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Abstract: As a result of the rapid development of smartphone-based indoor localization technology,
location-based services in indoor spaces have become a topic of interest. However, to date, the rich
data resulting from indoor localization and navigation applications have not been fully exploited,
which is significant for trajectory correction and advanced indoor map information extraction.
In this paper, an integrated location acquisition method utilizing activity recognition and semantic
information extraction is proposed for indoor mobile localization. The location acquisition method
combines pedestrian dead reckoning (PDR), human activity recognition (HAR) and landmarks
to acquire accurate indoor localization information. Considering the problem of initial position
determination, a hidden Markov model (HMM) is utilized to infer the user’s initial position.
To provide an improved service for further applications, the landmarks are further assigned semantic
descriptions by detecting the user’s activities. The experiments conducted in this study confirm that
a high degree of accuracy for a user’s indoor location can be obtained. Furthermore, the semantic
information of a user’s trajectories can be extracted, which is extremely useful for further research
into indoor location applications.

Keywords: activity recognition; indoor localization; semantics

1. Introduction

Location-based services (LBSs) have been popular for many years. Although global navigation
satellite systems (GNSSs) can provide good localization services outdoors, there is still no dominant
indoor positioning technique [1]. Therefore, an alternative technology is required that can provide
accurate and robust indoor localization and tracking. Moreover, the spatial structures of indoor spaces
are usually more complex than the outdoor environment, and thus, distinctive information is needed
to better describe locations for the LBS-based applications.

With the wide availability of smartphones, a large amount of research has been conducted in
recent years targeting indoor localization. Most of the existing indoor localization technologies require
additional infrastructure, such as ultra-wideband [2], laser scanning systems (LSSs), radiofrequency
identification (RFID) [3] and Wi-Fi access points [4]. However, these approaches often require extensive
labor and time. To solve this problem, pedestrian dead reckoning (PDR) has recently been proposed as
one of the most promising technologies for indoor localization [5]. Differing from the above approaches,
PDR uses the built-in smartphone inertial sensors (accelerometer, gyroscope and magnetometer) to
estimate the position. However, PDR suffers from error accumulation when the travel time is long.
To achieve improved localization results, a number of studies have been conducted under particular
circumstances, but the applicability and accuracy are still limited.

Sensors 2017, 17, 649; d0i:10.3390/s17030649 www.mdpi.com/journal/sensors


http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 649 2 of 25

In addition to the direct application in indoor localization, the built-in smartphone sensors can
also be used to understand the user’s movements [6], as well as to identify the indoor environment.
Sensing the implied location information about the user moving in the corresponding environment
provides a new opportunity for indoor mobile localization. To exploit this underlying information,
some studies have been presented based on human activity recognition (HAR) [7-9], which uses these
sensors to identify user activity and then infers information about the context of the user’s location.
Therefore, it is worth exploring how to use this information to assist with indoor localization.

Recently, semantic information in the indoor environment has received increased attention.
In many cases, semantic information is as valuable as the location. For example, from a human
cognition perspective, in comparing the position coordinates, it is more valuable to know if a location
is a room, a corridor or stairs [10]. Furthermore, it is also more convenient for a user to obtain semantic
information (e.g., “turn left”, “turn right”, “go upstairs”, “go downstairs” and “go into a room”)
than information about a route. However, the extraction and description of the necessary semantic
information remains an open challenge.

In this paper, a method that combines PDR, HAR and landmarks is developed to accurately
determine indoor localization. The proposed method requires no additional devices or expensive
labor, and the user trajectory can be corrected and displayed. In addition, to solve the initial position
determination problem, a hidden Markov model (HMM) that considers the characteristics of the indoor
environment is used to match the continuous trajectory. Furthermore, to describe the user’s indoor
activities and trajectories, an indoor semantic landmark model is also constructed by detecting the
user’s activities.

Figure 1 shows an overview of the proposed approach.
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Figure 1. The overall architecture. HAR, human activity recognition.

The remainder of the paper is organized as follows. The related works are briefly reviewed in
Section 2. The primary methods are then introduced in Section 3. Section 4 presents the experimental
process, and Section 5 discusses and analyzes the experimental results. Finally, the conclusions and
recommendations for future work are presented in Section 6.

2. Related Works

Most of the existing indoor localization technologies require additional infrastructure or expensive
labor and time. How to achieve reliable and accurate localization in indoor environments at a low cost
is still a challenging task [11]. Compared to other methods of indoor localization, using the built-in
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smartphone sensors provides a more convenient and less expensive indoor localization method,
which has the advantage of providing continuous localization across the whole indoor space [12].
Smartphone-based pedestrian dead reckoning (SmartPDR) [13] has been the subject of increased
attention, and it is now considered a promising technology for low-cost and continuous indoor
navigation [1]. However, a number of parameters, such as step length and walking direction, can
easily affect PDR’s localization accuracy [14]. Furthermore, PDR suffers from error accumulation over
time because of the low-cost sensors, and thus, it is necessary to combine it with other methods, such
as Wi-Fi, indoor map assistance or landmark matching.

With Wi-Fi routers widely deployed in most buildings [15], many studies have combined Wi-Fi
and PDR to complement the other’s drawbacks. An early attempt can be found in [16], in which a
PDR-based particle filter was used to smooth Wi-Fi-based positioning results, and a Kalman filter based
on Wi-Fi was used to correct the PDR errors. Furthermore, a barometer was used to identify upstairs
and downstairs. Another study [17] used a Bayes filter to combine PDR and Wi-Fi fingerprinting, and
PDR was used to update the motion model. The Wi-Fi fingerprinting method was used to correct the
model. In order to improve the efficiency of Wi-Fi-based indoor localization, some new techniques
have been recently adopted, such as the Light-Fidelity-assisted approach [18] and received signal
strength estimation based on support vector regression [19].

Aside from Wi-Fi, indoor maps can also be used to reduce the accumulated error of PDR. A number
of studies have used map information for location correction. In [20], the user’s location, stride length
and direction were used as the state values of the particle filter. To achieve localization with less
computational resources, a conditional random field (CRF)-based method was proposed in [21]. Maps
as constraints were used in this work, and the Viterbi algorithm was used to generate a backtracked
path. In [22], maps were also considered as constraints, and the impossible paths were eliminated
when the user walks for a sufficient length. The data from the trajectory were then used to construct a
Wi-Fi training set. A wider integration can be found in [23,24], where PDR, Wi-Fi and map information
were combined to achieve pedestrian tracking in indoor environments. Particle filter-based approaches
were used to match the maps in these approaches.

Like indoor maps, landmarks, which can be detected by the unique patterns of smartphone sensor
data, can be used to correct the PDR trajectory [10]. Indoor landmarks detected by HAR provide a new
opportunity for indoor localization [15]. Activities, such as going upstairs (or downstairs), turning or
opening doors, can be treated as landmarks. In [25], an accelerometer was used to recognize standing,
walking, stairs, elevators and escalators, achieving accurate recognition. In [15], Wi-Fi, PDR and
landmarks were combined to provide a highly accurate localization system. In this work, a Kalman
filter was used to combine the Wi-Fi- and PDR-based localization techniques with landmarks. Without
relying on Wi-Fi infrastructure, the built-in accelerometer and magnetometer in a smartphone were
used to record pedestrians” walking patterns in [26], which were then matched to an indoor map.

Semantic information has also received attention from researchers. An integrated navigation
system that considers both geometrics and semantics was presented in [27]. This work proposed a
semantic model that can be used to describe indoor navigation paths. Similarly, a semantic description
model derived from a spatial ontology was used to describe the basic elements of navigation paths
in [28]. A human-centered semantic indoor navigation system was also proposed in [29]. In order to
provide services involving human factors, the system used ontology-based knowledge representation
and reasoning technologies.

Although many works have been done in this field, achieving an accurate and semantic-rich
trajectory in mobile environments is still a challenging task [10,11]. To improve the accuracy of
trajectory locations, the user’s motion information and the indoor map were also exploited to reduce
the localization errors, such as in [30]. In their work, a sequence of navigation-related action were
extracted from sensor data, and an HMM was used to match the user’s trajectory with the indoor
map. Inspired by this idea, the semantic acquisition and utilization were further improved in the
localization process in this work. The rich location-based semantic information was extracted based on
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the user’s activity recognition with HAR, and a semantic model was described and constructed for
indoor navigation. The semantic model can be used to not only describe the user’s location, but also to
improve the user’s localization efficiency. The simultaneous localization and semantic acquisition can
be considered as a significant contribution of the proposed method.

3. Methods

3.1. Location Estimation and Activity Recognition

In this section, PDR is first introduced to estimate the user’s location, and then, landmarks are
applied to correct the location. Next, with the help of multiple phone sensors, HAR is used to identify
the user’s activity. Finally, an HMM is proposed in order to estimate the user’s initial position.

3.1.1. Landmark-Based PDR

The smartphone-based PDR system uses the inbuilt inertial and orientation sensors to track the
user’s trajectory [31]. The main processes include step detection, step length estimation, direction
estimation [20] and trajectory correction.

(a) Step detection:

Peak step detection [32], or the zero-crossing step detection algorithm [33], is the most
frequently-used method to detect the user’s steps. To improve the robustness of the detection result, as
in [34,35], the synthetic acceleration magnitude of a three-axis accelerometer is used. This is calculated
as follows:

a(t) = \/ad(t) + a3(t) +a2(t) g, M)

where a(t) is the synthetic acceleration reading at time t, and the constant component g represents the
Earth’s gravity.

A low-pass filter is applied to smooth the data and to remove the spurious peaks, as shown in
Figure 2. The step detection process is conducted according to the following conditions [10,35]:

e a(t) is the local maximum and is larger than a given threshold dy,,.
e  The time between two consecutive detected peaks is greater than the minimum step period tmin.
e  According to human walking posture, the start of a step is the zero-crossing point before the peak.
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Figure 2. Step detection. (a) Raw synthetic acceleration data; (b) filtered data and the step
detection result.

Figure 2b shows the detected peaks marked with red circles, and the blue circles represent the
start and end points of the steps.
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(b) Step length estimation:

The length of a step depends on the physical features of the pedestrian (height, weight, age,
health status, etc.) and the current state (walking speed and step frequency) [35]. Although step length
varies from step to step, even in the same person, step length can be estimated by its corresponding
acceleration. A nonlinear model [34] is used to effectively estimate step length.

lk = ,u%/amax(k) — Amin (k)/ 0<k< num(StePS) ()

where a4 (k) and a,,;, (k) are the maximum and minimum values of the synthetic acceleration during
step k. The coefficient y is the stride length parameter, and it can be corrected by the landmarks.

(c) Direction estimation:

Direction estimation is a challenging problem for PDR using a smartphone. The gyroscope and
magnetometer in the smartphone are normally used to estimate the pedestrian’s walking direction [10].
The gyroscope and magnetometer obtain the steps’ direction during walking. An external environment
can easily affect the magnetometer, which may lead to short-term heading estimation errors. Magnetic
fields do not affect gyroscopes; however, gyroscopes do accumulate drift error over time [25].
In order to resolve each sensor’s drawbacks, both sensors are combined to enhance the direction
estimation [13,34].

O = w80, + w85, 0 < k < num(steps), 3)

where w8 and w8¥™ are the weighting parameters on the magnetometer’s estimated direction and
the gyroscope’s estimated angle, respectively. The weight value changes according to the magnitude
and correlation of the gyroscope and magnetometer.

(d) Trajectory correction:

The raw pedestrian trajectory obtained through the above methods may encounter some bias
because of the accumulated error of the PDR. To solve this problem, landmarks are used to recalibrate
the errors. Depending on the location and angle of the landmarks, the step length and the angle in the
raw trajectory are scaled to form a new corrected trajectory. In the process of a user’s indoor walking,
two situations occur when passing a landmark. One is when a user goes straight through a landmark,
as shown in Figure 3a. The other is when a user turns (see Figure 3b). As shown in Figure 3, the blue
lines are the raw PDR trajectory, the green lines are the corrected trajectory and the red dots indicate
the landmarks.

Start position

Start position
(a) (b)

Figure 3. Landmark corrections. (a) Go straight through a landmark; (b) Passing a landmark when the
user turns.
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3.1.2. Multiple Sensor-Assisted HAR

As in PDR, the synthetic three-axis accelerometer data are used as the base data in HAR.
In addition, the smartphone’s magnetometer and barometer provide information about direction
and height, respectively, which helps to improve the classification accuracy.

(a) Segmentation:

Three different windowing techniques have been used to divide the sensor data into smaller
data segments: sliding windows, event-defined windows and activity-defined windows [36,37]. Since
some specific events, such as the start and the end of a step length, are critical for pedestrian location
estimation, the event-defined window approach is applied in our work. To use this approach, each
step’s start and end points are detected, and then, the samples between them are regarded as a
window. If no steps are detected over a period of time, the sliding window approach is used, in which
two-second-long time windows with 50% overlap are selected [26,38].

(b) Feature extraction:

Two main types of data features are extracted from each time window. Time-domain features
include the mean, max, min, standard deviation, variance and signal-magnitude area (SMA).
Frequency-domain features include energy, entropy and time between peaks [8]. Two time-domain
features are selected—the mean and standard deviation—because they are computationally
inexpensive and sufficient to classify the activities.

(c) Classification:

A supervised learning method is adopted to infer user activities from the sensory data [7].
A number of different classification algorithms can be applied in HAR, such as decision tree (DT),
k-nearest neighbor (KNN), support vector machine (SVM) and naive Bayes (NB) [8,9,38]. Due to the
simplification and high accuracy of KNN, the KNN algorithm (see Algorithm 1) is selected to classify
four activities: standing, going up (or down) stairs, walking and opening a door.

Algorithm 1. KNN.

Input: Samples that need to be categorized: X;; the known sample pairs: (X;, y;)
Output: Prediction classification: y;

: for every sample in the dataset to be predicted do

calculate the distance between (X, y;) and the current sample X;

sort the distances in increasing order

select the k samples with the smallest distances to X;

find the majority class of the k samples

return the majority class as the prediction classification Vi

end For

In order to improve the classification accuracy of indoor activities, a barometer is used to determine
upstairs or downstairs and to locate the user’s floor. A magnetometer is used to assist in identifying
the door-opening activity. Different ways of opening the door correspond to different magnetometer
reactions. However, their similar performance patterns can be extracted by detecting the peak value
change of the magnetometer in the sliding window. As shown in Figure 4, when the user opens a door,
the magnetometer readings change significantly within a short time and then quickly return to the
previous readings. Thus, the door-opening activities can be effectively identified.

3.1.3. The Hidden Markov Model

When the user’s initial location is unknown, HMM is used to match the motion sequence with
indoor landmarks. PDR and HAR also provide useful information for matching and location estimation.
As a widely-applied statistical model, HMM has a unique advantage in processing natural language,
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and it can capture the hidden states in a sequence of motion observations [30,36]. There are five basic
elements in HMM: two sets of states (N, M) and three probability matrices (A, B, 7).
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Figure 4. The magnetometer changes when a door is opened. (a) Opening a south-facing door, where
the door handle is to the right; (b) opening a south-facing door, where the door handle is to the left.

Because of the unique indoor environment, HMM is presented as follows:

N represents the hidden states in the model, which can be transferred between each other.
The hidden states in HMM are landmark nodes in the indoor environment, such as a door, stairs
or a turning point.

M indicates the observations of each hidden state, which are the user’s direction selection (east,
south, west and north) and the activity result from HAR.

A and B state the transition probability and the emission probability, respectively. The pedestrian
moves indoors from one node to another, and when the direction of the current state is determined,
the reachable nodes are reduced. In order to reduce the algorithm’s complexity, A and B
are combined to give a transition probability set C. [C,, Cs, Cy, Cy] represent the transition
probabilities of different directions.

7 is the distribution in the initial state. The magnetometer and barometer provide direction
and altitude information when the user starts recording, which helps to reduce the number of
candidate nodes in the initial environment. If the starting point is unknown, the same initial
probability is given.

The Viterbi algorithm uses a recursive approach to find the most probable sequence of hidden

states. It calculates the most probable path to a middle state, which achieves the maximum probability
in the local trajectory. Choosing the state’s maximum local probability can determine the best global
trajectory. However, in the indoor environment, using a partial maximum probability to obtain
the global path is not appropriate, because the probability between hidden states could be zero,
and a local best trajectory could become a dead trajectory in the next moment. In this study, the
distance information from PDR and the activities information from HAR are combined with the Viterbi
algorithm to compute the most likely trajectory. The improved Viterbi algorithm (Algorithm 2) is
proposed as follows:
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Algorithm 2. Improved Viterbi algorithm.

Input:

Output:

R AN L S

[
= [e]

o
L

The proposed HMM tuples < N = {n;[i=1,2,..., Ny}, M = {m;|i=1,2,..., Ny}, C, m>;
HAR classification results H = {;]i = 1,2, ..., Ny }; PDR distance information
D= {d;|li=1,2,...,Np}; Initial direction of magnetometer O; Initial pressure of barometer F;
dg is the distance threshold.
Prediction trajectory.
Ostart < O, Fstart <+ F /* Determine the initial orientation and floor
forifrom 1 to N;; do
for each path pass through n;_ to n; do
if ((Distance(d(n;_1), d(n;)) - d;)<dy) and (P(n;)>0) then /* Determine whether the distance
between two landmark nodes coincides with the distance information estimated by PDR
Path(Ns, P(N;)) < Obtain the subset data
end if
end for
end for
for path; in Path(Ns, P(N;)) do
H <path]~) ={hli=1,2,...,Ng} <Obtain the landmark data set
if H (pathj> match with HAR data H then

Path(N ¢, P (N f>> < Add this trajectory to the final trajectory data set
end for
return Max(Path(Ng, P (N f> ))/* Return the trajectory of the maximum probability

With the determination of the user’s trajectory, the initial position can be obtained through the
first landmark point and the PDR information.

3.2. Semantic Landmark Model

3.2.1. Trajectory Information Collection

Definition 1. Trajectory information: A trajectory is defined as a six-tuple I’ : (I, T, D, A, U, L), where I is
the ID of the trajectory, and T and D are the timestamp and position information, respectively, of each step. U
is the direction change list; A is the activities information list; and L is the landmark list. Figure 5 shows the
trajectory information collection process.

[
1 eor | (T I
/ (D}
|
Accelerator
e
]
HAR < T
[ Closest landmark
search
) Five-step Turn
SLTIEEIEE '| Detection Algorithm iy

—

Figure 5. The trajectory information collection process.

For example, if a user went from Entrance (ET) to Room 108, I is assigned ET-R108.
From PDR, the timestamp and xyz coordinate value for each step can be obtained and can be

represented as:

T=[t,tr... tal, 4)
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D = [(Xl/y1/ Zl)/ (XZIYZIZZ)I‘ ccy (Xn/ynlzn)]/ (5)

where n denotes the number of steps detected.
Using the HAR method, the user’s activity information can be collected. Hence, A can be given
as follows:
A = {Standing, Walking, Going up stairs, Opening a door} 6)

The direction change list U can be obtained by the gyroscope. It should be noted that we
detected only large directional changes (>15°), and thus, walking along a smaller arc was not detected.
Because most of the turns could be completed in less than five steps, a five-step turn detection method
(see Algorithm 3) is proposed to determine the direction change activity.

Algorithm 3. Five-step turn detection algorithm.

Input: Angle value sequence 0 = [01,0, ... 6]
Output: Direction change list U.

1: Omax < Findpeaks(0)/* Find the local maximum sequence
2: for 6; in Oax do

3: if (6; > 15 or 6; < —15) and (i>2) then

4: Gsum = sum[ei,z : 9i+2}

5: if (Osum > 30 and Ogym < 60) then

6: U.add(“Go left”)

7: else if (Osym > 60 and Ogym < 120) then

8: U.add(“Turn left”)

9: else if (Osym > —60 and Ogym < —30) then

10: U.add(“Go right”)

11: else if (Osym > —120 and Ogym < —60) then
12: U.add (“Turn right”)

13: else if (Osym > 120 or Ogym < —120) then
14 U.add (“Turn around”)

15: end for

16: return U

For example, U can be described as follows:
U = {Go left, Turn left, Turn right} (7)

Since the landmarks are used as the key points in a trajectory, a landmark list can be used to
denote a trajectory. According to the time series, a landmark list L is detected in a trajectory. Three
types of landmarks (stairs, turns and doors) are added to list L according to the following rules:

e If the going-up-(or -down)-stairs activity is detected, the nearest stairs landmark is added to L.
e  If direction change activity (see Algorithm 3) is detected, the nearest turn landmark is added to L.
e If a door-opening activity is detected, the nearest door landmark is added to L.

3.2.2. Semantics Extraction

Definition 2. Semantic landmark: A semantic landmark S|[l] consists of five parts: Id, attribute, adjacent
segments, direction information and semantic description. Id is the landmark identifier. Attribute is one of the
three types of landmarks: stairs, turn, or door. Adjacent segments contain the distance and semantic information
between the current landmark and the next landmarks. Direction information and semantic description indicate
the direction information and the semantic information when the user passes the landmark, respectively, as
shown in Figure 6.
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Semantic landmark
Id Adjacent Segment 1 Adjacent Segment 2
Attribute Id 1d
Adjacent segments Distance Distance
Direction information Direction Direction
Semantics Semantics _

Semantic description

Figure 6. Semantic landmark and adjacent segments. An adjacent segment consists of four parts: Id,
distance, direction and semantic description. Id is the identifier of a segment. Distance represents the
distance between the two landmarks that make up the segment. Direction represents the direction of
the segment. Semantics indicates the semantic information that can be obtained.

A sequence of landmarks can denote a trajectory. Therefore, adding semantic information to
the landmarks and their adjacent segments can describe the trajectory. The semantic description of
trajectories is expressed as follows:

S[t] = {S[segs—1], S[l1], S[seg1-2],S[l2], --. S[lu], S[segn—c]}, (8)

where S[t] indicates the semantics of trajectory ¢, and n is the number of landmarks for this trajectory.
S[l,] represents the semantics of landmark I,,. S[seg;_1] denotes the semantics of the region from the
start point to the first landmark point. Similarly, S[seg,—.] denotes the semantics of the region from the
last landmark point to the end.

A semantic landmark or an adjacent segment can store multiple semantics and provides semantics
based on the detected activity. According to the trajectory information I' : (I, T, D, A, U,L),
the semantic information can be obtained as shown in Table 1.

Table 1. Semantics acquisition rules for landmarks.

Id Conditions (C) Semantics (S)
SI-1 A =‘Walking’, Detected (U) and Find ‘Go left’, ‘Go right’, “Turn left’,
(L(turn)) ‘Turn right’, “Turn around’

) A =‘Opening a door’, Find (L(door)) , . ,
SL-2 and lpre — G and lyet = @ Opening a door
SL-3 A ="Opening a: door’, Find (L(door)) ‘Go into the door’

and lpre- = @ or leurrent

L4 A ="Opening a door’, Find (L(door)) ‘Go out of the door”

and Inext! = @ or lcurrent

SL indicates the identity of the rule. A = {’Standing’, “Walking’, ‘Going up (or down) stairs’, ‘Opening a door’},
U = {‘Go left’, ‘Go right’, “Turn left’, “Turn right’, “Turn around’}. L is the landmark list: L(turn), L(stairs) and
L(door) are the turn, the stairs and the door landmarks. lcurrent, Ipre and Inext represent the current landmark, the

previous landmark and the next landmark.

Detected (U) and Find (L(turn)) indicate that turn activity is detected and that a nearby turn
landmark is found. If the user’s activity information is detected, but there are no corresponding
landmarks nearby, this activity’s semantics is added to the corresponding adjacent segment, as shown
in Table 2.
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Table 2. Semantics acquisition rules for landmark segments.

Id Conditions (C) Semantics (S)
SK-1 A ="Standing’, Detected (U) ‘Turn left’, “Turn right’, “Turn around’

‘Go left’, “Go right’, “Turn left’,
“Turn right’, “Turn around’

SK-3 A =‘Walking’, Undetected (U), Dyalking > Dthresold ‘Go straight’

SK-2 A = “Walking’, Detected (U) and Unfound (L(turn))

SK-4 A = ‘Going up(or down) stairs’, Find (L(stairs)) and

‘Go up the steps’
Zcurrent < Znext, Tstairs <9 8 P i

SK-5 A =" Going up(or down) stairs, Find (L(stairs)) and

IG 4
o down the steps
Zcurrent > Znext, Tstairs <5 S i

SK-6 A ="’ Going up(or down) stairs, Find (L(stairs)) and

p .
Go upstairs
Zcurrent < Znexts Tstairs > 58

SK-7 A =" Going up(or down) stairs, Find (L(stairs)) and

‘G s
o downstairs
Zcurrent > Znext, Tstairs > 9 8

SK indicates the identity of the rule. A = {*Standing’, “Walking’, ‘Going up (or down) stairs’, ‘Opening a door’},
U = {‘Go left’, ‘Go right’, “Turn left’, “Turn right’, “Turn around’}. L is the landmark list: L(turn), L(stairs) and
L(door) are the turn, the stairs, and the door landmarks. The duration of ‘Standing’, "Walking” and ‘Going up (or
down) stairs’ activities are represented by Tstanding, Twalking a0d Tstairs, Tespectively. From D, we can obtain the
distance and height information; Dwalking indicates the walk distance; Zcurrent represents the z value of the current
landmark; and Znext represents the z value of the next landmark.

According to the semantics acquisition rules shown in Tables 1 and 2, the semantic landmarks are
constructed as shown in Figure 7.

Trajectory information set
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' i ( Tablel | [ Table2 | i '
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, Semantic ( b
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Figure 7. Semantic landmark construction process.

As the above process shows, both semantic information and distance information are added to the
semantic model. The order information (e.g., “Turn left at the 2nd turning point”) is added according
to the following rule:

e  If the current landmark’s adjacent segments contain multiple turn or door landmarks and they
have the same semantics, sort them by distance and then provide them with the order information
Orderym or Ordergqor-
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Set S denotes the semantics obtained, such as {S1: [‘Go left’], S2: ['Go up the steps’], S3: ['Turn
left’]}. If the order information is obtained simultaneously, it can be expressed as {S_order: [‘at
Orderm turn point’] or [‘at Ordergqo, door’]}.

4. Experiment

The experiment was performed at the State Key Laboratory of Information Engineering in
Surveying, Mapping and Remote Sensing (LIESMARS) at Wuhan University, China. An Android
mobile phone and the indoor floor plans of LIESMARS were used in the experiment. It should be
noted that, in this study, only the hand-held situation was considered. The experimental process is
shown in Figure 8.

e HAR K
1 1
1
: Event-defined Mean :
: v 7‘ Vc ernec Standard *  KNN 1
window . '
! deviation '
1
1 1
+ Synthesize | ! ) Feature I i i
+  Accelerator Synthesi , Segmentation —> . —> Classification > Landmarks — Semantics
*  Filtering H extraction 1
Data Collection —>{ Preprocessing +  Magnetometer ﬂ
o T TS T sy ainiiniel s,
*  Accelerator *  Synthesize Step length Headin ‘ X i
Gyroscope *  Filtering Step Detector [ p e . e ——> Matching Trajectory
N ! estimator estimator H
! H \-_/—_
! Peak detection . *  Fusion H Angle match
1 *  Anonlinear ! e
1 Threshold ) magnetometer ! Position
[ . model [
f Timeinterval and gyroscope 1 match
1l
: 1
1
. PDR L

Figure 8. The experiment’s overall process.

In the following, the pre-knowledge is first provided. Multiple user trajectories are then presented,
including a trajectory on a single floor, a trajectory on multiple floors and a trajectory without knowing
the starting point. Finally, the semantics acquisition process and results are described.

4.1. Pre-Knowledge

Door points, stair points and turn points were used as landmarks in the experiment, as shown
in Figure 9. In indoor spaces, pedestrians tend to walk along a central line, and they tend to goin a
straight line between places. The intersection of the corridor area’s centerline was therefore selected as
a landmark. Most turn points near door points were not assumed to be landmarks, because the door
points could replace them as landmarks. The above principles were used to generate the landmarks.
The proposed approach does not focus on landmark extraction, but on trajectory generation and the
steps in the semantics acquisition.

The smartphone’s barometer and magnetometer were used to determine the initial orientation and
locate the user’s floor, respectively. However, they need to be analyzed first. We collected barometer
data at eight different locations on each layer, as shown in Table 3. As the change in barometer readings
in the same layer was not significant, we used the average of the collected barometer readings as a
benchmark to determine the user’s floor. If the current barometer reading is within 0.1 hpa of B(f1)
or B(f2), the corresponding floor is determined.

Table 3. Barometer readings.

Floor 1 2 3 4 5 6 7 8 Average (hpa)

f1 102091 1020.92 1020.92 10209 1020.88 1020.86 1020.85 1020.87 B(f1l)=1020.89
f2 1020.32 1020.34 1020.34 1020.33 1020.29 1020.3 1020.33 1020.32 B(f2) =1020.32
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R116
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R205 || R203

(b)

Figure 9. Landmarks. (a) Landmarks of the first floor; (b) landmarks of the second floor.

Compared to the barometer, the magnetometer is more unstable, so 80 north-facing magnetometer
readings were collected at various locations within the building. The distribution of the difference
between the collected magnetometer data and True North is shown in Figure 10a. Most of the magnetic
differences are between —5° and 15° and occasionally more than 20°. Based on the above data,
a threshold of 30° was chosen to determine the direction semantics of the initial position. Direction
information like ‘north’ (330 < 6 < 360, 0 < 0 < 30), ‘east’ (60 < 0 <120), ‘south’ (150 < 6 <210) and
‘west’” (240 < 08 < 300) can be obtained (Figure 10b) when the magnetometer reading 0 of the user’s
initial position is acquired.

0.2 North
0.3 5
. a0
0.25 330° ¢ :30°
E 0.2 ", / ) 60
2 0.15
0.1 K
0.05 ‘ .
’ -20 -15 -10 -5 0 5 10 15 20 25 210 ’ 150 ’
Magnetic difference in degrees SO ut h
(a) (b)

Figure 10. The direction information obtained by the magnetometer. (a) Distribution of the magnetic
differences; (b) direction information.
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In addition, the user’s step length parameters need to be determined over a short distance (0.45 in
our experiment). When the user goes upstairs, the horizontal and vertical distances of each step are
given as fixed values (0.3 m and 0.15 m in the experiment).

4.2. Trajectory Generation and Correction

To present a user’s trajectory, HAR is performed to identify landmarks, and then, these landmarks
are used to correct the PDR trajectory.

Because the HAR training set requires a variety of activities, 25 trajectories from the entrance to
each room on the second floor were chosen. If a room has multiple doors, each door corresponds to
a trajectory. In order to obtain information from standing activity samples, the user needs to stand
for a while at the beginning point and the end point of each trajectory. A training sample is shown in
Figure 11.

Standing

Walking

Going up (or down) stairs
Opening a door

[

Synthetic acceleration (m/s”2)
)
—_—

0 500 1000 1500 2000 2500 3000 3500 4000
Time steps (1/50s)

Figure 11. The activity sample collection of trajectory Entrance (ET)-R201.

Landmarks that the user passes can be determined using the activity classification results provided
by HAR, and then, the user’s trajectory can be corrected. Figure 12 shows the trajectory from the
entrance to Room 108. The blue points indicate the raw trajectory, and the red points indicate
the corrected trajectory. The corrected trajectory is extremely close to the ground truth trajectory.
In addition, only four landmarks were used: stairs landmarks s0 and s1, turn landmark u0 and door
landmark r8.

For trajectories on multiple floors, height information is added to each step point. Figure 13 shows
the trajectory from the entrance to Room 201. The blue points and red points indicate the raw trajectory
and the corrected trajectory, respectively.

When the user’s initial location is unknown, the direction observation sequence is obtained from
the direction sensors. Information about position and activities is obtained from PDR and HAR,
respectively. When the user trajectory is determined, the starting position can be inferred from PDR.

The user went from point S to point E. The trajectory when using only PDR is shown in Figure 14a,
and the direction observation sequence is obtained.
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Figure 12. The trajectory of ET-R108. The raw trajectory is without landmarks, and the corrected
trajectory is with landmarks.

Figure 13. The trajectories on multiple floors.
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Figure 14. Trajectory matching results. (a) Raw PDR trajectory; (b) matching trajectory.
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M = {south, east, north, west, north, east, north, west} 9)

From PDR, the distance between the landmarks of two adjacent observation sequences is obtained,
which is denoted by D. For example, Ds represents the distance from the starting point to the
first landmark, and D;_, denotes the distance from the first landmark to the second landmark.

D. represents the distance from the end point to the last landmark.

D= {DS/ Dl—ZI D273/-- o De} (10)

Information about activities is obtained from HAR.

A = {Standing, Opening a door, Walking, Opening a door, Walking, Standing} (11)

The matching process used in the algorithm is shown in Table 4. To simplify the proposed model
a flag was abstracted to express similar landmarks. For example, DN stands for the adjacent doors at

the north side of the corridor: dn =[d0,d2,d4,d6,d8,d10], ds =[d1,d3,d5,d7,d9], dw = [d15,d17,d19,d21],

de = [d14,d16,d18,d20] (see Figure 9). The virtual landmark E indicates the connecting points between
the doors and the corridor. For example, E(d3) indicates the connecting point between door d3 and
the corridor.

A trajectory is represented by a list, and the elements in the list represent the points that have
been passed. The HAR results are denoted by A. A = (s, w, 0) indicates the sequence of activities from

the start point to the first landmark, which is “Standing-Walking-Opening a door”.
It should be noted that we used the real landmark coordinates to correct the PDR results when

landmarks were detected. As the trajectory ended, d. was given to estimate the final position, and the

matching trajectory was obtained.
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Table 4. Trajectory matching results. E = east, S = south, W = west, N = north. s = standing, w = walking,

u = going up stairs, d = going down stairs, o = opening a door.

Observation Sequence Trajectories

Distance and Activities . .
Trajectories after

Information
{Ds =1.86, D;_» = 1.69,
'S, "E/, "N’} [d4, E(d4), t0], [t5,3, t2] D23 =10.9) [d4, E(d4), t0]
{As=(s,w,0), A1_2 = (W),
Ax_3=(w)}
{'s’, "B, N', W’} [d4, E(d4), 10, t1] D3_4 =673, Az_y = (W) [d4, E(d4), 10, t1]

{'s’, E, N/, W’, N} (44, E(d4), t0, t1, 3]

Dy_5=21,Ag_5=(w) [d4, E(d4), t0, t1, t3]

{'s’,'"E’, N'/W’, 'N’, ‘E’} [d4, E(d4), t0, t1, t3, t5]

Ds5_¢=13.73, As_¢ = (W) [d4, E(d4), t0, t1, t3,t5, t6)]

{'S’,"E’,N"/W’,'N’, ‘'E/, ‘N'} [d4, E(d4), t0, t1, 3, t5, t6]

De-7=4.1, Ag_7=(W) [d4, E(d4), t0, t1, t3,t5, t6]

(s, B, N',W’,
N, B, N,/ W'}

[d4, E(d4), t0, t1, t3, t5, t6, 8],
(d4, E(d4), t0, t1, t3, t5, t6,E(dw)]

Dy _g=4.1,A7_g=(w) [d4, E(d4), t0, t1, 3,5, t6, t8]

(d4, E(d4), t0, t1, t3, t5, t6, t8]

Dg_o =10.94, D, = 2.8

As_o = (W, 0, W) [d4, E(d4), 0, t1, t3,5, 6, t8, d13]

4.3. Semantics Extraction

According to the proposed semantics extraction method described in Section 3.2, the semantics
for landmarks in trajectory ET-R108 (in Figure 12) were obtained as shown in Table 5. The start and
end points were considered as virtual landmarks, which have no specific attributes or fixed locations.

Table 5. Landmark semantics.

Landmark Name Expression
1d ET
Attribute Virtual landmarks
. {/IgTls0":{’semantics’: ‘Go left’, ‘distance”: 9.12,
Entrance Adjacent segments ‘direction’: “West-South’}}
Direction information ‘“West’
Semantic description %)
Id s0
Attribute Stairs
. . {"lsols1":{’semantics’: “Climb the steps’,
A ) L
Stairs s0 djacent segments ‘distance”: 0.99, ‘direction’: ‘South’}}
Direction information ‘South’
Semantic description @
1d sl
Attribute Stairs
. . {“Is11,0":{’'semantics”: &, ‘distance”: 5.05,
Stairs s1 Adjacent segments ‘direction’: ‘South’}}
Direction information ‘South’
Semantic description %}
Id u0
Attribute Turn
Turn u0 . {"lyol,8":{'semantics”: [‘Go straight’, “Turn right’],
Adjacent segments ‘distance’: 19.13, ‘direction”: “West-North'}}
Direction information ‘South - West’
Semantic description ‘Turn right’
Id r8
Attribute Door
Door 18 Adjacent segments {/I;glg":{"'semantics’: &, ‘distance”: 2.03,

Direction information
Semantic description

‘direction’: “North}}
‘North’
‘Go into the door’
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After sufficient trajectories were acquired, the landmarks’ full semantics could be obtained. Taking
the turn landmark (u0) as an example, the complete semantics are as shown in Table 6. In addition,
the order of the landmarks could be obtained using the method described in Section 3.2.2.

Table 6. Complete semantics of turn u0.

Name Expression
1d u0
Attribute Turn

{Iyoly1": {"semantics’: “Turn left (at 1st door)’, “distance”: 5.19, “direction”:
‘West-South'}, “Iyolyp": {’semantics’: “Turn right (at 1st door)’, ‘distance”: 5.21,
‘direction”: “West-North’}, ‘I,,0l,3": {’semantics”: “Turn left (at 2nd door)’, ‘distance”:
6.87, ‘direction”: “West-South’}, ‘I,,pl,o": {’semantics”: “Turn right (at 2nd door)’,
‘distance”: 7.19, ‘direction”: “West-North'}, “lyol,4": {’semantics”: “Turn right (at 3rd
door)’, “distance”: 12.13, “direction”: “West-North'}, ‘Iygl;5”: {’semantics”: “Turn left
(at 3rd door)’, ‘distance”: 12.27, “direction”: “West-South’}, ‘I;,ol,7": {‘semantics’:
‘Turn left (at 4th door)’, ‘distance’: 14.11, ‘direction’: “West-South’}, ‘I,ol,6":
{’semantics”: “Turn right (at 4th door)’, ‘distance”: 15.96, ‘direction”: “West-North'},
‘laolye”: {“semantics”: “Turn left (at 5th door)’, “distance”: 17.75, “direction”:
‘West-South'}, ‘Iyolyg": {’semantics”: “Turn right (at 5th door)’, ‘distance’: 19.13,
‘direction”: “West-North’}, “I,0l;10": {’semantics”: ‘Go straight’, ‘distance”: 20.28,
‘direction”: “West'}, ‘I,0ls1”: {‘'semantics’: “Turn left’, ‘distance”: 5.09, ‘direction”:
‘North}, ‘Iols2”: {'semantics’: “Turn right’, ‘distance’: 2.84, ‘direction”: ‘South’}}

Adjacent segments

Direction information ‘South-West’, ‘North-West’, ‘East-South’, ‘East-North’

Landmark semantic “Turn right’, “Turn left’

According to the above tables and our semantics model, the three trajectories presented in
Section 4.2 can be described as follows:

ET-R108: {['Go left], [‘Go up the steps’], ['Turn right’], [‘Go straight’,” Turn right (at 5th door)’],
[‘Go into the door’]}

ET-R201: {['Go left’], ['Go up the steps’], ['Go straight’, ‘Go upstairs’], ['Turn left], ["Turn left (at
1st door)’], ['Go into the door’]}

R204-R213: {['Go out the door’], ["Turn left’], [‘Go straight’], ['Turn left’], ["Turn left’], ["Turn
right’], ['Go straight’], [“Turn right’], ["Turn left’], ["Turn left’], ['Go straight’], ['Go into the door’]}

The construction of complete semantics for all of the indoor landmarks requires a large amount
of trajectory data. However, the proposed approach only considers the complete semantics of key
landmarks and the partial semantics of non-key landmarks, because they can describe most of the
user’s activities.

5. Discussion

Firstly, the performance of the HAR classification is evaluated. The location errors in a trajectory
are then described. Finally, the accuracy of the landmark matching is analyzed.

5.1. Error Analysis

5.1.1. HAR Classification Error

In order to evaluate the performance of the HAR classification, 10-fold cross-validation [39] was
used. In this method, the dataset is divided into 10 parts: nine parts are used for training, and one part
is used for testing each iteration. The classification accuracy of the common classifiers was compared
with the proposed classifier, and two different window segmentation approaches were compared.
Since the error rate of our step detection is quite low, at 0.19% (total steps: 3092; error detection steps:
six), it is more convenient to use the event-defined window approach to sense the user’s activity.
As shown in Table 7, the results show that the event-defined window approach performs better than
the sliding window approach, which applies two-second-long time windows with a 50% overlap.



Sensors 2017, 17, 649 19 of 25

Table 7. Classification accuracy.

A A
Classifier ccuracy ccuracy
(Sliding Windows) (Event-Defined Windows)
DT 98.62% 98.69%
SVM 96.55% 97.73%
KNN 98.83% 98.95%

Many different performance metrics could have been be used to evaluate the HAR classification [8].
A confusion matrix was adopted, which is a method commonly used to identify error types (false
positives and negatives) [40]. Several different performance metrics—accuracy (the standard metric
to express classification performance), precision, recall and F-measure—could be calculated based
on the matrix [9]. Table 8 shows the confusion matrix used to evaluate the results of the KNN
classification activities.

Table 8. Confusion matrix.

Predicted Class
Accuracy
Actual Class Standing Walking  Going up (or down) Stairs ~ Opening a Door (%)
Standing 284 0 0 10 96.60%
Walking 0 1981 3 0 99.85%
Going up (or down) stairs 0 4 787 0 99.49%
Opening a door 3 0 0 56 94.92%

As shown in Table 8, the proposed method achieves an extremely high accuracy (>99%) in
detecting stairs and walking activities. Some errors occur in identifying door-opening and standing
activities. However, by detecting the magnetometer change, it is easy to distinguish between these two
activities, thereby reducing the amount of errors.

5.1.2. Localization Error

The localization error of trajectory ET-R108 is shown in Figure 15a; the blue line indicates the
original PDR trajectory, and the orange line indicates the location errors after only the landmarks
were corrected. The results show that the PDR errors increase with distance, and a high average
localization accuracy (0.59 m) is achieved when we use the landmarks to correct the cumulative errors.
Figure 15b shows the cumulative error distribution of the 25 test trajectories. We can see that the
proposed approach is more stable than using only PDR, and the average error is reduced from 1.79 m
to 0.52 m.

25

=——PDR
) PDR + landmarks /\/
15
// N 0.6
=]
o
1

05 0.2
— PDR
— The proposed approach

0 2 4 6 8 10
Localization error (m)

Errors {m)

] 10 20 30 40 50 60 70 80
Steps

(a) (b)

Figure 15. Localization error. (a) Localization error of trajectory ET-R108; (b) the cumulative error
distribution of the 25 test trajectories.
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5.1.3. Landmark Matching Errors

The shortest distance method was used to match the landmarks. As shown in Figure 16, the result
matches the partial trajectories.

Figure 16. Landmark matching. The red point is the turn landmark, and the green points are the
door landmarks. The yellow points are the PDR position when a turn is detected. The blue points
are the PDR position when opening a door is detected. The dashed red line indicates the nearest
landmark points.

Although the trajectories were corrected at the turn landmark (the red point), the PDR-estimated
user location still introduced errors, particularly when the user was far from the previous landmark.
In the experiment, an error occurred because the distances of d18 and d20 were extremely close and far
from the turning point landmark (t6). We can also see that a similar error occurred in turn landmark t5,
which is matched to landmark t6 (see Table 9).

Table 9. Landmark matching errors.

Landmark Total Wrong Match Error Rate
Doors 24 1 4.17%
Stairs 96 0 0
Turns 63 1 1.59%

5.2. Comprehensive Comparison

Some similar indoor localization schemes, which require no additional devices or expensive
labor, are compared in terms of requirement, sensors, user participation, accuracy, expression and
extensibility in Table 10. Each technique has its own advantages. Zee [22] tracked a pedestrian’s
trajectory without user participation, and a Wi-Fi training set was simultaneously collected, which can
be used in Wi-Fi fingerprinting-based localization techniques. UnLoc [25] only needs a door location
as the basic input information and simultaneously computes the user’s location and detects various
landmarks. Compared to the above localization schemes, the proposed approach needs more basic
information; however, the information allows us to obtain a better localization accuracy. Moreover,
a semantic landmark model was constructed during the localization process, which can be used not
only to describe the user’s trajectory, but also to improve the localization efficiency. The overall scores
of the three approaches are shown in Figure 17.
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Table 10. Comparison with other localization systems.

Name Zee UnLoc The Proposed Approach
Requirement Floorplan A door location Floorplan, landmarks
Sensors Acc., Gyro., Mag., (Wi-Fi)  Acc., Gyro., Mag., (Wi-Fi) Acc., Gyro., Mag., Baro.
User participation None Some Some
Accuracy 12m 12m <lm
Expression Trajectory Trajectory Trajectory, semantic description
Extensibility Wi-Fi RSS distribution Landmark distribution Semantic landmark model

user pariicipation

sensors . requirement

OZee
UnLoc
OThe proposed approach

expression accuracy

extensibility

Figure 17. Overall score of Zee, UnLoc and the proposed approach.

5.3. Computational Complexity

In order to verify the validity of the semantic model for localization and better analyze the
computational complexity of semantics-assisted localization method, a further experiment was
conducted (Figure 18a). In this experiment, the user started from any place on the second floor,
and we wanted to determine the user’s trajectory as soon as possible. The overall error and time
complexity in the trajectory matching process are used to evaluate the proposed method.

As shown in Figure 18b, although only a few semantics are provided, the trajectory error drops
rapidly (the average error drops from 9.25 m to 0.48 m). When the first semantic information is
obtained from the trajectory, there are five trajectories satisfying the condition. In order to match
the semantic information, each landmark point needs to be traversed once, so the time complexity
is O(N). The next search only needs to traverse the semantics of the trajectory segments that satisfy
the previous condition. These trajectory segments are ‘Iigli7’, ‘liglis”, ‘Lizlis”, ‘Leales”, ‘Tulio”, “li1ls2”, ‘Liols2”,
and the time complexity is O(7). The trajectory is determined after matching the third semantic
information, and the trajectory error is similar to the previous trajectory localization experiment,
where the initial location was known. The above description is provided in Table 11. Compared to
the traditional trajectory matching method, which yields a time complexity of O(NT) or O(N2T), the
proposed semantic matching method is more efficient. Since it does not need to traverse all of the
states every time, the time complexity is much less than O(NT).
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Figure 18. Semantic matching of trajectories. (a) The trajectories after semantic matching; (b) the
trajectory error.

Table 11. Semantic matching results.

Trajectory Trajectory Segment Semantic Time Complexity Numbers !
Trai Segment 1 (red points) “Turn right” (‘East-South’) O(N) 5
. ;‘a]ecto.ry Segment 2 (blue points) ‘Go straight” ("South”) O(7) 2
information Segment 3 (purple points) ‘Turn right” (‘South-West’) O@3) 1

! The number of trajectories after semantic matching.

6. Conclusions

In this paper, PDR, HAR and landmarks have been combined to achieve indoor mobile localization.
The landmark information was extracted from indoor maps, and then, HAR was used to detect
the landmarks. These landmarks were then used to correct the PDR trajectories and to achieve a
high level of accuracy. Without knowing the initial position, HMM was performed to match the
motion sequence to the indoor landmarks. Because semantic information was also assigned to the
landmarks, the semantic description of a trajectory was obtained, which has the potential to provide
more applications and better services. Moreover, the experiment was implemented in an indoor
environment, to fully evaluate the proposed approach. The results not only show a high localization
accuracy, but also confirm the value of semantic information.

More extensive research can be studied in the future. For example, phone sensing could be
used to recognize more activities, particularly complex activities, and more semantic information
could be extracted. In addition, complex experimental conditions, such as various trajectories,
a location-independent mobile phone and all kinds of users, could be included in future studies.
The semantic model used in this study does not contain all possible semantics, and rich semantic
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information could be obtained by using the data from crowdsourced trajectories. Furthermore,
real-time localization (including semantic information) is also the priority of our future work.
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