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Abstract: The paper describes a scalable, wearable multi-sensor system for motion capture based
on inertial measurement units (IMUs). Such a unit is composed of accelerometer, gyroscope and
magnetometer. The final quality of an obtained motion arises from all the individual parts of
the described system. The proposed system is a sequence of the following stages: sensor data
acquisition, sensor orientation estimation, system calibration, pose estimation and data visualisation.
The construction of the system’s architecture with the dataflow programming paradigm makes it
easy to add, remove and replace the data processing steps. The modular architecture of the system
allows an effortless introduction of a new sensor orientation estimation algorithms. The original
contribution of the paper is the design study of the individual components used in the motion
capture system. The two key steps of the system design are explored in this paper: the evaluation
of sensors and algorithms for the orientation estimation. The three chosen algorithms have been
implemented and investigated as part of the experiment. Due to the fact that the selection of the
sensor has a significant impact on the final result, the sensor evaluation process is also explained
and tested. The experimental results confirmed that the choice of sensor and orientation estimation
algorithm affect the quality of the final results.

Keywords: wearable sensor system; IMU sensor; motion capture; system validation;
orientation estimation

1. Introduction

The full-body motion capture technology has applications in various domains, including virtual
reality [1], athletic training [2], biomedical engineering [3] and rehabilitation [4,5]. The demand for
rehabilitation services and the resulting demand for systems capable of body movement monitoring
continue to grow due to the increasing population of ageing people. Remote measurements of human
subjects can improve the general health and the quality of life or limit the overall healthcare costs.
The user-worn inertial measurement units (IMUs) has been proven to be suitable for unrestrained
tracking of body segments’ orientations because they are small, light, affordable and completely
self-contained [3,6–9].

Commonly used IMUs are composed of accelerometers, gyroscopes, and magnetometers,
and are characterised by high measurement noise, incorrect scaling and biasing. The bulk of the
research concerning IMU sensors has been conducted to reconstruct trajectories or to estimate sensor
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orientations by the development of efficient filters and algorithms designed to overcome the mentioned
sensors’ flaws [10–15].

The presentation of IMU-based motion capture systems is mainly focused on their specific
applications, rather than its architecture and basis of technical choices. Such systems are usually
validated by comparison of reconstructed segment orientations with a marker-based optical system,
which is characterised by high accuracy [6,16].

In [5] the authors present a full body sensing system for monitoring the daily-life activities
of stroke patients. The position and orientation of each body segment are reconstructed using the
commercial Xsens MoCap Engine [9], which provides some degree of performance, however, it also
restricts the choice of hardware and methods at the various stages of sensor data collection and
processing. The Xsens MVN motion capture suit is presented in [9]. It is an easy-to-use commercial
system for full-body human motion capture. However, it can only be evaluated as a complete product.
There is no full information about all the operations made to the raw sensor data. In [17], the design of
a low-weight and low-power inertial motion capture suit is presented. The authors focus on reducing
the energy consumption used by their system. Some parts of the system are designed using the
standard solutions which were not subjected to an individual assessment. In [18] the authors present
Pedalvatar: a low cost IMU based full body motion capture system; a foot - rooted kinematic model
is used. The system can capture full body motion in real-time as long as there is at least one static
foot at each time step. As in previous work [17], the authors focus on a particular problem, limiting
choice and assessment of the remaining parts of the system. Next works present IMU-based systems
that are suitable only for specific applications. For example [3] presents a system for gait training,
and [16] describes a system for studying human postural stability onboard. Inertial navigation systems
(INS) are based also on IMU sensors with aiding devices (like GPS, barometer sensors). Such systems
usually allow to track orientation, position and velocities of one rigid-body (for example vehicle) or
multi-body configuration [19–22].

The fact that we want to point out in this study is that the motion capture system is a set of
equally important components. The final quality of motion reconstruction arises from the quality of
all subsequent elements. A poor outcome of the orientation estimation algorithm may be caused by
e.g., an incorrect setting of the IMU on the segment, rather than by flaws of the algorithm itself. In [23]
the authors show that the IMU-to-segment orientation errors have the most severe influence on the
estimated orientations and that these errors should be considered during the design or selection of
the estimation algorithm. Such dependencies imply the need for the evaluation mechanisms of the
different system stages during and after the system design.

In this paper, a new full-body inertial motion capture system is presented. Our contribution is
focused on the design study of the individual components of the motion capture system. The two key
steps of the system design are explained: sensors evaluation and algorithms for orientation estimation.
The results obtained in the experiments have demonstrated the importance of the choice of sensor
and orientation estimation algorithm and its influence on the final results. The selection of the sensor
also has a significant impact on the sensor evaluation process. For the sensor with better parameters,
we obtain a smaller error for the estimated orientation.

The remainder of this paper is organised as follows. We present the details of our system in
Section 2. Section 3 presents notation used further in this study. The experimental part is two-fold,
in each part relevant theoretic background, experimental results and conclusions are provided.
Section 4 explains sensor evaluation process employed by the authors. Section 5 shows the orientation
estimation algorithms. Finally, Section 6 briefly concludes the paper.

2. System Overview

In this section, a scalable, wearable multi-sensor system for motion capture is introduced.
The system is based on body sensor networks (IMU sensors are attached to each segment that should
be tracked) integrated with distributed data processing and control software, namely the Multimodal
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Data Environment (MDE) (developed in Human Motion Lab, PJATK, Poland [24,25]). Currently, MDE
enables the processing of simultaneous motion of up to 50 people, who can have a different number
of IMUs placed at various body segments. A schema for a data processing pipeline of the system is
presented in Figure 1.
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Figure 1. Data processing pipeline.

First, raw sensors data are transmitted to MDE from the Body System (full-body costume with
IMU sensors sewn into it). After that, the sensor frame with respect to the global (earth-fixed) reference
coordinate system QN is estimated. Subsequently, the relative rotations QC between the sensors and
the segments and also between the earth frame and the global scene frame are determined during
the calibration step. Next, the knowledge of the attachments between the segments is applied to
improve the accuracy of the estimated data at the level of the entire skeleton. In the end, the 3D
animation Visualizer obtains the processed data (local segments’ orientation), and the entirety of the
collected data can be viewed and visualised in a chart form (Figure 2a). At each stage of the pipeline,
the data concerning hierarchy skeleton are available to use. During data processing, all orientations
are represented by unit quaternions.

The system architecture based on the dataflow programming paradigm makes it easy to add,
remove and replace data processing steps. This feature makes our system easy to test and expand,
ensuring its relevance in the face of continued research in the associated fields.

(a) (b) (c)

Figure 2. System components: (a) MDE software screen-shot; (b) sensor locations; (c) whole suit.
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2.1. Hardware

Two versions of the Body System were developed for our inertial motion capture outfit.
The first version was developed using the wired CAN bus communication that is successfully used

in the automotive industry. In this solution, IMUs developed by the authors are used [26]. The devices
are based on an ARM processor and a low-cost MEMS sensors including 3-axis accelerometer, 3-axis
gyroscope and 3-axis magnetometer. The primary advantage of the CAN bus based solution is the
easier synchronisation of the multiple sensors. On the other hand, this solution is not without its
drawbacks. It has a bandwidth that is limited by the CANopen protocol specification and requires the
use of special multicore elastic wires that provide the communication between sensors and the system
hub that is responsible for communicating with the end device. The system hub acts as a server for the
UDP endpoints that are allowed to connect to the particular port. The device is responsible for the
sensors synchronisation and data acquisition.

In the second version of the developed system (Figure 2c), to ensure the high bandwidth necessary
to transmit large amounts of data from multiple sensors, the CAN interface was replaced with the
wireless communication. Some of the modern communication modules that are based on the ARM
microprocessors offer the free CPU resources that can be used to create the necessary logic. Most of
them offer popular communication interfaces such as I2C, SPI, and USART that can be used to
communicate with peripherals. The modern, energy-efficient WiFi module was used to create the
platform for the wireless IMU data transfer in the second version of the Body System. The sensor
communicates with the microprocessor using serial communication. The module is configured as
a client and can connect to the wireless network with a specified SSID. The MAC addresses are used as
the sensors’ ID numbers and the DHCP server is running on the access point. The sensors obtain an IP
address from the DHCP and continuously send the data frames marked with timestamps to the server
at the defined sampling rate.

2.2. Software

A software application, Multimodal Data Environment (MDE) has been built to visualise, analyse
and control the acquisition and monitoring process of human motion [24,25]. It supports processing
multimodal data from any number of measurements synchronously. The process of estimating local
orientations of body segments from raw sensor data is performed by MDE plug-in, Motion Data
Editor (IMU-MDE).

A hierarchical human model has been developed and implemented in a way that allows flexible
modelling of any kinematic structure and free parameterization of the model body shape. The length of
each segment can be provided, so that the body shape would be represented properly, it also allows for
a quick adjustment for the tracked human by entering the length of the shoe and the height. The other
segments’ measurements are not necessary in case of a quick adjustment, as they can be calculated on
the basis of an anthropometric model, a linear approximation of ANSUR data [27].

The modular architecture of the system allows an effortless introduction of new orientation
estimation algorithms. As part of the design study, three selected algorithms (in quaternion version)
have been implemented. The test results are shown in Section 5.2.

The output signal from the IMU is based on the sensor’s coordinate system. The orientation
estimation stage of the system pipeline returns the orientation of the sensor in the Earth-fixed coordinate
system. Due to the fact that it is necessary to express the signal in the body segment coordinate frame
and one cannot assume that the sensors are perfectly aligned with the segments to which they are
attached, the sensor must be subjected to the step of calibration. The calibration process consists of
two parts:

• estimation of the orientation of the earth-fixed frame with respect to segment’s reference frame
(scene frame);

• estimation of the exact orientation of each of the sensors with respect to the segment.



Sensors 2017, 17, 612 5 of 21

In our system, we propose an undemanding, simple action for a root body segment for the
purpose of the first estimation. We assume that the “up” axis of both systems are aligned, so we only
need to find a rotation from the north vector to the human forward vector, which is calculated from
the predefined motion (leaning forward). A predefined posture is used to map the sensor frame on
the segment frame: the T-pose (upright with arms horizontally and thumbs forward) or the N-pose
(arms neutral besides body). The rotation of the sensor with relation to the body segment is determined
by matching the orientation of the sensor in an a priori known pose with the known orientation of each
segment in this pose [9]. The combination of these two rotations QC is used as a correction for the
calculation of the global segments’ orientation Q from the global sensor’s orientation QN .

A pose estimation is achieved with the use of the information about the skeleton and the
orientations of the individual segments. Also, it is possible to apply kinematic corrections calculated
on the basis of the hierarchy of the skeleton and the anthropometric model. Additional restrictions
based on the body joints construction can also be imposed on the calculated hierarchy.

3. Notation and Measurements

The modelling of motion of a moving body involves introducing coordinate systems (frames).
In this paper, we will use two coordinate systems. The first one is the Earth-fixed coordinate system,
called the navigation frame, with the axis pointing north (xN), east (yN) and up (zN). The second
one is the coordinate system related to the moving sensor, denoted by (xS, yS, zS) with the origin at
the triaxial gyroscope and axes pointing along the gyroscope axes. We will also use abbreviations N
coordinate frame and S coordinate frame for navigation and sensor coordinate frames, respectively.

For free vectors, we add superscript N or S to denote whether they are measured in navigation or
sensor frames, and subscripts x, y, or z to denote their coordinates.

The orientations of the sensors are estimated by fusing measurements of a gyroscope (yg),
an accelerometer (ya), a magnetometer (ym) and reference values such as Earth’s gravity vector (gN)
and magnetic field vector (mN). The main idea is to combine high-frequency angular rate information
in a complementary manner with accelerometer and magnetometer data through the use of a sensor
fusion algorithms such as complementary [10] or Kalman filters [11–15].

The gravitation vector is denoted by g and the magnetic field vector is denoted by m.
In computations, the length of the gravitation vector is ‖g‖ = 9.81 and the magnetic field vector length
is normalised to one, ‖m‖ = 1. Consistently to our notational convention, we add superscript N or S
to indicate coordinate frames in which these vectors are expressed (measured). Consequently, gN , mN ,
gS and mS denote, respectively, gravitation and the magnetic field vectors measured in the navigation
frame N and the sensor frame S. Vectors gN , mN are constant and known. Their coordinates are

gN = [0 0 − 9.81]T (1)

and
mN = [cos(ϕL) 0 − sin(ϕL)]T , (2)

wherein ϕL is the geographical latitude angle. The experiments were performed in a laboratory
characterised by geographical latitude angle of ϕL = 66

◦
= 1.1519 rad.

The outputs of the successive sensors can be described by the following equations:
Magnetometer:

ym = mS + error (3)

Inertial sensor (accelerometer):

ya = aS − gS + error (4)

Gyroscopic sensor:
yg = ωS + error (5)
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If necessary, the dependence of measurements on time is additionally marked, by ym(t), ya(t),
yg(t) (continuous time) or by adding the subscript k, ym

k , ya
k, yg

k (discrete time).
The relative orientation between navigation and sensor coordinate frames is defined by

a 3× 3 rotation matrix R. Consequently, navigation and sensor coordinates of a given free vector v are
related by

vN = RvS. (6)

Rotation matrix R can be represented/parameterized in several ways. The most common
is parametrization by the usage of Euler angles and parametrizations using unit quaternions
(q = [q0, q1, q2, q2]

T, where [q1, q2, q3]
TεR3 is vector part). Parametrizations make for easier operations

on orientations and are more efficient numerically.

4. Sensors Evaluation

There are several different varieties of IMUs. One of the more common types is defined by being
manufactured using microelectromechanical system (MEMS) technology. The MEMS IMUs cost from
several to several hundred euros depending on the performance, which makes them a popular choice
among electronics developers. They are commonly used in modern mobile phones, unmanned aerial
vehicles (UAV) and the automotive industry. However, due to the imminent noise present in any
type of sensor, IMUs can never produce perfect measurements of acceleration, angular velocity and
intensity of the magnetic field.

The commercial grade MEMS accelerometers have a significant bias error (typically, more than
60 mg). On the other hand, commercial MEMS gyroscopes measurements are affected by considerable
Angular Random Walk (often greater than 50 (deg/

√
hr)). The MEMS magnetometers are sensitive

to magnetic interference. Moreover, the respective calibration process is needed to obtain reliable
measurements. The final result is that the estimates of linear velocity, position and orientation
based directly on those measurements without any filtration become inaccurate and unusable after
a short period.

The quality of sensors plays the pivotal role in the results achieved by the system. Depending on
their parameters, the devices can be qualified into different applicability areas such as commercial,
tactical, navigation and strategic [28]. A similar classification is also applied in the industry: navigation
(top performance), tactical, industrial, automotive (lowest performance) [29]. The detailed classification
of the IMU according to performance is presented in Table 1.

Table 1. Classification of the inertial sensors due to the application areas [28].

Application Grade Gyroscope Performance Accelerometer Performance

Commercial/Consumer >1 deg/s >50 mg
Tactical ∼1 deg/h ∼1

Navigation 0.01 deg/h 25 µg
Strategic ∼0.001 deg/h ∼1 µg

In our tests we used three IMU devices - two from the external vendors: Fairchild Semiconductor
FMT1030 [30] and Xsens MTi-1 [31], and an experimental, custom built one [26].

4.1. Materials and Methods

The purpose of this experimental stage was to evaluate the candidate sensor devices and select the
most appropriate ones for the designed application. The first problem in the evaluation of the IMU class
devices is to define what shall be measured and what are the quality criteria. There are two possible
approaches which can be found in the literature—a measurement of calculated orientations or raw
sensor values. The first approach is usually employed to evaluate the outcome of a system as a whole
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(i.e., motion capture or navigation), although sometimes it is employed for the evaluation of sensor
devices as well (e.g., [32,33]). The second approach dominates in the analysis of low-level hardware.

Using computed orientations at this stage seems unwise since their calculation involves entirety
of processing pipeline and the results might be affected at any stage of the processing pipeline,
by an influence that is hard to identify since all other processing stages contribute to the overall quality.

The other approach, evaluating raw sensor values, requires comparing them to the reference
ones. Ground truth values can be obtained from the optical motion capture system. It is relatively
easy to obtain the ground truth for the gyroscope as angular velocity is just a first derivative of the
orientation. However, obtaining the acceleration in the sensor coordinate system requires obtaining
the orientation of the device, which can be drift-affected. The other problem is obtaining true magnetic
field induction in magnetometers which would require both orientation of the device and reference
3-axial magnetometer.

In order to avoid establishing ground truth values, which is troublesome, the authors proposed
performing a static test with known zero motion as a ground truth. Furthermore, Allan variance
(AVAR) was employed for this test, which has a well defined interpretation for certain parts of its plot
and allows for both qualitative and quantitative description. It is defined as follows:

σ2
y (τ) =

〈
1
2
(y(t + τ)− y(t))2

〉
, (7)

wherein brackets 〈〉 denote expected value.
Allan variance and its square root, Allan deviation, introduced in [34] is a standard method of

characterization of noise in IMU devices [35–37]. While other methods, namely the power spectral
density distribution and autocorrelation function, can provide similar information, their interpretation
is not as clear and intuitive as it is with Allan variance. Seven distinct types of noise (see Figure 3)
which contribute to the overall drift, can be recognized by observing the log-log plot of Allan deviation
vs. cluster time τ of which five are easily obtainable with a plot readout [28,38]. A subset of these
parameters is usually provided in the device characteristics by the device vendors.

Figure 3. Schematic overview of Allan deviation plot interpretation.

A schematic plot is demonstrated in Figure 3. The horizontal axis of the AVAR plot is oriented in
reverse to the frequency. The high-frequency noise is located to the left, whereas the low frequencies
are located to the right, these are respectively short and long τ intervals. The quantization noise (QN)
is visible leftmost in the plot, characterised by a slope of−1. A line fitted to the actual data evaluated at
the τ =

√
3 cluster time defines the quantization coefficient. This component is not always observable

in the actual data. Next, the white noise term contribution can be seen in the plot due to integration
to gyroscope’s angle or accelerometer’s velocity random walk (ARW/VRW). The slope being − 1

2 is
strictly related to this type of noise. A fitted line evaluated at τ = 1 cluster time defines the random
walk coefficient. Once the curve reaches the minimum, a bias instability can be read, which is the
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result of a low-frequency random flickering in the electronics used. A line with the slope of 0 is fitted
to the points defining local minima, which after appropriate scaling by 2 ln 2 gives the value of bias
instability (BI). Similarly to the random walk, the rate random walk (RRW) can be read after fitting
a line of slope + 1

2 and finding its intersection with τ = 3. The slope of +1 read from the regression
line at τ =

√
2 indicates the rate ramp (RR). Two additional noise types are hardly characterised using

AVAR. One can find an exponentially correlated noise if both slopes of + 1
2 and then− 1

2 are present one
after another, although its presence is not as clear in practice, similarly to sinusoidal noise (repeated
+1/−1 slopes), which might be occluded.

4.2. Experimental Results

The Allan variances for all the considered sensors were obtained experimentally with a static
recording. All the tested sensors were attached to the same rigid body, which was placed on the sheets
of foam with different hardness structures. The foam acts as a damping filter to eliminate the vibrations
of the surrounding environment. The experiment was conducted in the rural area on the ground
level on the concrete floor. There were no significant metal objects in the vicinity of the measurement
point so that none could affect the operation of the magnetometer. The recordings were performed
simultaneously, with 100 Hz sampling and took over 5 h.

The representative results are shown in Figure 4a–c. It appeared that the commercial Xsens IMU
outperformed our custom one, as it returned slightly lowered AVAR curves for the gyroscope and the
accelerometer, although they attained similar characteristics. While these two devices returned typical
results, the FMT1030 provided non-typical outcomes.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

τ

σ
2 y

 

 
Custom IMU

XSens MTi−1

Fairchild FMT1030

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

τ

σ
2 y

 

 

Custom IMU

XSens MTi−1

Fairchild FMT1030

(a) (b)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

τ

σ
2 y

 

 

Custom IMU

XSens MTi−1

Fairchild FMT1030

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−30

−20

−10

0

10

20

30

40

50

60

70

80

hours

d
e

v
ia

ti
o

n
 [

d
e

g
]

 

 
Custom IMU
XSens MTi−1
Fairchild FMT1030 (10x enlarged)
X−axis
Y−axis
Z−axis

(c) (d)

Figure 4. Static experiment results: representative Allan variances for the tested IMUs: (a) gyroscopes;
(b) accelerometers; (c) magnetometer (for yaw axis-Z); (d) drift resulting from gyroscope integration.

For the gyroscope, no QN or RR were observed for any device. The white frequency noise term
contributing to ARW and VRW can be seen in the beginning plot of Figure 4a for all the devices.
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The rate random walk was also observed for custom IMU and Xsens, but it wasn’t present in the
FMT1030 characteristics. The most notable difference regards BI: it is clearly observed in Xsens and
Custom IMU, but it is ambiguous for the gyroscope of the FMT1030 device, where it is uncertain
whether the curve is flattening roughly in the middle of the plot or it is located nearer the right side of
the plot. The latter would be beneficial as it means the appearance of the BI for the long times (hours).

Similar results are also visible for the accelerometer. Xsens and custom devices behave like typical
devices with VRW, BI and RRW clearly identifiable. The most notable results are in the nontypical
characteristics of the FMT device. For the short observation times, on the left side of the plot Figure 4b,
from single samples to seconds, it has very low σ2

y values—an order of magnitude lower than the other
two. For the long observation times of FMT1030, one can observe untypical RRW with bump and
valley in the plot—probably some periodic distortion.

The magnetometer outcomes of all devices are on par with each other (Figure 4c), with unclear
identification whether the noise is white noise or rather bias instability. Generally, Xsens magnetometer
returned slightly higher σ2

y values than FMT’s and even higher than custom IMU’s magnetometer.

4.3. Conclusions

The most unexpected and ambiguous results are observed for FMT1030 which differs significantly
from the other two. The effect of internal processing is clearly visible in the integration results
(Figure 4d), which indicates that similar results can be achieved for other sensors if the processing of
the signal is designed with the noise characteristic in mind.

The other conclusion is that it seems the modern IMU with its complex internal signal processing,
designed to suppress different kinds of noise, can be hardly characterised by a simple coefficient
reading from the plot as it is described in the previous paragraph. On the other hand, AVAR is still
a useful tool for a visual examination. One can compare the noise characteristics of devices for certain
time ranges when due to a malformed shape of AVAR curve, automated interpretation or when the
parameter estimation is not possible. A good example of such a visual interpretation is demonstrated in
Figure 4a,b, where the FMT1030 gyroscope has a notably lower random walk noise for the longer time
ranges (above 200–300 s) than the other devices, and the FMT1030 accelerometer notably outperforms
competing devices for the short time ranges (below one second). Such a characteristic is very desirable
as the error is lowered for each of the sensors within the applicability range—as it is explicitly used in
a complementary filter.

5. Sensor’s Orientation Estimation

5.1. Materials and Methods

The three implemented and evaluated algorithms for the estimation of the relative orientation of the
moving body based on measurements of triaxial angular rate sensors, accelerometers, and magnetometers
use basic relations for the kinematics of the orientation change. Here, we consider only the orientation
estimation in a free segments model, without a kinematic chain model [19,39,40]. In this section,
we present constructions of these three algorithms with the use of the introduced notations.

Due to the motion of the body, the rotation matrix R, the unit quaternion q and Euler angles yaw
φy, pitch φp and roll φr are functions of time, i.e., R = R(t), q = q(t) and φypr = φypr(t). Mathematical
models for the evolution of rigid body orientation with time can be formulated for all parameterizations
of the rotation matrix in the form of differential equations. For rotation matrix R(t), the differential
equation for motion has the form presented in Equation (8).

d
dt

R(t) = [ωN ]×R(t) = R(t)[ωS]× (8)

wherein [ωN ]× and [ωS]× are 3× 3 cross - product matrices.
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For parameterization of orientations defined by unit quaternions q(t), the differential equation
for motion is presented in Equation (9).

d
dt

q(t) =
1
2

ωN ⊗ q(t) =
1
2

q(t)⊗ωS (9)

When using orientation representation by yaw, pitch and roll angles φy(t), φp(t), φr(t),
the differential equation for their time evolution is presented in Equation (10).

d
dt

φypr(t) = M(φypr(t))ωS (10)

wherein M(φypr) is a matrix with entries dependent on angles φypr.
In practical implementations, estimators of orientations are realised on the basis of digital systems.

Therefore, in descriptions of algorithms in the forthcoming subsections equations for kinematics of
orientations changes are replaced by their discrete counterparts. Discrete time index is denoted by the
subscript k.

All constructions of the orientation estimators can be interpreted as complementary filters in
the sense that they perform a fusion operation of output signals of sensors. We prefer to work on
quaternions to avoid problems with rotation order and Gimbal lock singularities. We have chosen
three different algorithms based on the quaternion representation of orientation. Such algorithms
are representative of the three groups of different ways to handle the external acceleration because
the existence and magnitude of the external acceleration of the IMU sensor strongly influence the
orientation estimation results. We also introduced unified notation for all parametrizations of the
estimated filter orientations, namely by a hat symbol (q̂, R̂).

5.1.1. Nonlinear Complementary Filter on SO(3) (NCF)

The first implemented algorithm for orientation estimation is one of the versions of filters
described in [10] (SO(3) denotes a special orthogonal group of rotations). The idea behind the
construction of the orientation estimator is the modification of the equation of kinematics of
motion (Equation (8)) by using the nonlinear feedback based on the instantaneous estimate of the
relative rotation.

An algorithm of “instantaneous” estimates the relative rotation Ř between the coordinate frames
N and S using two nonparallel vectors g and m and their measurements in two coordinate frames,
navigation gN , mN , and sensor gS, mS. For quaternion representation of rotation q̌, the estimate, based
on the accelerometers and the magnetometers vector measurements ya and ym can be obtained by
using the solution to the Wahba problem [41–43].

The equation for dynamics of the orientation estimate, with nonlinear feedback has the form
presented in Equation (11) (as in Equation (10) in [10]).

d
dt

R̂(t) = R̂(t)[yg + kpω̃]× (11)

wherein [.]× again denotes the cross product matrix, kp is the feedback gain and ω̃ is the nonlinear
term corresponding to the error between the filter estimate R̂ and the instantaneous estimate of the
rotation matrix Ř = Ř(ya, ym).

Equation (11) can be equivalently formulated with the use of the quaternion representation of the
orientation, as in Equation (12).

d
dt

q̂(t) =
1
2

q̂(t)⊗ (yg + kpω̃) (12)
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The quaternion formulation is more convenient for computational implementation.
The implementation of the nonlinear, complementary filter involves a discretized version of
Equation (12), which is presented as Equation (13).

q̂k+1 = [I +
∆t
2

MR(yg + kpω̃)]q̂k (13)

wherein I is the 4 × 4 identity matrix, MR(yg + kpω̃) stands for the matrix representation of the
quaternion right multiplication by the pure quaternion yg + kpω̃ and ∆t is the sampling interval.

The matrix exponential function could also be used in Equation (13). For small values of sampling
interval ∆t they are practically equivalent. Iterations are additionally augmented by normalizing the
estimated quaternion in each iteration. The initial condition is a unit quaternion q̂0, converted from
the instantaneous estimated rotation matrix Ř(ya

0, ym
0 ). The pseudo code using the Matlab quaternion

functions is presented as Algorithm 1 and a flow chart is in Figure 5.

Algorithm 1: Nonlinear complementary filter pseudo code (Matlab style)

Data: qk−1, ya
k, ym

k , yg
k

Result: qk
Parameter : gN , mN , kp, ∆t
qk = [0, yg

k ];
qinst = calcInstantaneous(ym

k , ya
k, mN , gN);

qresidual = quatmultiply(quatconj(qk−1), qinst);
omresidual = 0.5 ∗ (qresidual − quatconj(qresidual));
qk = 0.5 ∗ ∆t ∗ quatmultiply(qk−1, (qk + kp ∗ omresidual)) + qk−1;
qk = quatnormalize(qk);
return qk;
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Figure 5. The NCF flow chart.
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5.1.2. Extended Quaternion Kalman Filter (EQKF)

The second algorithm for the orientation estimation, presented in [11], is based on the idea
of the construction of the extended quaternion Kalman filter for the analysed process model.
An orientation of the sensor is represented by using the quaternion parameterization. The designed
filter adopts a two-layer filter architecture in which the first block uses an instantaneous estimate of the
orientation. The second block is the extended Kalman filter. The Kalman filters consist of the following
blocks: process model, measurements model, time update (prediction based on process model) and
measurement update (correction based on measurements) [44].

The construction of the extended Kalman filter is based on the model of orientation kinematics
with seven-dimensional state vector x, where the first three components are defined by the angular
rate vector ωS, and the last four components are the sensor orientation quaternion q.

x =

[
ωS

q

]
(14)

With the state vector (Equation (14)) the differential equation for orientation kinematics is as
shown in Equation (15).

d
dt

x = f ‘(x) =

[
1
τ (ω

S + w)
1
2 q⊗ωS

]
(15)

The above formula is a filter process model (see Figure 1 in [11]). The first block defines time
evolution of the angular velocity ωS, modelled as a coloured noise generated by a linear inertial
system with a white noise input w and the time constant τ. The second block, involving orientation
quaternion q, is equivalent to Equation (9). It should be noted that Equation (15) is a system of
non-linear differential equations.

Equation (16) is the measurement equation based on a state vector.

ẑ = x̂ + v, (16)

And the measurement is as follows:

zk =

[
yg

k
q̌k(ya

k, ym
k )

]
(17)

The lower block in the measurement z is an instantaneous estimate of the orientation, represented
by a unit quaternion, denoted by q̌(ya, ym). In our implementation, the Quest method [42] is used.

The extended Kalman filter algorithm is based on the discretization and the linearization of
a nonlinear process model (Equation (15)) relating to the estimated trajectory of the process.

The covariance matrix V of the measurement error v is assumed in Equation (18)

V =

[
σ2

g · I3×3 03×4

04×3 σ2
q · I4×4

]
(18)

where diagonal elements σ2
g are a variance of the angular rate measurements and σ2

q is a variance
experimentally determined based on a computed quaternion by the Quest method. Here we describe
only the most important elements of the filter implementation, the whole Kalman filter equations can
be found in [11]. The flow chart of the filter is presented in Figure 6. The pseudo code using the Matlab
quaternion functions is presented as Algorithm 2.
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Algorithm 2: Extended quaternion Kalman filter pseudo code (Matlab style)

Data: xk−1, ya
k, ym

k , yg
k , Pk−1

Result: qk
Parameter : gN , mN , ∆t, τ, Q, V
% x is a 7× 1 state vector
% Q is a set covariance matrix of process noise
% V is a set covariance matrix of measurement noise
% P is a state error covariance matrix
% f a process model function
% H is a set 7× 7 identity matrix (measurement model is linear)
% Φ is a state transition matrix, this is the Jacobian matrix of partial derivatives of the state
function f
% projection equations
Φk = clacPhiMatrix(xk−1, ∆t, τ);
xk = f (xk−1, ∆t, τ);
Pk = ΦPk−1ΦT + Q;
% Kalman gain computation
K = Pk HT(HPk HT + V)−1;
% create model measurement vector
ẑ = Hxk;
% create sensor measurement vector
qinst = calcInstantaneous(ym

k , ya
k, mN , gN);

z = [yg
k ; qinst];

% update equations
xk = xk + K(z− ẑ);
Pk = (I − KH)Pk;
qk = quatnormalize(x(4 : 7)k);
return qk;

5.1.3. Adaptive Extended Quaternion Kalman (AEQKF)

The last algorithm implemented is an adaptive extended quaternion Kalman filter (AEQKF),
presented in [13], without augmented biases in a state vector:

x =
[
q
]

(19)
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The process model is based on a discrete-time version of Equation (9) with angular velocity values
ωS

k = yg
k as control inputs.

The measurements are the output from the accelerometer and the magnetometer, as in
Equation (20). The measurement model ẑ estimates the acceleration and the magnetic vector by
the rotation references vectors Equation (21). Here we describe only the most important elements of
the filter implementation, the whole Kalman filter equations can be found in [13].

zk =

[
ya

k
ym

k

]
(20)

ẑk = h(x̂k) + v =

[
R(qk) 0

0 R(qk)

] [
gN

mN

]
+

[
va

k
vm

k

]
(21)

Wherein R(q) is a rotation matrix defined by the quaternion q.
As described in [13], the model of the measurement process is used for a construction of the

adaptation mechanism of the estimator. Namely, it is assumed that the covariance matrix of the
measurement error is changing in time; its values (magnitudes) are dependent on the estimate of
the reliability of the measurements. There are two adaptation mechanisms assumed in [13], one for
accelerometers and another for magnetometers. Here we only implement adaptation regarding the
accelerometers measurement, where a covariance matrix of the measurement Vk depends on the
deviation of the value of the gravitational acceleration ‖g‖ and the measured acceleration magnitude∥∥ya

k

∥∥, as in Equations (22) and (23).

Vk =

[
σ2

a · I3×3 03×3

03×3 σ2
m · I3×3

]
(22)

if
∣∣∥∥ya

k

∥∥− ‖g‖∣∣ < ε or

Vk =

[
∞ · I3×3 03×3

03×3 σ2
m · I3×3

]
(23)

otherwise. Wherein σ2
a is a variance of the accelerometer and σ2

m are magnetometer measurements.
The pseudo code using the Matlab quaternion functions is presented as Algorithm 3. The flow

chart is shown in Figure 7.
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Figure 7. The AEQKF flow chart.
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Algorithm 3: Adaptive extended quaternion Kalman filter pseudo code (Matlab style)

Data: xk−1, ya
k, ym

k , yg
k , Pk−1

Result: qk
Parameter : gN , mN , ∆t
% x is a 4× 1 state vector
% Q is a covariance matrix of process noise
% V is a covariance matrix of measurement noise
% P is a state error covariance matrix
% f a process model function
% h a measurement model function
% H is a measurement model matrix, this is the Jacobian matrix of partial derivatives of the
measurement function h
% Φ is a state transition matrix, this is the Jacobian matrix of partial derivatives of the state
function f
% projection equations
Φk = clacPhiMatrix(xk−1, yg

k , ∆t);
xk = f (xk−1, yg

k , ∆t);
Q = calcQMatrix(yg

k , ∆t);
Pk = ΦPk−1ΦT + Q;
% V matrix adaptation
V = calcVMatrix(gN , ya

k);
% Kalman gain computation
K = Pk HT(HPk HT + V)−1;
% create model measurement vector
H = calcHMatrix(xk, gN , mN);
ẑ = h(xk, gN , mN);
% create sensor measurement vector
z = [ya

k; ym
k ];

% update equations
xk = xk + K(z− ẑ);
Pk = (I − KH)Pk;
qk = quatnormalize(xk);
return qk;

5.1.4. Experiment

To verify the performance of the IMU-based system experimentally, we propose the use of the
representative series of motion sequences recorded using IMU sensors, along with the reference that
one acquired with the optical motion capture system. The choice of an optical system was based on the
fact that orientations obtained using the optical motion capture offer very fine accuracy and precision
and are drift proof due to the lack of the iterative integration of velocity or acceleration.

The recordings were performed at the Human Motion Lab (HML) of PJATK (Poland).
The acquisition employed Vicon Nexus 2.3 working with 3× 10 Vicon NIR cameras (MX-T40, Bonita 10
and Vantage 5). All the recordings were performed at 100 fps. A single segment pendulum of 70 cm
length (see Figure 8) was used as a model. It was swinging in one axis, although the suspension was
flexible, so the side wobbling or motions were also available. According to the Vicon reference [45],
the certified accuracy of the marker location using Vantage camera set is 1mm, standard deviation
measuring the precision is below 1mm. Assuming the two markers, necessary for the identification of
the attitude, are located at the ends of the considered pendulum, the reference system’s results are
in maximal angular inaccuracy of 0.16◦and angular imprecision expressed with a standard deviation



Sensors 2017, 17, 612 16 of 21

is below 0.11◦. Furthermore, actual precision and accuracy of the reference system are better than
declarative.

For testing purposes, we prepared a comprehensive set of recordings simulating movement
similar to gait and manual operations, the details are presented in Table 2. The experimental data are
also available in our repository, the RepoIMU (http://zgwisk.aei.polsl.pl/index.php/en/research/
projects/61-repoimu) [46].

Figure 8. The pendulum with attached IMUs during the tests in the HML - motion capture laboratory.

Table 2. Recorded scenarios of pendulum motion.

Type Symbol Description Records Approx. Duration

calibrated c00..c02 start angle 0 then hand driven to 30◦and released 3 60–100 s

s00..s02 start angle 10◦ 3 115–120 s
swinging m00..m02 start angle 30◦ 3 150–160 s

l00..l02 start angle 45◦ 3 150–170 s

f00 start angle 0, hand driven 1 70 s
free moves f01 start angle 0, driven with soft stick 1 80 s

f02 start angle 0, driven with 2 rope rig 1 100 s

dynamic hd00..hd02 start angle 30◦, manual bouncing in random moments 3 50 s

5.1.5. Synchronization Problem

Another issue to be addressed when compiling data is synchronisation. Since clocks in various
devices are of a different quality, the synchronisation is a necessary step to be performed. The key
issue is that we have neither a common clock nor a common coordinate system for the measures,
so there is no easy base to align the sequences. The problem was addressed in [33] using the principal
component analysis (PCA) matching using the dynamic time warping (DTW) synchronisation. Alas, as

http://zgwisk.aei.polsl.pl/index.php/en/research/projects/61-repoimu
http://zgwisk.aei.polsl.pl/index.php/en/research/projects/61-repoimu


Sensors 2017, 17, 612 17 of 21

one can consider DTW as a denoising filter, we proposed our own orientation synchronisation
method PCA-TSA (PCA based Two Step Alignment) [47], which is based on the block matching
of the (quaternion) PCA signals. The method was later adopted [46] to match raw IMU measures
using the linear PCA of the angular velocities from the gyroscopes. The key points outlining the
synchronisation are as follows:

1. First,the PCA on the angular velocities is employed to get as much motion as possible in a single
dimension. Thanks to this, all further steps are completely agnostic to the coordinates rotation.

2. Then, we match the beginnings and the ends using block matching, and we trim the protruding
parts outside of the common time range.

3. Next, the secondary alignment, span a pool of nodal points in a reference sequence and match the
corresponding points using the surrounding block matching with a sum of absolute difference.

4. Using reference time in known nodal points, we interpolate time for the matched sequence.
5. The matched time series is interpolated with the new time using 1D linear interpolation or using

a phase of complex numbers for the orientation angles.
6. The rotation between the coordinate systems is identified as an average angular difference

between the two sequences.

When using the synchronisation method, one must decide what the reference timer is and what is
to be matched. The synchronisation of the reference orientations to the timer of the IMU controlling
computer, as in the [46], makes sense in our case as we want to get true raw sensor values with
corresponding true orientations in the respective moments. The opponent approach, to synchronise
the resulting final orientations obtained with fusion filters to the reference system, would make sense
if we would like to evaluate the system as a whole, but excluding temporal discrepancies.

5.1.6. Estimation Measures

The evaluation of performances for the orientation estimation algorithms is done on the basis of
average deviations between true and estimated orientations of the sensor. Deviation index (measure)
between true and estimated orientations can be, however, defined in different ways [48].

For orientation results in quaternions, we can use the deviation index DIQ corresponding to the
geodesic distance between two quaternions - filter estimate q̂ and the true rotation q from the Vicon
system, on the hypersphere S3:

DIQ = 2 ∗ arccos(|q̂ ∗ q|) (24)

All evaluations and comparisons of performances of algorithms for the orientation estimation are
based on quaternion deviation indexes DIQ averaged over the experiment time horizon.

5.2. Results

Filter parameters are following:

• parameter ∆t = 0.01,
• parameter kp in complementary filter (NCF): kp = 2,
• parameters of EQKF filter: τ = 0.5, σ2

g = 0.001, σ2
q = 0.00001 used in the measurement matrix,

• parameters of AEQKF filter for the adaptation measurement covraiance matrix: ε = 0.4, σ2
a = 0.001

and σ2
m = 0.00001.

The average DIQ index for the three implemented orientation filters NCF, EQKF and AEQKF in
every scenario is presented in Figure 9. The results are computed based on signals from FMT and
Xsens sensors. The Custom IMU was not included in the tests on the pendulum, because of the worst
results obtained in the previous test.
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Figure 9. The mean deviation index DIQ for experiments (details in Table 2).

5.3. Discussion

It is well known that a factor that strongly influences the orientation measurement is the existence
and magnitude of the external acceleration of the IMU sensor. For more dynamic motion we obtained
larger error values (scenario m00-m02, l00-l02, and hd00-hd02). This is consistent with our previous
results presented in [49].

In the NCF filter, it is assumed that external acceleration of the sensor is either not present,
its magnitude is negligible compared to the gravity acceleration, or that the external acceleration
is constant. Therefore, for this filter we get less favourable results. The best results are for the
adaptive orientation estimation filter (AEQKF), where some auxiliary computations are performed in
order to estimate the temporary magnitude of the external acceleration and then, the weight for the
accelerometer channel is adaptively changed on the basis of the estimates.

There is no direct implementation of bias estimation in the mentioned filters, so for the sensor
with better parameters (FMT sensor), we obtain smaller error for the orientation. The mean difference
between orientations estimated on the basis of FMS and the Xsens measurements is about 4◦ for
AEQKF filter. The results provided by the FMT and Xsens sensors are on par, as it could be expected,
as they share the hardware design and the key difference is in the built-in processing software.

A noteworthy observation was made for the recordings which were started with the pendulum
hanging still for a short while before the main motion was started (scenario c00-c01 and f00-f02).
Apparently, the internal sensor filter was able to tune properly, so the results were significantly better
than for the sequences which were started with immediate motion. This suggests that the two-fold
Kalman filtering—hardware specific in the sensor package [30] and in software at the fusion stage—can
improve the results if the former is properly initialized.

6. Conclusions

In this paper, a wearable inertial motion capture system has been presented. Its design is a complex
problem due to the system’s many components. The selection of each component for every stage of
the motion capture process significantly affects the final results of the system (final pose estimation).
The authors have presented the selection procedure for the two key elements of the discussed system:
state of the art sensors and algorithms for the sensor orientation estimation.

The results in Section 4 revealed that the Allan variance plot itself is useful as it provides a lot
of information, though when facing modern sensors employing sophisticated filtering algorithms it
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requires a visual examination and interpretation. The final results of the system as a whole for the
different sensors are coherent with the individual sensor test.

The FMT sensor, which had the most promising AVAR results, provided notably better results
(on average) when the applied fusion algorithms could use an initial calibration (c00-02 and f00-02) in
a steady state. An average error angle is 30%–70% smaller than for the other sensor. It is consistent
with the steady recording for the AVAR calculations which obviously allowed the sensor to calibrate.
When the initial quiescence was not present, the Xsens sensor usually provided slightly better results,
although that loss is relatively small, up to 15%.
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RR Rate Ramp
NCF Nonlinear Complementary Filter
EQKF Extended Quaternion Kalman Filter
AEQKF Adaptive Extended Quaternion Kalman
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49. Pruszowski, P.; Szczesna, A.; Polański, A.; Słupik, J.; Wojciechowski, K. Adaptation Mechanism of Feedback

in Quaternion Kalman Filtering for Orientation Estimation. In Artificial Intelligence and Soft Computing;
Springer: Cham, Switzerland, 2015; pp. 739–748.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.vectornav.com/support/library/imu-and-ins
http://www.vectornav.com/support/library/imu-and-ins
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Overview
	Hardware
	Software

	Notation and Measurements
	Sensors Evaluation
	Materials and Methods
	Experimental Results
	Conclusions

	Sensor's Orientation Estimation 
	Materials and Methods
	Nonlinear Complementary Filter on SO(3) (NCF)
	Extended Quaternion Kalman Filter (EQKF)
	Adaptive Extended Quaternion Kalman (AEQKF)
	Experiment
	Synchronization Problem
	Estimation Measures

	Results
	Discussion

	Conclusions

