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Abstract: Hydrogen sulfide (H2S) has attracted attention in biochemical research because it plays an
important role in biosystems and has emerged as the third endogenous gaseous signaling compound
along with nitric oxide (NO) and carbon monoxide (CO). Since H2S is a kind of gaseous molecule,
conventional approaches for H2S detection are mostly based on the detection of sulfide (S2−) for
indirectly reflecting H2S levels. Hence, there is a need for an accurate and reliable assay capable of
determining sulfide in physiological systems. We report here a colorimetric, economic, and green
method for sulfide anion detection using in situ formation of silver nanoparticles (AgNPs) using
dopamine as a reducing and protecting agent. The changes in the AgNPs absorption response depend
linearly on the concentration of Na2S in the range from 2 to 15 µM, with a detection limit of 0.03 µM.
Meanwhile, the morphological changes in AgNPs in the presence of S2− and thiol compounds were
characterized by transmission electron microscopy (TEM). The as-synthetized AgNPs demonstrate
high selectivity, free from interference, especially by other thiol compounds such as cysteine and
glutathione. Furthermore, the colorimetric sensor developed was applied to the analysis of sulfide in
fetal bovine serum and spiked serum samples with good recovery.
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1. Introduction

Hydrogen sulfide (H2S), for centuries considered as a toxic gas with its characteristic odor of
rotten egg, displays both acute and chronic toxicity at high concentrations [1–3]. On the other hand,
recently, H2S has emerged as the third endogenous gaseous signaling compound (gasotransmitter)
along with nitric oxide (NO) and carbon monoxide (CO) [4,5]. More recent studies have demonstrated
that H2S is also produced via enzymatic reaction in the brain and several smooth muscles and can
mediate a wide range of physiological processes, such as vasodilation, antioxidation, anti-apoptosis,
and anti-inflammation [5–8]. The abnormal level of H2S was closely associated with diseases such as
Alzheimer’s disease, hypertension, liver cirrhosis, and Down’s syndrome [9–11]. Therefore, new
methods for the accurate and sensitive detection of H2S levels, recognized as providing valuable
information on illuminating the physiological roles of H2S in biology, are in high demand.

Since H2S is a kind of gaseous molecule, conventional approaches for H2S detection are mostly
based on the detection of sulfide for indirectly reflect H2S levels. In aqueous media, sulfide can be
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found in different forms such as dissolved H2S, bisulfide anion (HS−, pKa1 = 6.88), and sulfide anion
(S2−, pKa2 = 14.15), depending on water pH [12,13]. Thus, there is great importance in developing
new and practical methods for sulfide determination to reflect H2S levels in biosystems. Several
methods have been reported for the determination of sulfide such as electroanalytical and spectrometric
methods, high-performance liquid chromatography, and inductively coupled plasma atomic emission
spectroscopy (ICP-AES) [14–24]. However, these methods are time-consuming, involve complicated
procedures, necessitate expensive and complex equipment, or require specialized skills. Therefore,
the further development of highly sensitive, fast-responding, cost-effective, non-polluting, portable
devices for monitoring trace levels of sulfide anion in a variety of environmental applications and
biosystems is a worthwhile and challenging undertaking.

Owing to the high affinity between many metal ions and sulfide (Ksp of CuS = 1.27 × 10−36,
Ksp of Ag2S = 6.3 × 10−50 at room temperature) [25,26], many works have aimed to design a tunable
difunctional probe that not only can realize the detection of metal ions but can also be tuned to construct
a chemosensing ensemble with metal ions for the detection of S2−. Among these metal nanoparticles,
colorimetric sensors based on gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) have
attracted much attention because of their unique optical properties. For instance, AgNPs make a
strong absorption band that can be observed in the visible to near-UV region of the spectrum, and the
color of AgNP suspension depends on the diameter and distance of the nanoparticles. In particular,
the dispersed AgNP solution is bright yellow, while the highly aggregated AgNP solution is brownish
black. This characteristic leads to new competencies for chemical sensing that are both useful and
extraordinarily sensitive for the detection of various species in biological, chemical, and environmental
fields. Owing to their simplicity, high sensitivity, and designability, AgNPs based on plasmon resonance
have made great achievements in the colorimetric assays for the detection of cysteine, metal ions, and
physiologically important species [27–37]. However, the synthesis of AgNPs with distinctive sizes
and shapes is usually carried out by chemical reduction with or without stabilizing agents, which is
effective but uses many toxic substances, making the process potentially harmful to the environment.
Therefore, environmentally friendly or green synthetic methods are in high demand.

In this work, we used silver/dopamine nanoparticles to develop a one-step and colorimetric
sensing method for the detection of sulfide. Herein, silver/dopamine nanoparticles were in situ
synthesized by using only AgNO3, dopamine, NaOH, and Milli-Q water and mixing them in sequence,
this process that meets demands for environmentally friendliness or green synthesis. Dopamine could
reduce Ag+ to AgNPs and functionalize it to form monodispersed AgNPs in alkaline conditions. It is
very interesting to note that the addition of sulfide to the initially prepared dopamine-stabilized AgNP
colloidal solution decreased the plasmon absorbance of AgNPs at 400 nm and turns the dispersion
color from bright yellow to dark brown observed with the naked eye. This phenomenon was elucidated
by the degradation of the structure of silver nanoparticles (AgNPs) due to the formation of Ag2S by
the reaction between Ag+ and S2−. A graphic representation of the sensor design and the detection
strategy is displayed in Scheme 1. Since the AgNPs becomes decomplexed from dopamine, the material
properties change, e.g., plasmon absorbance and the yellow color disappear. These features actually
form the basis for the development of a technically simple yet effective colorimetric method for the
quantitative analysis of sulfide in biosamples. Moreover, considering that thiol compounds have a
strong effect on plasmon resonance of AgNPs, we also studied field transmission electron microscope
(TEM) images, absorption spectra, and UV-Vis spectra of AgNPs in the presence of different thiol
compounds, including L-cysteine (Cys), homocysteine (Hcy), glutathione (GSH), oxidized glutathione
(GSSG), 11-mercaptoundecanoic acid (MUA), N-acetyl-L-cysteine (N-Cys), and 1,4-dithiothreitol
(DTT). Among these thiol compounds, only DTT, which contained two proximal sulfhydryl groups,
can crosslink monodisperse AgNPs to form aggregated AgNPs with a larger particle size and a
reddish brown color, resulting in the corresponding changes in the absorbance peak. This feature
actually established the development of the technically simple yet effective colorimetric method for
the quantitative analysis of DTT, a safe use of this important substance in cell biology, biochemistry,
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and biomedical applications. In conclusion, a colorimetric sensor for the highly selective detection of
sulfide and DTT was developed based on the in situ formation of AgNPs using dopamine, which helps
to further establish microfluidic paper-based analytical devices for point-of-use diagnostics without
external power supplies or supporting equipment based on the color change of AgNPs.

2. Experimental

2.1. Reagents and Materials

Dopamine, lactate, glucose, sodium ascorbate, uric acid, 3,4-dihydroxyphenylacetic
acid, 5-hydroxytryptamine, and homocysteine (Hcy) were all purchased from Sigma-Aldrich
(Shanghai, China). Cysteamine hydrochloride (Cym), L-cysteine (Cys), L-dithiothreitol (DTT),
11-mercaptoundecanoic acid (MUA), glutathione (GSH), oxidized glutathione (GSSG), N-acetyl-L-
cysteine (N-Cys) and other amino acids, adenosine 5’-triphosphate disodium salt hydrate (ATP),
adenosine 5-diphosphate sodium salt (ADP), adenosine 5-monophosphate monohydrate (AMP), and
sodium sulfide non-ahydrate (Na2S·9H2O) were obtained from the Aladdin company (Shanghai,
China). Silver nitrate (AgNO3), NaOH, potassium pyrophosphate (PPi), Na2SO4, NaCl, KNO3,
Na2SO3, Na2S2O3, NaH2PO4, Na2HPO4, Na3PO4, Zn(NO3)2, Fe(NO3)3, Cu(NO3)2, CaCl2, Mg(Cl)2,
NaF and other inorganic salts were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). Bovine serum albumin (BSA) was obtained from Shanghai Sangon Biological Engineering
Technology and Services Co., Ltd. (Shanghai, China). All other chemicals were at least analytical grade
reagents and used without further purification. Aqueous solutions were prepared with Milli-Q water
(18.2 M·Ω·cm−1). Unless otherwise pointed out, all experiments were carried out at room temperature.

2.2. Apparatus

The absorbance and photoluminescence (PL) spectra were recorded in 1 cm quartz cells on
a UV-Vis spectrophotometer (UV-2450, Shimadzu Corporation, Tokyo, Japan). Field transmission
electron microscope (TEM) studies were carried out with the Tecnai G2 F20 (FEI Company, Hillsboro,
OR, USA) operating at a 200 kV accelerated voltage.

2.3. Recommended Analytical Procedure

Silver/dopamine nanoparticles were synthesized according to a previously reported method [38].
Twelve microliters of dopamine (4 mM) and 1 mL of ultrapure water were mixed in a 1.5 mL centrifugal
tube. Then, 16 µL of NaOH (0.1 M) and 30 µL of AgNO3 (8 mM) were added to the tube in sequences.
The mixture was incubated at room temperature for 15 min to obtain monodispersed and stable
silver/dopamine nanoparticles. For the detection of S2−, dithiothreitol, and other analytes, the stock
solution (10 mM) of various analytes was first prepared in ultrapure water and then was added into
silver/dopamine nanoparticles in the tube at different final concentrations for 20 min before UV-Vis
measurements and photographs were taken.

2.4. Colorimetric Sensing of S2− in Fetal Bovine Serum

The samples were all prepared by dissolving Na2S directly into Milli-Q water as a standard S2−

solution. Twenty microliters of the solution at different concentrations and 400 µL of methanol were
added to 180 µL of serum and vortexed thoroughly. The mixture was allowed to stand for about 10 min
at room temperature to complete protein precipitation. After centrifugation at 13,000 r/min in an
Eppendorf centrifuge, the solvent was evaporated to dryness, and samples were redissolved in 20 µL
of Milli-Q water as spiked samples. For the colorimetric sensing of S2− in fetal bovine serum, a 20 µL
sample was added to 1 mL of the aqueous dispersion of AgNPs. After being allowed to stand for
15 min, the concentrations of S2− in the fetal bovine serum were determined via UV-Vis spectroscopy.
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3. Results and Discussion

3.1. Absorption and TEM Studies of Silver/Dopamine Nanoparticles after Incubation with S2−

Because of the degradation of the structure of silver nanoparticles (AgNPs) due to the formation
of Ag2S by the reaction between Ag+ and S2−, silver nanoparticles are chosen as an assay material for
an effective optical determination of S2−. What is more, it is well known that AgNPs display an SPR
absorption band at around a wavelength of 400 nm. Since the position of the SPR band depends on
the AgNP size and the local environment, such as the pH and the salting strength, AgNP colloidal
solution is very sensitive to the addition of analytes with the alteration in SPR spectra and color
change in the solution, which can be easily monitored with the naked eye or with a UV-Vis absorption
spectrophotometer. In particular, the dispersed AgNP colloidal solution is bright yellow, while the
highly aggregated AgNP solution is red or black. From the above, AgNPs serve as an excellent
material for employing and developing colorimetric sensors for the detection of physiologically
important species in biosystems. Moreover, considering that dopamine has the ability to reduce Ag+

to a monodispersed AgNP colloidal solution and functionalize the formed AgNPs in an alkaline
solution and at ambient temperature, silver/dopamine nanoparticles, which can obtained by a simple
corresponding solution mixed in sequences and does not need complicated synthesis and modification
procedures, was chosen in the development of a colorimetric sensor for the detection of S2−.

To investigate the feasibility of the as-designed sensing method based on the in situ formation of
an AgNP colloidal solution using dopamine as a reducing and protecting agent, we conducted UV-Vis
absorption spectrum measurements of silver/dopamine nanoparticles in the presence and absence of
S2−. Curve A of Figure 1A displayed a strong absorbance band centered at about 400 nm with a bright
yellow color for silver/dopamine nanoparticles in the absence of S2− (Figure 1A inset: the first tube
from left to right), which is the characteristic absorption profile of the as-formed AgNPs. Transmission
electron microscopy (TEM) images of the as-formed AgNPs displayed a particle size about 10 nm in
diameter, indicated a homogeneous size distribution, and was well dispersed (Figure 2A). The addition
of S2− to the initially prepared dopamine-stabilized AgNP colloidal solution sharply decreased
the plasmon absorbance of AgNPs at 400 nm and turned the dispersion color from bright yellow
(the first tube) to dark brown (Figure 1A inset). Based on the phenomena mentioned above, a possible
mechanism was proposed by the degradation of the structure of silver nanoparticles (AgNPs) due to
the formation of Ag2S, which consequently precipitated from the dispersion by the reaction between
Ag+ and S2− according to the following equation:

4Ag + O2 + 2H2O + 2 S2− → 2Ag2S + 4OH−

Since the solubility product constant of Ag2S is 6.30 × 10−50, Ag has a very high reactivity with
sulfide in an aqueous solution, which in turn results in the formation of Ag2S. In general, the process
must be divided into two steps: Figure 1A inset shows the color changes in the AgNPs before and
after the reaction, with different concentrations of S2−; as can be seen, the color changed from bright
yellow (the first tube) to dark brown (Figure 1A inset). The reaction time is 20 min, and the dark brown
color can be explained by the fact that the AgNPs became closer to each other and aggregated to some
extent after the introduction of S2− in the first 20 min. Another reason is that the as-formed dark
colloidal solution must be an Ag2S colloidal solution, which was validated by mixing equal amounts
of AgNOs and Na2S (the product must be Ag2S), as shown in Figure S1. We can also obtain the
same dark colloidal solution. This is the first step; however, when the reaction time exceeded 1 h, the
AgNP colloidal solution was broken down, and the as-formed complex between AgNPs and S2− was
consequently precipitated from the dispersion and, after 24 h, this reaction colloidal solution gradually
became a transparent dispersion, and small black particles as well as biothiols gathered at the bottom
of the tubes. This is the second step. These small black particles must be Ag2S. We confirmed the
composition of the products in Figure 2C. Ag and S had the highest content among the elements.
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The ratio of Ag to S is almost 3:1, which means that the ratio of Ag2S to Ag must be 1:1. The Ag became
decomplexed from dopamine as material properties such as plasmon absorbance and yellowness
disappeared due to the changes in the size and structure. TEM (Figure 2B) also demonstrated that
the average particle size of the AgNPs after reaction with S2− grew from 10 nm to about 20–30 nm
in diameter. This diminishing of the plasmon absorbance of AgNPs at 400 nm in the presence of S2−

against the blank was used as an analytical parameter for the determination of S2−. The working
principle of a colorimetric assay of S2− is schematically represented in Scheme 1. Figure 1A,B shows a
typical UV-Vis absorption spectrum of the AgNP colloidal solution after reaction with S2−, and the
relative spectrum change depended on the concentrations of S2− in a range from 0.1 to 20 µM, obtaining
a linear equation of A400 = 0.6828CS

2− − 0.0366 (R2 = 0.975) in a concentration range of 2–15 µM·S2−

with a detection limit of 0.03 µM, spanning two orders of magnitude. These results demonstrate that
AgNPs are highly sensitive to S2−. In further studies, the effect of physiologically important species as
potential interferents on the plasmon peak of AgNPs was examined and studied later.
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silver/dopamine nanoparticles.
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Figure 1. (A) UV-Vis absorption responses of AgNPs in the absence (curve a) and presence of different
concentrations of S2− (from curve a to curve k: 0, 0.1, 0.5, 1, 2, 3, 5, 7, 10, 15, 20 µM). The color changes
of AgNPs before (the first tube) and after the reaction with different concentrations of S2− (from curve
a to curve l: 0, 0.5, 1, 3, 5, 7, 10, 15, 20 µM) are shown in the inset. The reation time, 20 min. (B) UV-Vis
absorption responses versus the S2− concentration. The reation time , 20 min.
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Figure 2. TEM images of dopamine-functionalized AgNPs in the absence (A) and the presence (B)
of 10 µM·S2−. The reation time, 20 min. (C) Energy disperse X-ray spectroscope (EDS) spectrum of
dopamine-functionalized AgNPs in the presence of 10 µM·S2−.

3.2. Absorption and TEM Studies of Silver/Dopamine Nanoparticles after Incubation with Thiol Compounds

It was found that thiol compounds have a strong effect on the plasmon resonance of AgNPs.
Therefore, we studied the UV-Vis spectra of the AgNP plasmon in the presence of different thiol
compounds including Cys, Hcy, GSH, GSSG, MUA, N-cys, and DTT. Figure 3 shows a typical UV-Vis
absorption spectrum of AgNPs in the presence of different concentrations of Cys (Figure 3A), Hcy
(Figure 3B), and GSH (Figure 3C). As can be seen, upon the addition of these reduced biothiols, the
absorbance at maximum wavelength, 400 nm, decreased in different degrees, as shown in Figure 3.
The decrease in plasmon intensity could be due to the interaction of the –SH of Cys, Hcy, and GSH
with silver. Unlike these reduced biothiols, the molecule structure of MUA and N-cys, which also had
a sulfhydryl group, did not lead to the diminishing of the plasmon absorbance of AgNPs (Figure 3D,F).
In addition, oxidized biothiols GSSG, which had no free sulfhydryl group, did not induce a decrease
in the plasmon absorbance of AgNPs (Figure 3E) or in MUA. According to TEM (Figure 2A), the
average size of AgNPs formed through the reduction of AgNO3 with dopamine was approximately
10 nm and the particles were evenly distributed. The hydroxyl groups of dopamine were reported
to be the main reducing groups for Ag+, and oxidation product polydopamine from this reaction
process adsorbed the AgNP surfaces and stabilized the monodispersed AgNPs. However, the TEM
images in Figure 5C,D further prove that, upon the addition of reduced biothiols, the size of AgNPs
became larger with uneven distribution. These phenomena indicate that the AgNP structure broke
down. Furthermore, as the incubating time with reduced biothiols increased (after about 24 h at
room temperature), the AgNP colloidal solution severely broke down, and the as-formed complex
between AgNPs and reduced biothiols was consequently precipitated from the dispersion, resulting
in a clear and transparent dispersion, and small black particles gathered at the bottom of the tubes,
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as shown in Figure S2. From the above, although the addition of reduced biothiols including Cys,
Hcy, and GSH to the AgNP colloidal solution had similar UV-Vis absorption responses as well as S2−,
we can still discriminate S2− from Cys, Hcy, or GSH based on the differentiation over the reaction
time. In particular, the absorption responses for S2− reached a constant value in only 20 min; for
Cys, Hcy, or GSH, a constant value was not reached until after 24 h at room temperature. Thus, the
differentiation of the absorption spectrum kinetics can be relied on to distinguish S2− from Cys, Hcy, or
GSH. The absorption spectrum change of AgNPs toward S2− is compared with other thiol compounds
in Figure S3.
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Figure 3. UV-Vis absorption responses of AgNPs in the absence (curve a) and presence of different
concentrations of (A) Cys (from curve a to g: 0, 10, 15, 20, 30, 50, 100 µM), (B) Hcy (from curve a to g: 0,
10, 15, 20, 30, 50, 100 µM), (C) GSH (from curve a to g: 0, 10, 15, 20, 30, 50, 100 µM), (D) GSSG(from
curve a to g: 0, 10, 15, 20, 30, 50, 100 µM), and (E) MUA (from curve a to f: 0, 10, 20, 30, 50, 100 µM),
and (F) N-cys (from curve a to g: 0, 10, 15, 20, 30, 50, 100 µM). The color changes of AgNPs before (the
first tube) and after the reaction with different concentrations of (A) Cys (from curve a to g: 0, 10, 15,
20, 30, 50, 100 µM), (B) Hcy(from curve a to g: 0, 10, 15, 20, 30, 50, 100 µM), (C) GSH (from curve a to g:
0, 10, 15, 20, 30, 50, 100 µM) are shown in the corresponding inset. The reation time, 2 h.



Sensors 2017, 17, 626 8 of 13

In addition, DTT, which had two proximal sulfhydryl groups, was chosen to examine its response
after reaction with AgNPs. Figure 4 shows the absorption spectrum of AgNPs in the presence of
different concentrations of DTT. As can be seen, when DTT was present in the detection system, the
AgNP colloidal solution would change from bright yellow to reddish brown in 5 min (Figure 4A
inset), implying the formation of aggregated AgNPs. Meanwhile, the absorbance peak of the AgNP
colloidal solution at maximum wavelength 400 nm decreased and was red-shifted from 400 to 420 nm.
These responses could be ascribed to the crosslinking interaction between the –SH of DTT and
AgNPs. In particular, two proximal sulfhydryl groups of DTT can crosslink monodispersed AgNPs to
form aggregated AgNPs with a larger particle size, resulting in the corresponding changes in color
and absorbance peak. The aforementioned reaction mechanism is demonstrated in the TEM image.
Figure 5A,B further proves that the size of the AgNPs changed and formed larger particles with
uneven distribution after the addition of DTT. Different from the aforementioned reduced biothiols,
DTT can significantly damage the structure of AgNPs and cause the formation of larger particles in
5 min with obvious color changes, while Cys, Hcy, and GSH needed more than 24 h to produce slight
color changes. These characteristic spectrums of AgNPs in the presence of DTT actually form the basis
for the development of an effective, direct, colorimetric method for the detection of DTT. Figure 4
shows typical absorption responses of AgNPs in the absence (Curve A) and presence of different
concentrations of DTT, and the relative absorption intensity at 400 nm depended on concentrations
of DTT in a range from 1 to 50 µM DTT, obtaining a linear equation of A400 = 0.9159 − 0.0157CDTT

(R2 = 0.997) in a concentration range of 3–40 µM DTT with a detection limit of 0.3 µM.
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Figure 4. (A) UV-Vis absorption responses of AgNPs in the absence (curve a) and presence of different
concentrations of DTT (from curve a to j: 0, 1, 3, 5, 10, 15, 20, 30, 40, 50 µM). The color changes of
AgNPs before (the first tube) and after the reaction with different concentrations of captopril (from
curve a to i: 0, 1, 3, 5, 10, 20, 30, 40, 50 µM) are shown in the corresponding inset. The reation time,
20 min. (B) UV-Vis absorption responses versus the DTT concentration.
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3.3. Interference Study

To investigate the selectivity of silver/dopamine nanoparticles, potential interferences such as
other amino acids, various cations, anions, and physiologically important species under physiological
conditions were studied. Each kind of species was examined in parallel under the same conditions as
those of S2− and thiol compounds. As shown in Figure 6, the separate addition of other amino acids
and physiologically important species exceeding the upper limit of the physiological concentration
range to the AgNP colloidal solution caused minor absorption spectrum changes in the AgNPs at
400 nm but no color change. As compared with those of the aggregation triggered by S2− and DTT,
these results substantially suggest that these amino acids and physiologically important species did
not interfere with the S2− and DTT sensing.

Ma et al. [36] has demonstrated that silver/dopamine nanoparticles have high selectivity and
sensitivity towards Cu2+ based on the coordination ability between Cu2+ and the nitrogen and oxygen
atoms of dopamine without interference from other metal ions, indicating interference from Cu2+ in
our work for the selective detection of sulfide and DTT. Herein, we once again examined the absorption
responses of AgNPs toward 12 other kinds of conventional metal ions: Fe3+, Fe2+, Zn2+, Al3+, Cr3+, Cd3,
Co2+, Mg2+, Na+, K+, Ca2+, and Cu2+. The results suggest that these cations caused minor absorption
responses changes, except for Cu2+ Fe3+, Fe2+, Cd3+, and Co2+, which were considered as the main
interfering species. However, we can chelate and shelter the interference cations by the addition of
ethylenediaminetetraacetic acid (EDTA). As shown in the red columns of Figure 7, if EDTA coexisted
with these cations, the AgNP colloidal solution remained yellow (Figure 1B), and there is no change
in absorption response because these interference ions were chelated by EDTA, which prevented the
binding reaction of these cations and dopamine. The inset of Figure 7 showed the color change for
silver/dopamine nanoparticles and Cu2+ in the absence and presence of EDTA. As can be seen, when
EDTA coexisted with Cu2+, AgNPs displayed a bright yellow color just as in the absence of Cu2+. Thus,
by using the chelating reagent EDTA, the colorimetric sensor based on AgNPs has excellent selectivity
to sulfide and DTT over other coexisting metal ions.

Considering that it is quite simple for Ag+ to form the precipitates from the dispersion
when the reaction between Ag+ and many anions occurs, such as Cl− for AgCl and SO4

2− for
Ag2SO4„ the selectivity of AgNPs for sensing S2− and DTT was thus evaluated by comparing
their absorption response changes toward those of 15 other kinds of conventional anions, Cl−, F−,
Br−, I−, SO4

2−, SO3
2−, ClO4

−, NO3
−, CH3CO2

−, CO3
2−, ATP, AMP, ADP, PPi, and PO4

3−, with
different concentrations at the physiological level. As shown in Figure S4, these anions induced
negligible plasmon absorbance changes in AgNPs at 400 nm, implying a stronger coordination effect
between dopamine and AgNPs than the associated interaction between Ag+ and the tested anions.
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The aforementioned results sufficiently suggest that AgNPs have a high selectivity for S2− and DTT,
allowing potential applications in complex samples.
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Figure 6. (A) The color changes and UV-Vis absorption responses of AgNPs in the absence (curve a)
and presence of different species (from curve b to t: tryptophan, histidine, proline, alanine, lysine,
phenylalanine, leucine, threonine, arginine, aspartic acid, glycine, valine, serine, glutamine, methionine,
tyrosine, 40 µM; 0.01% BSA and S2−, 20 µM ). (B) The color changes and UV-Vis absorption responses
of AgNPs in the absence (curve a) and presence of different species (from curve b to l: glucose, glutamic
acid, 5-hydroxytryptamine, uric acid, lactate, ATP, norepinephrine, hypoxanthine, H2O2, and sodium
ascorbate, 20 µM and S2−, 20 µM ). The reation time for S2− and DTT, 20 min. The reation time for
other species, 2 h.
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Figure 7. UV-Vis absorption responses A400 of AgNPs in the absence (black bars) and presence of
various metal ions containing 50 µM EDTA. The concentration of Fe3+, Fe2+, Zn2+, Cu2+, S2−, Al3+,
20 µM; Cr3+, Cd3, Co2+,5 µM; Mg2+, Na+, K+, Ca2+, 50 µM; Photographs from curve left to right:
AgNPs with 80 µM EDTA, AgNPs with 20 µM Cu2+ and 80 µM EDTA, AgNPs with 20 µM Cu2+.
The reation time for metal ions, 2 h.

3.4. The Determination of S2− in Fetal Bovine Serum

To validate the performance of the developed colorimetric detection method in real samples, we
then applied as-synthetized AgNPs to directly detect the sulfide concentration in fetal bovine serum.
The treated serum as described in the experimental section was added into the aqueous dispersion
of AgNPs. The average sulfide concentration in three replicate samples was about 16.3 µM, which
was consistent with other reported results about sulfide concentrations in serum [39,40]. For the
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spiked-recovery assays, the results revealed that the recoveries of the added S2− with the known
concentration 5, 10, 20, 30, and 50 µM were 97%, 99%, 103%, 98%, and 99%, respectively, which
was acceptable, indicating that it can be used to monitor sulfide in real biological samples including
bioassays, nanotechnology, and clinical diagnostics.

4. Conclusions

A facile, highly selective and reliable new method for the determination of sulfide and
1,4-dithiothreitol (DTT) are described herein. The method is based on the in situ formation of silver
nanoparticles using dopamine as a reducing and stabilization agent, which showed corresponding
changes in the color and the absorbance peak toward sulfide and 1,4-dithiothreitol (DTT). Field
transmission electron microscope (TEM) images further proved that the size and the morphology of
AgNPs changed, and formed larger particles with uneven distribution after the addition of sulfide
and DTT. In conclusion, this measurement based on the in situ formation of AgNPs simplifies the
operation and is completely economical and eco-friendly. Benefiting from the unique optical properties
of AgNPs, the determination of sulfide and DTT can be accomplished in 10 min and we can achieve
the determination of sulfide and DTT with the naked eye, which is greatly suitable for the analysis
of sulfide and DTT in fieldwork. The sensor utilizing as-formed AgNPs is promising for the further
establishment of microfluidic paper-based analytical devices for point-of-use diagnostics, without
external power supplies or supporting equipment based on the color change of AgNPs.

Supplementary Materials: The following are available online at www.mdpi.com/1424-8220/17/3/626/s1,
Figures S1–S4.
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