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Abstract: In the indoor environment, variation of the magnetic field is caused by building structures,
and magnetic field map navigation is based on this feature. In order to estimate position using this
navigation, a three-axis magnetic field must be measured at every point to build a magnetic field
map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with
a likelihood function whereby the measured magnetic field data and the magnetic field map are used.
However, if only magnetic field map navigation is used, the estimated position can have large errors.
In order to improve performance, we propose a particle filter system that integrates magnetic field
map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic
field maps (a horizontal intensity map, a vertical intensity map, and a direction information map)
are used to update the weights of particles. As a result, the proposed system estimates the position
and orientation of a mobile robot more accurately than previous systems. Also, when the number of
magnetic sensors increases, this paper shows that system performance improves. Finally, experiment
results are shown from the proposed system that was implemented and evaluated.
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1. Introduction

As the need for indoor navigation grows, various techniques for indoor navigation are rapidly
developing. Many businesses provide customers with various services based on a positioning system
for their own purposes. In particular, industrial mobile robots, such as auto-guided vehicles, are widely
used, and the market is gradually increasing. Also, home appliance robots, like the robot cleaner,
are supplied in homes. In order to use these services, a navigation system needs to know the absolute
position of the robot or smart device.

Navigation systems are classified into two categories [1]. One category uses absolute positioning,
and the other uses relative positioning. In general, absolute position is estimated using external devices,
such as beacons, landmarks, etc. Outdoors, the global positioning system (GPS) is mostly used to
estimate absolute position. Recently, GPS standard positioning services have provided 3.1 m horizontal
accuracy at a 95% confidence level [2]. But the GPS has to use four or more satellites [3]. This system is
not suitable indoors, because the GPS signal cannot reach there. In order to use an absolute positioning
system indoors, various positioning systems, such as ultrasonic [1,4,5], Bluetooth [6,7], and Wi-Fi [8,9]
positioning systems, have been developed. However, these systems must be installed in the area
where the positioning system is serviced. The relative positioning system does not need infrastructure
because relative positioning sensors, such as an encoder system and an inertial navigation system
(INS) [10], are only installed in the mobile robot. Also, the output rate of these systems is higher
than with an absolute positioning system. However, the relative positioning system has a divergence
problem when the position is calculated, so these systems need to correct for position error [1].
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Magnetic field map navigation is able to estimate absolute position without infrastructure and
the divergence problem. Indoors, the geo-magnetic field is refracted by structures like pillars, steel
structures, and fixed large objects [11,12]. As a result of this refraction, a magnetic field map can
be obtained and used in various methods [13]. These methods have one thing in common: that is,
the use of a likelihood function. Many likelihood techniques have been researched to estimate absolute
position. There are three types of likelihood method [13]. The first is maximum likelihood estimation
(MLE), which selects the position with the maximum value. The second method is maximum likelihood
ratio (MLR), which estimates the position of a mobile robot by using the distance between the first
maximum position and the second maximum position. If the distance is shorter than a threshold
value, the first maximum position is selected. If not, the estimated position is ignored. Finally, there
is the aggregate bin likelihood (ABL) method, which uses an n-by-n moving average mask (bin).
After moving-average computation, the position with the maximum value is selected as the estimated
position. Depending on the size of the mask, system performance is determined. Above all, if many
likelihoods have a high value, these three methods may also select a position with a large position
error from among many candidate positions.

The methods based on a particle filter can estimate the optimal position, even though there are
many candidate positions with a high value. The particle filter is one of the recursive Bayesian
estimators, and is robust against nonlinear/non-Gaussian filtering problems [14,15]. Since the
measurement probability density function (PDF) is non-Gaussian in magnetic field map navigation,
a particle filter was used for this paper [13,16]. Described briefly, the particle filter, which is sequential
importance resampling (SIR) in this system, can be divided into two steps [14]. The first step is
importance sampling. The particles are propagated according to a dynamic model. Also, the weights
of particles are updated by a measurement probability density function. The final step is resampling.
In order to avoid the problem of degeneracy, the effective number of particles is calculated to determine
whether to resample [14–16]. If the effective number is smaller than a threshold value, the particles
are resampled. Finally, all steps are repeated. There are various methods based on the particle filter,
depending on how to propagate the particles, how to make the measurement probability density
function, and how to resample the particles. Self-localization magnetic field map methods based on
a particle filter have been researched. These systems propagate the particles by specific situations,
such as the speed limit, without any other positioning system in the propagation step [13,16]. However,
if the mobile robot motion is outside a fixed specific situation, particle propagation is inaccurate
and inefficient. A magnetic map navigation system combined with an INS was introduced [17].
The combination with the INS can make the system more stable than a self-localization system, because
the INS is used to know the user’s forward velocity and angular velocity to propagate particles.
However, the INS has a divergence problem due to cumulative error and velocity, and the angular
velocity results of the INS need to be corrected by other means.

In order to solve these problems and to increase performance, we propose a particle filter system
that integrates magnetic field map navigation and an encoder system. In the propagation step,
the proposed system determines velocity by using encoders instead of the INS to avoid the divergence
problem without error correction. In order to use the encoder, the error characteristics of the encoder
must first be known. The encoder system has two categories of error [18,19]. One is systematic
errors from unequal wheel diameters, misalignment of wheels, or limited encoder resolution and
limited sampling rates. The other is non-systematic errors from travelling over uneven floors and
from wheel-slippage. If these errors accumulate over time, the estimated position of the mobile robot
can diverge from the real position [20,21]. However, the encoder system is free from the divergence
problem when velocity is calculated because the current velocity of the encoder system is not affected
by the previously measured velocity. Therefore, the particles can be propagated by using the velocity
of the encoder system without encoder error correction. In the measurement update step, multiple
magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map,
and a direction information map) are used to make the measurement PDF, which update the weights
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of particles. Also, in this paper the mobile robot’s orientation is computed by using only the magnetic
field map without any other sensor, such as the encoder or the INS.

The organization of this paper is as follows: The magnetic-field map-building system is introduced
in Section 2.1, and the magnetic field maps are introduced in Section 2.2. The various coordinate
systems are described in Section 2.3. In Section 2.4, magnetic field map navigation using the particle
filter is discussed. Section 3 shows the results from evaluation of the proposed system. Finally, Section 4
offers conclusions.

2. Positioning System

2.1. The Magnetic-Field Map-Building System

In order to use magnetic field map navigation, a magnetic field map should be obtained in
advance. Since the mobile robot moves with a constant height on an even floor, the magnetic field
map should be built on the horizontal plane. In order to build the magnetic field map efficiently,
a magnetic-field map-building system is needed. This system consists of a magnetic field sensor
array, odometry, and a magnetic field data alignment system. When the system moves in the test area,
the position of the system is estimated by odometry, and the magnetic field data is measured at the
same time. Finally, the magnetic field map is built when the measured magnetic field data are aligned
to position, estimated by odometry in the magnetic field data alignment system. In a previous study,
an encoder system was used for odometry [22]. However, odometry using encoders has a divergence
problem with estimated position rodometry because of cumulative error. Therefore, an integration
system is needed to calibrate this error [20–24]. In order to calibrate the position error from odometry,
we used an integration system with a capacitive binary proximity sensor, which is the PR30-10DN.
Figure 1 shows the magnetic-field map-building system in this paper. This system consists of the
sensor, a pre-processing segment, an integration system, and the magnetic field data alignment system.
The sensors (the magnetic sensor array, two encoders, and a proximity sensor) are mounted in the
mobile robot. The magnetic field data and the encoder data are measured at regular intervals. However,
the proximity sensor does not output the signal at a regular time interval, because the proximity sensor
generates a signal when the distance from a landmark that is installed at a known position in the test
area is within 10 mm. The measured sensor data are processed during pre-processing, which consists of
odometry and the proximity sensor positioning system. After pre-processing, rodometry from odometry
and rprox from the proximity sensor positioning system are transmitted to the integration system.
The estimated position, rodometry from odometry, is compensated for with the integration system when
the new proximity sensor position data, rprox, are received. Also, the this system calculates reference
orientation Ψre f ,k, which is expressed as

Ψre f ,k = tan−1

(
rre f ,y,k − rre f ,y,k−1

rre f ,x,k − rre f ,x,k−1

)
(1)

where [rre f ,x,k, rre f ,y,k]
T = rre f ,k, and k is the time index.

The maximum error from the proximity sensor is within 5 mm because the test area is not
perfectly flat. However, this system has an acceptable level of error in the position estimating reference
system of the mobile robot. Finally, a magnetic field map is built completely by the magnetic field
data alignment system using the measured magnetic field data, m, reference position, rre f , and
reference orientation, Ψre f . Since the position of each magnetic sensor is known in mobile robot’s body
frame, the position of each magnetic sensor in main frame is computed using reference position and
orientation. The magnetic field measured at each sensor is first mapped to each sensor position in
the main frame. Also, the measured X, Y direction magnetic field should be rotated by the reference
orientation. Since the magnetic field map is constructed at constant interval, the magnetic field of
each coordinate in the magnetic field map is computed by a bilinear interpolation about four reference
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positions near each coordinate. After interpolation, the magnetic field map is obtained using a 3 × 3
mean filter.
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Figure 1. The magnetic-field map-building system.

2.2. The Magnetic Field Map

The magnetic field map used in this paper was built with magnetic field data from the 7th
floor corridor of the 10th engineering building in Pusan National University. This area is shown in
Figure 2. The reference system moves from position (0, 0) to position (11.58, −1.32) in the corridor.
The magnetic field was measured with 55.88 mm spacing in the direction of mobile robot movement
with a width of 0.94996 m (= 55.88 mm× 17). In order to reduce the error in the magnetic field map,
every magnetic sensor was calibrated [13], and the magnetic field was measured several times by
changing the position of the sensor. Finally, the magnetic field maps about each axis can be obtained.
The magnetic maps created are composed of X, Y, and Z-direction magnetic field maps [13,16,22].
These maps are represented as MX(r), MY(r), and MZ(r), where r = [rx, ry]

T .
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Figure 2. The test area for magnetic field map navigation: (a) map of the test area divided into four
sections: A, B, C, and D; and (b) photos of the test corridor.

If all three magnetic field maps are used for estimating position, the estimation error is reduced
remarkably, compared to magnitude magnetic field map MXYZ(r) = ‖(MX(r), MY(r), MZ(r))‖.
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But the amount of computation increases in proportion to the number of magnetic field maps used.
If the mobile robot moves on an even floor, the X-Y magnetic field map, MXY(r), which is the intensity
map of the horizontal plane, is used. Then, the amount of calculations can be reduced, compared to
using three magnetic field maps. Also, an angle map of the magnetic field, Mϕ(r), is needed. This
angle map is not directly used to compute the measurement probability density. It is used to refer
to the rotation transformation in this proposed method. This will be explained in detail in the next
section. The X-Y magnetic field map and the angle map are indicated by

MXY(r) =
√
(MX(r))

2 + (MY(r))
2 (2)

Mϕ(r) = tan−1(MY(r)/MX(r)) (3)

The intensity magnetic field maps MXY(r) and MZ(r), and the direction magnetic field map,
Mϕ(r), about the test area are shown in Figure 3.
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Figure 3. The magnetic field maps. (a) The X-Y magnetic field map, which is the intensity magnetic
field map of the horizontal plane; (b) Z-direction magnetic field map; (c) Direction of the magnetic field
in the horizontal plane.

In magnetic field map navigation, the performance of the system depends on variation of the
magnetic field maps. The variation of the magnetic field maps can be evaluated by the variance and
gradient. If the variance of the magnetic field intensity is larger, it is easy to distinguish between
true and false positions. The gradient magnitude of a magnetic field affects the resolution when
estimating position. However, if the variance and gradient magnitude of the direction magnetic field
map are large, the estimated orientation has a large error. This is explained in detail in the next section.
For the above reasons, the variance and gradient magnitude of the magnetic field map at each point
are important elements in magnetic field map navigation. Table 1 shows the statistics of the magnetic
field maps in the test area. Also, the histograms of the magnetic field maps are shown in Figure 4.

Table 1. Statistics of the magnetic field map.

XY (uT) Z-Dir (uT) Dir (rad)

Std. 6.24 3.83 0.43
Mean 27.55 25.18 −1.86
Max. 40.38 34.84 −1.21
Min. 11.41 13.19 −2.97
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Figure 4. The histograms of the magnetic field maps. (a) The X-Y magnetic field map; (b) Z-direction
magnetic field map; (c) Direction magnetic field map in the horizontal plane.

2.3. Frame Definition

The estimated position is expressed in relation to the main frame in this paper. Since the sensor
data are measured in the body frame, axis definitions and transformations are required. Figure 5
shows various frames. The mobile robot position is rk = [rx,k, ry,k]

T at time k in the fixed main frame.
The navigation frame is parallel to the main frame, but the center of the navigation frame is at the
center of the mobile robot [25]. The body frame is the center of the robot. The X-axis of the body frame
is the same direction as the head direction of the robot. The Y-axis is the direction to the right, and the
Z-axis is directed down the mobile robot. Angle Ψk is the difference in the angle between the X-axis of
the body frame and the X-axis of the navigation frame.
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2.4. Particle Filter

When a mobile robot moves on an even floor where three magnetic field maps have already been
acquired, the magnetic field data and the encoder velocity data are measured at constant intervals.
And then, the particle filter system estimates the position of the mobile robot whenever the magnetic
field data are measured. First, one thousand particles are propagated by measured encoder velocity vk
and the statistical information of the system. The distribution of the encoder velocity error is assumed
to be Gaussian. The propagation model equation is expressed as:

r̂(j)
k = r(j)

k−1 + vk•∆t + e(j) (4)

where e = N(0, δ2
ENC)•∆t, and j is the particle index.

Second, measurement probability density function p(mk|rk) that is able to update the weight of
a particle has to be evaluated. PDF p(mk|rk) presents the outcomes, which include information on
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the actual position in statistical inference. The magnitude of the outcomes near the actual position is
relatively higher than other outcomes. If the distribution of the magnetic field measurement error is
Gaussian, the PDF by using one sensor is represented as:

p(m|r) = γ exp
(
− 1

2δ2
e
(m−M(r))2

)
(5)

where γ = 1√
(2π)δ2

e
and where m is the magnetic field measurement by the sensor, M(r) is the magnetic

field magnitude value at r in the map, and δ2
e is the measurement error variance [16]. In order to

consider the orientation of the mobile robot, the direction magnetic field map, Mϕ(r), and the measured
direction of the magnetic field in the horizontal plane are used. If the i-th magnetic field sensor is
placed at rb

i in the body frame, which is located at rk and rotated about Ψk in the main frame, the sensor
position in the main frame is expressed as

r′i,k = Rot(Ψk)•rb
i + rk (6)

where Rot(Ψk) is rotation matrix about Ψk. The measurement of the magnetic field at r′i,k is expressed as

mb
i,k =

[
Rot(−Ψk) 0

0 1

] MX(r′i,k)
MY(r′i,k)
MZ(r′i,k)

+ (0, δ2
e ) (7)

with the measurement of the i-th sensor represented as mb
i,k = [mb

i,x,k, mb
i,y,k, mb

i,z,k]
T

. However, to
calculate r′i,k, it is necessary to know the mobile robot’s orientation, Ψk. The orientation can be
estimated by using the direction magnetic field map, Mϕ(rk), and the direction of the measured
magnetic field, ϕb

k, at the center of the body frame. The relationship is expressed as follows [26]:

Ψ′k(rk) = Mϕ(rk)− ϕb
k (8)

In order to overcome the sensor noise, the direction of measured magnetic field ϕb
k is estimated

with the mean of the magnetic field direction from each sensor because the sensors are located close
each other in the mobile robot. This direction is expressed as:

ϕ̂b
k =

1
n

n

∑
i=1

tan−1(mb
i,y,k/mb

i,x,k) (9)

where n is the number of sensors used, and i is the sensor index. However, if the variation of the
direction magnetic field map is large, the estimated direction of magnetic field ϕ̂b

k has a large error,
because the directions measured by each magnetic sensor are greatly different from each other. After
the mobile robot orientation, Ψ′k(rk), is computed, r′i,k is expressed as:

r′i,k = Rot(Ψ′k(rk))•rb
i + rk (10)

The two PDFs about the X-Y magnetic field and Z-direction magnetic field are expressed as:

p(m′bi,xy,k|rk) ∝ exp

(
− 1

2δ2
e,xy

(m′bi,xy,k −MXY(r′i,k))
2
)

(11)

p(m′bi,z,k|rk) ∝ exp
(
− 1

2δ2
e,z
(m′bi,z,k −MZ(r′i,k))

2
)

(12)
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where m′bi,k = [

√
(mb

i,x,k)
2
+ (mb

i,y,k)
2, mb

i,z,k]
T

= [mb
i,xy,k, mb

i,z,k]
T

.

If the PDFs about mb
i,xy,k and mb

i,z,k are assumed to be an independent distribution, the joint PDF is
expressed as:

p(m′bi,k|rk) =
p(m′bi,xy,k|rk)p(m′bi,z,k|rk)

C
(13)

where C is a normalizing constant. Also, if the measurement PDFs of each sensor can be assumed to be
an independent distribution, the final joint PDF is represented as:

p(m′b1:n,k|rk) ∝
n

∏
i=1

p(m′bi,k|rk) (14)

with m′b1:n,k , m′b1,k, · · · , m′bn,k.
After p(m′b1:n,k|rk) is evaluated by measurement, the importance weights of the particles are

updated. The measurement update step is expressed as:

w(j)
k = w(j)

k−1 p(m′b1:n,k|r̂
(j)
k ) (15)

After the measurement update step, the updated weights of particles are normalized so they sum
to 1. Since the particles are normalized, we do not have to calculate the constant C in order to reduce
processing time.

Finally, the mobile robot position is estimated by means of the particles where the equation is
represented as:

r̂k =
N

∑
j=1

r̂(j)
k •w

(j)
k (16)

Figure 6 shows the updated importance weights in the measurement update step. The particles
propagated by the encoder in the previous step are updated to a new weight through computation
with the measurement PDF. When the mobile robot position is (23.25, 0) in Figure 6, the particles
are gathered near (2, 0), (18.34, −9.16), and the real position of the mobile robot. However, since the
probability density near the real position is higher than the others, the estimated position of the mobile
robot is able to be near the real position of the mobile robot. Using Equation (16), the position is
estimated as (23.23, −0.03). Over time, the particles near (2, 0) and (18.34, −9.16) will gradually be
cleaned up, because these particles have very low weight.

If the position of the mobile robot can be estimated, the orientation of the mobile robot is also
determined. The estimated orientation of the particles is expressed as:

Ψ̂(i)
k = Mϕ(r̂

(i)
k )− ϕ̂b

k (17)

Also, the orientation of the mobile robot is estimated with the following equation:

Ψ̂k =
N

∑
j=1

Ψ̂(j)
k •w

(j)
k (18)

In order to avoid the degeneracy problem of importance weights, the resampling step is required.
If the effective number of particles, N̂e f f , is smaller than threshold number Nth, residual resampling is
performed. This condition is expressed as

N̂e f f =
1

N
∑

j=1
(w(j)

k )
2
< Nth = N/2 (19)
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where N is the number of particles, and N = 1000 in this system. After the residual resampling,
the weight of all particles is equalized to 1/N. Figure 7 shows the flowchart of the proposed particle
filter system.Sensors 2017, 17, 651 9 of 15 
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3. Experiments and Results

3.1. Experimental Environment

In order to evaluate the proposed system, a reference system and odometry using encoders
were used. Figure 8 shows a block diagram of these systems. The reference system that was used
to build the magnetic field map prints reference position rre f and reference orientation Ψre f . Also,
odometry using encoders prints position rodometry. Finally, the proposed system estimates position r̂
and orientation Ψ̂ for the mobile robot. For this paper, we used a Stella B2 mobile robot as a platform
to obtain the information of the encoders, the magnetic field data, and the proximity sensor output.
This mobile robot, shown in Figure 9, is divided into a control unit and a measurement and data
transmission unit. The control unit consists of the two encoders and a line tracking system that controls
the mobile robot’s motion. The acquired encoder information is transmitted to the measurement and
data transmission unit. The measurement and data transmission unit has a magnetic sensor array
board and a proximity sensor. The magnetic sensor array board is composed of six LSM303 magnetic
field sensors (STMicroelectronics, Geneva, Switzerland), which are arranged on the Yb axis at intervals
of d (=55.88 mm), as seen in Figure 10. This unit transmits the received encoder data, the measured
magnetic data, and the proximity sensor data to a personal computer (PC).
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Figure 2 shows the path of the mobile robot in the corridor. A tracking line was installed along
the center of the corridor. The proximity sensor’s landmarks were installed at known positions.
The mobile robot moved from (0, 0) to (11.58, −1.32). Before the mobile robot departed, the particles
were updated many times. The system was then able to operate stably. When the mobile robot
moved along the predetermined path in the corridor, each sensor’s data and the reference data were
transmitted periodically. Finally, the proposed algorithm was executed by the PC twice per second.

3.2. Results

The results of the proposed method are shown in Figures 10–12. Figure 10 shows that the mobile
robot position was estimated near the path. However, the estimated position from odometry using the
encoders was off the path. Figure 11 shows the position error of the mobile robot. Comparison of the
odometry position errors and the proposed method’s position errors are shown in Figure 11a. At the
beginning of the experiment, the estimation results from odometry using the encoders was less than
with the proposed system, but the estimated position from odometry diverged over time. We can see
that the proposed method prevents divergence by the encoder. Figure 11b shows the distance error
with the proposed method. The distance error occurs largely in the vicinity of 90 s, passing through
the second corner between sections B and C. Also, the variance of the distance error in sections C and
D is larger than in section A. Because the variation of the direction in the magnetic field map is large as
shown in Figure 3c. In the process of estimating the position, the estimated direction of the magnetic
field ϕ̂b

k is used as shown in Equations (8)–(10). In order to reduce the influence of noise, the magnetic
field direction from each sensor is averaged, as shown in Equation (9). However, if the variation of
direction is large, the mean of the magnetic field direction ϕ̂b

k has large error. As a result, the error of
estimated position becomes large. In the case of section B, the variation of direction is small, but the
distance error is larger than in section A. Because the distance error is also affected by the variation of
intensity. As shown in Figure 3a, the variation of X-Y intensity in section B is lower than in section A.
If the variation of intensity is small, the variance of the measurement PDF becomes large. Since the
weight of particle is updated by the measurement PDF as shown in Equation (15), if the variance of the
measurement PDF is large, the estimated position is able to have a large error. Therefore, the smaller
the variation of direction and the larger the variation of intensity, the better the performance of the
position estimation.
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Figure 12. The estimated orientation from the proposed method. A, B, C, and D represent the sections
of the test corridor, as shown in Figure 2. (a) The estimated orientation and the reference orientation;
(b) The errors from the estimated orientation.

For the same reason, the variations of intensity and direction affect the performance of orientation
estimation. Figure 12 shows the estimated orientation of the mobile robot. The orientation error
in sections B, C, and D is larger than in section A. If the variation of direction is large, the error of
estimated magnetic field direction ϕ̂b

k becomes large. As a result, the estimated orientation has a
large error as shown in Equation (17). Also, the variation of the intensity affects the variance of the
measurement PDF, and the weight of particles updated by PDF affects the orientation estimation
as shown in Equation (18). If the variation of the intensity is small, the estimated orientation has a
large error. Finally, the experimental results show that the smaller the variation of direction and the
larger the variation of intensity, the better the performance of the position and orientation estimation.
The error statistics of the proposed method are shown in Table 2. The mean distance error is within
0.1 m, and the maximum distance error is about 0.4 m. The mean orientation error is 0.0386 rad,
and the maximum error in orientation is approximately 0.13 rad.

Figure 13 shows the distance and orientation error results, depending on the number of sensors
used. Experiments were performed by increasing the number of sensors from one to six, and each
experiment was performed 10 times. For distance error in the estimated position, as the number



Sensors 2017, 17, 651 13 of 16

of sensors increased, the performance improved, and the distance error converged at about 0.1 m.
However, when three or more sensors were used, there was little difference in performance. The results
of orientation error were similar in the experiment. The maximum and minimum orientation errors
are shown in Figure 14. When more sensors are used, the maximum error tends to decrease. Since the
processing time is proportional to the number of sensors used, it is reasonable to use three sensors in
this system.
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Table 2. The error statistics of the proposed method.

Distance (m) Orientation (rad)

Mean 0.0948 0.0386
Std. 0.0618 0.0310

Max. 0.3736 0.1285

4. Conclusions

In this paper, we proposed a positioning system using a magnetic field map navigation and
an encoder system. Before estimating the position of a mobile robot, a magnetic-field map-building
system was implemented to efficiently obtain three magnetic field maps: a horizontal intensity map,
a vertical intensity map, and a direction information map. After the three magnetic field maps were
built, the position of the mobile robot was estimated by using the particle filter. We show that the
particles are propagated by the velocity of the encoder without error correction in the propagation
step, and the weights of particles are updated by using the three magnetic field maps and multiple
magnetic sensors. As a result of processing with the particle filter, the position of the mobile robot
was estimated, and the position estimation performance was better than with odometry. Also, the
proposed system estimated the orientation of the mobile robot without help from any other sensor
system. As a result of the experiment, we confirmed the relationship between the variation of magnetic
field maps and the performance of this system. The smaller the variation of direction and the larger
the variation of intensity, the better the performance of the position and orientation estimation.
Also, we confirmed that system performance is likely to improve when the number of sensors increases.
In this paper, when six magnetic field sensors which are aligned in a line are used, the mean distance
error is less than 0.1 m and the mean orientation error is 0.0386 rad.

In order to further improve the performance of the proposed system, the sensors must be calibrated
accurately, and the various placement methods for the sensors must also be studied. An integration
method with other systems can also be considered, and more research is needed into building a
magnetic field map more accurately.
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