs comparison for (N,K) = (80,8). Assuming P = 5, 0.4  , and (1) 8SNR dB  . 

In practical, communication systems often require a constant FP , as required by the IEEE 
802.22 standard to be 10% [34]. We plot DP  at different average received SNR in Figure 8 and 
choose (N,K) = (50,4) and 0.4  , while the decision threshold has been set to achieve 0.1FP  . 
And the number of PUs is one in Figure 8a and three in Figure 8b. The figures illustrate that the RDD 
can achieve higher detection probability than EBD for the same SNR level. 

(a) (b)

Figure 8. The probability of detection versus SNR for (N,K) = (50,4) and 0.4   in different PU 

numbers (a) P = 1; (b) P = 3. 

4.3. Multiband Detection with Riemannian Mean 
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present, i.e., A > 1. First, we would like to evaluate the performance of matrix mean estimation 
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simulation, the matrix dimension parameter is (N,K) = (80,8), the matrix type is the correlated noise 
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generated in each Monte Carlo implementation. The objective function in the Riemannian mean 
expression (7), which is the mean distance, can be written as follows: 
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The trend of the mean distance with the iteration number t is shown in Figure 9. When 
calculating (8), we choose 0.1   to control the iteration speed. Meanwhile, in Figure 9 we show 
the comparison of RM and AM estimation performance when the number of reference matrices is A 
= 4 and A = 8. It can be observed that the objective function of the RM calculation based on the 
gradient descent algorithm decreases as the number of iterations increases, and tends to be stable 
after a certain number of iterations. It should be noted that the iterative computation is not required 
in AM method, so the mean distance of AM in the figure remains unchanged. The figure shows that 
for different number of reference matrices, the mean distance of the converged RM method is less 
than that of the AM method. 

 
Figure 9. Estimation Performance Comparison for (N,K) = (80,8) and random   when the number 

of reference matrices is A = 4 and A = 8. 

(a) (b)

Figure 10. The ROCs of RDD using AM method and RM method for (N,K) = (80,8), 0.4  , P = 3 and 
(1) 5SNR    with different number of reference matrices (a) A = 2; (b) A = 4. 

Finally, we compare the ROC curves of RM method and the AM method in the case of multiple 
vacant subbands. We choose (N,K) = (80,8), 0.4  , P = 3 and (1) 5SNR    for the simulation.  
Figure 10a,b plot the ROC curves with reference matrices A = 2 and A = 4, respectively, where the 
iteration number of RM method is 8. We can see that for RDD, RM estimation outperforms the AM 

0 1 2 3 4 5 6 7 8 9 10
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Iteration

M
e

a
n

 D
is

ta
n

ce

 

L=4 RM

L=4 AM

L=8 RM

L=8 AM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False  Alarm  Probability

D
e

te
ct

io
n

  P
ro

b
a

b
ili

ty

 

 

RDD-AM

RDD-RM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False  Alarm  Probability

D
e

te
ct

io
n

  P
ro

b
a

b
ili

ty

 

 

RDD-AM

RDD-RM



Sensors 2017, 17, 661 16 of 18 

 

estimation, and when the number of reference matrices is large, the gap is more obvious. The above 
simulation results illustrate that the sensing performance can be improved if the RM matrix of 
reference matrices is used for the RDD when multiple vacant subbands are available in WSS. 

5. Conclusions 

In this paper, we propose a novel WSS detector based on Riemannian distance for 
multi-antenna CR. For a wideband spectrum divided into several subbands, we compute the 
Riemannian distance of covariance matrices between the vacant subband and the subband to be 
detected. Through theoretical analysis, we obtain the exact closed expression of the decision 
threshold using the moment matching method. Unlike the traditional EBD derived with the GLR 
criterion, the proposed RDD is derived from information geometry theory. By applying the 
geometric method, we do not have to make too many assumptions about noise and primary signals 
like the traditional methods do. Therefore we obtain a detector which is blind to noise statistical 
characteristics and number of PUs. The simulation results show that the proposed detector exhibits 
better performance than the conventional EBD method in the correlated noise model and is robust to 
the number of PUs. Moreover, we propose a matrix mean estimation method based on RM. In the 
presence of multiple vacant subbands, the RM method can better estimate the noise distribution 
than the AM method. Thus it is more suitable for RDD due to the better use of the wideband 
spectrum information for sensing. 
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Appendix A 

According to the definition of Beta function [30] we have: 
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By transformation as: 
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We can easily obtain: 
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In calculating the first and second moments of the test statistic, there are 2q   and 4q   in 
the integral equation to be solved. They can be expressed as follows: 
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where    x y x y
m n

m nm n
B B
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  ,, , . The required  x ym nB , ,  in the computing can be written as a 

combination of digamma functions, such as: 

        1 0 x y x y yB B x x   , , , ,  (A8) 

             2

2 0 x y x y 1 1 y y .B B x x x x        , , , , ,  (A9) 

Similarly, we can derive other  x ym nB , ,  using digamma function expansion. 
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