
sensors

Article

Voxel-Based Neighborhood for Spatial Shape
Pattern Classification of Lidar Point Clouds
with Supervised Learning

Victoria Plaza-Leiva, Jose Antonio Gomez-Ruiz *, Anthony Mandow and Alfonso García-Cerezo

Grupo de Investigación de Ingeniería de Sistemas y Automática, Andalucía Tech, Universidad de Málaga,
29071 Málaga, Spain; victoriaplaza@uma.es (V.P.-L.); amandow@uma.es (A.M.); ajgarcia@uma.es (A.G.-C.)
* Correspondence: janto@uma.es

Academic Editor: Ayman F. Habib
Received: 8 February 2017; Accepted: 10 March 2017; Published: 15 March 2017

Abstract: Improving the effectiveness of spatial shape features classification from 3D lidar data is very
relevant because it is largely used as a fundamental step towards higher level scene understanding
challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for
points in dense scans becomes a costly process for both training and classification. This paper proposes
a new general framework for implementing and comparing different supervised learning classifiers
with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in
a regular grid are assigned to the same class by considering features within a support region defined
by the voxel itself. The contribution provides offline training and online classification procedures as
well as five alternative feature vector definitions based on principal component analysis for scatter,
tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing
a neural network (NN) method previously proposed by the authors as well as three other supervised
learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian
processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is
presented using real point clouds from both natural and urban environments and two different
3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics
and processing time measurements confirm the benefits of the NN classifier and the feasibility of
voxel-based neighborhood.

Keywords: 3D laser scanner; spatial shape features; 3D classification; point clouds; voxels; supervised
learning; neural networks; lidar; ground vehicles

1. Introduction

Three-dimensional (3D) lidar sensors are a key technology for navigation, localization, mapping
and scene understanding in novel ground vehicle systems such as autonomous cars [1], search and
rescue robots [2], and planetary exploration rovers [3]. One major limitation regarding the use of
lidar technology in these challenging applications is the time and computational resources required to
process the dense point clouds generated by these sensors.

Classification techniques involving point clouds are used extensively and can be categorized
in many ways [4]. For instance, airborne sensors can use elevation and flatness characteristics to
classify roof surfaces and urban objects [5–7], whereas terrestrial scans are affected by obstructions and
varying point density [8]. Furthermore, algorithms have been proposed to identify particular object
types, such as vehicles, buildings or trees [9,10], or to classify geometric primitives at point level [11].
In this sense, while some methods segment the cloud before classifying points within the resulting
clusters [12,13], others perform classification directly on scan points [8]. Moreover, different machine

Sensors 2017, 17, 594; doi:10.3390/s17030594 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 594 2 of 17

learning descriptors have been considered (e.g., histograms [4,8] and conditional random fields [14,15]).
In particular, many solutions rely on supervised learning classifiers such as Support Vector Machines
(SVM) [12,16–18], Gaussian Processes (GP) [19,20], or Gaussian Mixture Models (GMM) [11,21–23].

This work focuses on improving the effectiveness, both in computational load and accuracy,
of supervised learning classification of spatial shape features (i.e., tubular, planar or scatter shapes)
obtained from covariance analysis [11]. This is very relevant because classification of primitive
geometric features is largely used as a fundamental step towards higher level scene understanding
problems [9]. For instance, classifying points into coarse geometric categories such as vertical or
horizontal has been proposed as the first layer of a hierarchical methodology to process complex urban
scenes [24]. Furthermore, classification of scan points prior to segmentation is useful to process objects
with unclear boundaries, such as ground, vegetation and tree crowns [8]. In this sense, spatial shape
features can describe the shape of objects for later contextual classification [15]. Thus, classification of
spatial shape features based on principal component analysis (PCA) is a constituent process in recent
scene processing methods [4,13,18,23,25].

Many classification techniques are point-wise in that they compute features for every point
in a cloud by using the points within its local neighborhood, the support region. The k-Nearest
Neighbors (KNN) algorithm can produce irregular support regions whose volume depends on the
varying sampling density of objects and surfaces from terrestrial scans [8]. For example, KNN has
been used to compare the performance between several classifiers [12] and to classify into planar or
non-planar surfaces [18]. The KNN support volume can be limited by setting a fix-bound radius [26].
Furthermore, ellipsoidal support regions of adaptive sizes, denoted as super-voxels, can be built
iteratively based on point characteristics [14,27]. Other point-wise classification techniques adopt
regular support regions by searching for all neighbors within a given radius [8,9,11,20]. In general,
point-wise techniques imply a high computational load. This is why some authors have proposed
oversampling techniques to reduce the amount of data in the raw point cloud [14,28].

Grid representations and voxels have also been considered to speed up point cloud classification.
In some solutions, grids serve to segment points prior to point-wise classification. For instance,
the method proposed in [26] computes segmentation by projecting non ground points on a 2D grid
and [29] uses voxels for defining groups of points that are later classified with a Neural Network (NN)
supervised learning method. Some authors have proposed computing features for points in a voxel by
considering support regions defined by neighboring voxels. The authors in [4] compute PCA for each
voxel with a support region defined by the 26-neighbors. Descriptors are used both for segmentation
(i.e., voxel clusters) and for later classification of the set of points within a cluster. Furthermore,
in [13], the feature vector for each voxel is obtained from a support region that includes a number of
surrounding voxels. In this case, features are not employed for classification but for mapping voxels to
a color space used for segmentation. Neither [4] nor [13] compute features to classify points within
a voxel.

In a previous work [30], we proposed an NN supervised learning formalism for classification of
spatial shape features in lidar point clouds. Our interest was to use this classification method for object
segmentation [31] and construction of 2D occupancy grids for autonomous navigation [32]. In order to
reduce the computational load of the NN classifier in [30], we implemented a computationally simple
voxel-based neighborhood approach where all points in each non-overlapping voxel in a regular grid
were assigned to the same class by considering features within a support region defined only by the
voxel itself. This work advanced promising classification results in a natural environment according
to visual validation by a human expert. These preliminary results demand further analysis of the
NN method with performance metrics and considering other types of environments and sensors.
More importantly, it would be interesting to generalize voxel-based neighborhood so that it can be
used with other supervised classifiers.

This paper extends [30] by addressing these questions. In particular, we analyze the NN
classification method by proposing a new general framework for implementing and comparing different

Sensors 2017, 17, 594 3 of 17

supervised learning classifiers that develops the voxel-based neighborhood concept. This original
contribution defines offline training and online classification procedures as well as five alternative
PCA-based feature vector definitions. We focus on spatial shape classes usually found in literature:
scatter, tubular, and planar. In addition, we evaluate the feasibility of the voxel-based neighborhood
concept for classification of terrestrial scene scans by implementing our NN method and three other
classifiers commonly found in scene classification applications: SVM, GP, and GMM. A comparative
performance analysis has been carried out with experimental datasets from both natural and urban
environments and two different 3D rangefinders (a tilting Hokuyo and a Riegl). Classification
performance metrics and processing time measurements confirm the benefits of the NN classifier and
the feasibility of voxel-based neighborhood.

The rest of the paper is organized as follows. The next section reviews supervised learning methods
that will be considered in the comparative analysis. Then, Section 3 proposes a general voxel-based
neighborhood approach for supervised learning classification of spatial shape features. Section 4
describes the experimental setup and methodology for performance analysis offered in Section 5,
which discusses results for different classifiers and feature vector definitions. The paper closes with
the conclusions section.

2. Supervised Learning Methods for Point Cloud Classification

This section briefly reviews supervised learning methods that have been used in the literature for
point cloud scene classification: SVM, GP, GMM, and NN.

2.1. Support Vector Machine

The purpose of SVM learning [33] is to find a hyperplane that separates the dataset into a discrete
predefined set of classes consistent with labeled training patterns. When patterns are not linearly
separable, SVM transforms original data into a new space and uses a kernel function for classification.
SVM has shown good generalization even with a reduced training dataset, although its performance
can be significantly affected by parametrization [34]. Apart from the definition of the kernel function,
SVM uses a box constraint, which is a parameter that controls the maximum penalty imposed on
margin-violating observations and contributes to prevent overfitting.

SVM has been applied to classify urban point clouds into ground, and planar and non-planar
points on the ground [18]. In this application, every point is evaluated together with its KNN based on
covariance analysis that uses a linear combination of eigenvalues and a Radial Basis kernel function.
Furthermore, the same kernel function with SVM has been applied to lidar data in intelligent vehicles
to detect vegetation [17] and to classify clusters of points as urban objects [4,12,16].

2.2. Gaussian Processes

GP is a generalization of the Gaussian probability distribution [35] that can be interpreted as
a Bayesian version of the SVM method. Each class is modeled as a GP where a covariance function
(kernel) is trained to estimate its nonparametric underlying distribution. The problem of learning in GP
is exactly the problem of finding suitable parameters (called hyperparameters) for the covariance and
mean functions that best model the training input dataset. Generally, the GP method requires defining
the following: the number of function evaluations, a covariance function, an inference method, a mean
function, a likelihood function, and the initialization of the hyperparameters.

GP has been applied for real-time ground segmentation by considering the relative height of lidar
points from a land vehicle [19]. Moreover, a combination of GP and SVM with PCA has been proposed
to classify terrain as traversable or non traversable by computing two features representing texture
and slope for every point [20].

Sensors 2017, 17, 594 4 of 17

2.3. Gaussian Mixture Model

A GMM is a probabilistic model that uses a mixture of Gaussian probability distributions to
represent subpopulations within a population [36]. In the case of more than two classes, a different
GMM is inferred for each class. Then, the learning algorithm tunes the weight, mean, and covariance
matrices of a mixture of ng Gaussian components for each GMM. The training process finds ng for
each GMM given a maximum value NG.

Lalonde et al. [11] used GMM with the expectation maximization (EM) algorithm [37] to classify
lidar points in scatter, planar and tubular classes according to saliency features. GMM has also been
applied with color and spatial features for pixel-wise segmentation of road images [21] and object and
background classification in point clouds [22].

2.4. Neural Networks

The multi-layer perceptron (MLP) is a type of NN commonly used in supervised learning [38].
Implementing an MLP requires a definition of the network topology (i.e., the number of layers and
neurons), the transfer function in every layer, the back-propagation learning algorithm, and the
learning constant.

MLPs have been used to classify urban objects from non-ground points distributed within point
clusters [25] and voxels [29]. Furthermore, we proposed an MLP formalism for classifying spatial
shape features from natural environments [30]. Besides, the problem of classifying vehicles represented
as point clouds has been addressed with a combination of NN and genetic algorithms [39].

3. General Voxel-Based Neighborhood Framework for Geometric Pattern Classification

This section proposes a voxel-based geometric pattern classification approach which can be
generally used by supervised learning methods. General offline training and online classification
procedures are detailed. Moreover, five alternative feature vector definitions are given to classify
voxels as three spatial shape classes: scatter, tubular, and planar. Furthermore, data structures are
proposed for the implementation of the point cloud and the input dataset.

3.1. Definitions

In general, classifiers produce a score to indicate the degree to which a pattern is a member of
a class. For an input space with N patterns, the input dataset is defined as D = {(pi, ti)|∀i ∈ [1, N]},
where pi = [pi1, ..., piNL] is the ith input pattern and ti ∈ C represents one of the NC target classes, with
C = {C1, ..., CNC}. The NL components of pi are computed according to a feature vector definition F .
Supervised learning needs a training dataset whose pi have been previously labeled with their
corresponding ti.

In this work, the goal is to classify scene points into three classes (i.e., NC = 3): C = {C1, C2, C3},
where C1, C2, and C3, correspond to scatter, tubular and planar shapes, respectively. By using
voxel-based neighborhood, all points within a voxel are assigned to the same class. With this aim,
the point cloud in Cartesian coordinates is voxelized into a 3D grid of regular cubic voxels of edge E.
Edge size depends on the scale of the spatial shapes to be detected in the point cloud. Only those
voxels containing more points than a threshold ρ are considered to be significant for classification.
Thus, the size N of the input dataset is the number of significant voxels.

3.2. Training and Classification Procedures

General training and classification procedures particularized for voxel-based neighborhood are
shown in Figure 1. Training is an offline process that has to be done once for a given classifier,
whereas classification is performed online for each new point cloud. The training procedure produces
a multi-class classifier configuration consisting on a set of NC classifiers that will be used in the

Sensors 2017, 17, 594 5 of 17

classification procedure. Moreover, the choice of a feature vector definition and a particular classification
method must be the same for the training and classification procedures.

ρ

Voxelization

Voxelized point cloud

E

Trained classifier configuration

Hand-Labeling

Training point cloud

Labeled voxels

Building Data Structure

Classifier

parametrization

Classification

method

selection

Classified V

V

Feature Vector

definition F

Training (NC times)

ρ

Voxelization

Voxelized point cloud

E

Classified V

Point cloud

Building Data Structure

Feature Vector

definition F

Classification

Classification

method selection V

Class inheritance

Classified point cloud

Trained classifier

configuration

(a) (b)

Figure 1. Offline training (a) and online classification (b) procedures with voxel-based neighborhood
computation. The choices of a feature definition and a classification method are common for both
procedures (shaded in solid blue). The trained classifier configuration (shaded in dotted red) output in
(a) is used in (b).

A data structure V is defined to contain the input dataset D = {(pi, ti)}. When all ti values in V
have been set, either manually or automatically, this is considered a “classified V”. An implementation
of V is described in Section 3.4.

The training procedure (see Figure 1a) uses a point cloud in Cartesian coordinates where the
NC geometric classes must be represented and discernible. After voxelization, the N significant
voxels in the 3D grid are manually labeled with their corresponding class (ti) by a human supervisor.
Then, a classified V data structure is built from the labeled voxels by computing pi for a particular
choice of feature vector definition F (e.g., one of the definitions proposed in Section 3.3). Training is
performed for a given classification method with its particular parameters, where a different
configuration is inferred for each class. The output of the training procedure is the trained
classifier configuration.

The goal of the online classification procedure (see Figure 1b) is to classify a new point cloud.
The voxelized point cloud is used to create the V data structure with pi values computed with the same
feature vector definition as in the training procedure. In the classification step, the trained classifier
configuration given by the training procedure completes the classified V by appending ti values
computed by considering the highest score of the NC classifiers. With voxel-based neighborhood, the
classification for each voxel is inherited by all points within its limits.

3.3. Extracting Spatial Shape Features from Voxels

The local spatial distribution of all the points within a voxel is obtained as a decomposition in
the principal components of the covariance matrix from point Cartesian coordinates. These principal
components or eigenvalues are sorted in ascending order as λ0 ≥ λ1 ≥ λ2 [11].

Sensors 2017, 17, 594 6 of 17

A feature vector F consisting on a linear combination of the eigenvalues [11] and NL = 3 is
generally considered in the literature [13,17]:

F = [λ0, λ0 − λ1, λ1 − λ2]. (1)

This definition takes into account that scatterness has no dominant direction (λ0 ≈ λ1 ≈ λ2),
tubularness shows alignment in one dominant direction (λ0 � λ1 ≈ λ2), and planarness has two
dominant directions (λ0 ≈ λ1 � λ2).

Nevertheless, classifier convergence and performance can be affected by the definition and
scaling of F [40]. Thus, variants of Equation (1) based on the normalization and linear combination of
eigenvalues could improve the performance of a particular classifier. Particularly, five feature vector
definitions are considered in this work:

• F1 = [λ0, λ1, λ2]: eigenvalues from the covariance matrix.
• F2 = [λ0, λ0 − λ1, λ1 − λ2]: linear combination of the eigenvalues, as in Equation (1).
• F3 = [λ0, λ1, λ2]: normalized eigenvalues.
• F4 = [λ0, λ0 − λ1, λ1 − λ2]: normalization of the linear combination.
• F5 = [λ0, λ0 − λ1, λ1 − λ2]: linear combination of normalized eigenvalues.

In F3, F4, and F5, the overline over a value c denotes normalization of this value in [0, 1] with
respect to a 95% confidence interval. This normalization is computed as follows:

c =
c−min{ck}

max{ck} −min{ck}
, with c ∈ {ck |k = 1, ..., N95c}, (2)

where N95c represents the rounded integer number of the 95% significant voxels in the middle of the
distribution of c.

The input patterns pi in D are computed by using the selected F definition with the eigenvalues
given by the covariance matrix corresponding to the points within the ith significant voxel.

3.4. Data Structures

In order to represent D, the classification data structure V must be related to a list of Cartesian
point cloud coordinates C. Particularly, efficient access to the list of points within each voxel is required
both to compute the input patterns pi and to inherit classification by scan points. With this purpose,
this section proposes two data structures that implement the point cloud C and V, respectively.

Then, C is defined as a sorted list of all scan points, where the jth element has the following data:

• (xj, yj, zj), the Cartesian point coordinates.
• Ij ∈ [1, NV], a scalar index of the voxel that contains the point. Assuming that a spatial 3D

grid with NV voxels includes all scan points, then a unique natural number I ∈ [1, NV] can be
associated to each voxel [41]. This index is associated to the point in the voxelization process.

• tj ∈ [1, NC], a natural number representing the target class. This value is hand labeled in the
training process and is the resulting class in the classification process.

The structure V that implements D is defined as a list of N elements, where the ith element
corresponds to a significant voxel and contains:

• Ii ∈ [1, NV], the scalar index associated to the voxel,
• pi, feature vector values to be used as input pattern,
• ti ∈ [1, NC], a natural number representing the target class.

The computation of these data structures is as follows. First, all scan points in C are indexed with
their corresponding voxel index, which is also used to sort the list. After that, if there are more than
ρ consecutive elements in C with the same index number, then a new entry for that voxel is created
in V. After voxel classification, points in C with the same voxel index inherit the target class of the
corresponding voxel in V. Points in non-significant voxels will remain unclassified (i.e., with a null
value in the target class field).

Sensors 2017, 17, 594 7 of 17

4. Experimental Setup and Methodology

This section describes the training and evaluation datasets, the parametrization of classifiers, and
the methodology used for the comparative performance analysis offered in Section 5.

4.1. Experimental Datasets

Classification has been applied to three evaluation point clouds obtained with representative
sensors and illustrative of natural and urban environments:

• Urban. This point cloud of a urban environment (see Figure 2) is a subset of the Sydney Campus
dataset [42], which was scanned by a Riegl sensor (Horn, Austria). This is a complex scene which
involves structured objects, mostly planes, such as buildings and flat floors.

• Natural_1 and Natural_2. These point clouds are dominated by unstructured objects such as bushes,
trees and rough terrain. Both scenes were scanned on natural areas close to Universidad de Málaga
by a UNOLaser rangefinder (Málaga, Spain). This sensor is based on pitching a 2D Hokuyo
UTM-30LX (Osaka, Japan) [43], with a maximum range of 30 m and horizontal and vertical fields
of view of 270◦ and 131◦, respectively. The first scan is from a complex scene with dense tree
crowns (see Figure 3) and the second includes both bushes and tall trees with visible trunks (see
Figure 4).

Figure 2. Hand labeled Urban point cloud.

Figure 3. Hand labeled Natural_1 point cloud.

Sensors 2017, 17, 594 8 of 17

Figure 4. Hand labeled Natural_2 point cloud.

As for the training procedure, a different point cloud has been considered:

• Garden. This point cloud contains elements from a semi-structured environment where the three
geometric classes can be discernible for hand labeling: planar floor, tubular tree trunks, and
scattered tree crowns (see Figure 5). This scene was scanned with the UNOLaser sensor.

Figure 5. Hand labeled Garden point cloud.

Evaluation and training point clouds have been voxelized with E = 0.5 m and ρ = 10
(see Section 3.1), which were empirically determined [31]. Table 1 summarizes voxelization and hand
labeling of experimental point clouds (evaluation datasets have also been hand labeled to evaluate
classification performance). The table presents the resulting number of voxels and points included in
the corresponding V structures, as well as the percentage of voxels for each class after hand labeling.
In the Urban dataset, most voxels have been labeled as planar because clear floor and building walls
dominate the scene. Conversely, in the Natural_1 and Natural_2 voxelized point clouds, a majority of
the voxels are scatter or tubular due to bushes and trunks and treetops.

Sensors 2017, 17, 594 9 of 17

Table 1. Characteristics of hand labeled voxels of experimental point clouds.

Dataset Type Dataset #Voxels #Points
Voxels Percentage

Scatter Tubular Planar

Evaluation

Urban 13713 1473757 27.7 16.3 55.9

Natural_1 1877 618913 72.8 6.2 20.9

Natural_2 1346 267514 58.6 61.6 17.8

Training Garden 974 128836 34.9 4.2 60.9

4.2. Classifiers Parametrization

The parametrization of the SVM classifier is the following:

• Function kernel: radial basis function as in [18],
• Box constraint: infinite.

The parameters used for the GP classifier are:

• Number of function evaluations: 30,
• Covariance function: squared exponential function with automatic relevance determination,
• Mean function: constant mean function,
• Inference method: expectation propagation algorithm,
• Likelihood function: cumulative Gaussian function,
• Hyperparameters of mean and covariance: 0 and (1, 1, 1, 1), respectively (i.e., all length-scales

and the signal magnitude are initialized to 1 and represented in the log space).

In GMM, the parameters are:

• Nscatter
G = Ntubular

G = Nplanar
G = 10,

• Marginal likelihood maximization: EM algorithm [37].

The proposed NN based classifier uses the following configuration:

• Network topology: multi-layer perceptron with one hidden layer of 100 neurons (this number
was determined using a cascade learning constructive processing in which neurons are added to
the hidden layer, one at time, until there is no further improvement in network performance),

• Transfer function: logistic transfer functions in hidden and output layers,
• Back-propagation learning algorithm: Levenberg–Marquardt,
• Learning constant: 0.02.

In addition, the training process of the NN must be stopped at an appropriate iteration to avoid
overfitting. This iteration is found by the early stopping method of training [44], in which the training
dataset is split into an estimation subset (80% of the training set) and a validation subset (the remaining
20%). More details of the configuration and implementation of the NN classifier can be found in [30].

4.3. Methodology

The performance of the classifiers will be compared by using classification statistical measures
for each class. In particular, confusion matrices along with a multi-class extension of Matthew’s
Correlation Coefficient (MCC) have been considered.

In a classification problem with NC target classes, a confusion matrix is the square matrix M
(NC × NC) whose ijth entry, Mij, is the number of elements of true class i that have been assigned
to class j by the classifier [45]. Therefore, an ideal classifier would yield a diagonal M. In this case,
elements are points from significant voxels. Furthermore, in order to achieve a clear comparison

Sensors 2017, 17, 594 10 of 17

between different datasets, normalized confusion matrices can be defined. Elements in the normalized
confusion matrix M are defined as:

Mij =
Mij

NC
∑

i=1
Mij

× 100, (3)

where the sum of row elements is 100.
The generalization of MCC for the multi-class problem [46] is used as a reference performance

measure on unbalanced datasets [45], which can be defined as follows:

MCC =

NC
∑

i,j,k=1
Mii Mkj −Mji Mik√√√√NC

∑
i=1

[(NC
∑

j=1
Mji

)(NC
∑

m,n=1;m 6=i
Mnm

)]√√√√NC
∑

i=1

[(NC
∑

j=1
Mij

)(NC
∑

m,n=1;m 6=i
Mmn

)] . (4)

MCC summarizes the confusion matrix into a single value in the [−1, 1] range, where 1 represents
a perfect classification and –1 extreme misclassification.

5. Performance Analysis and Comparison

This section discusses experimental results where the voxel-based approach proposed in Section 3 has
been applied to the NN classifier and other supervised learning classifiers: SVM, GP, and GMM. First, all
classifiers are compared with a representative feature vector definition. Then, an experimental analysis is
performed to select an appropriate feature vector definition for each classifier. The section also includes
a discussion of computation times as well as a comparison with a point-wise neighborhood classifier.

5.1. Performance Evaluation with Linear Combination of Eigenvalues

The evaluation datasets described in Section 4.1 have been used to compare the performance of the
four classifiers trained withF2, which is the feature vector definition given by Lalonde et al. [11]. Table 2
presents MCC and M for each classifier in all evaluations datasets. Regarding MCC, the NN classifier
achieves the best results in all datasets. The GMM classifier obtains the second best performance,
whereas SVM and GP get poor results. In particular, SVM never classifies patterns as class C2 (tubular),
as indicated by null values in the second column of M for all datasets. Similarly, GP classifies most
points (over 90%) as class C3 (planar). These results indicate poor performance of F2 for some classifiers.

Table 2. Performance of classifiers (MCC and M) using feature vector definition F2 for the
evaluation datasets.

Natural_1 Natural_2 Urban

MCC M MCC M MCC M

GMM (F2) 0.4631

74.3 18.7 7.0
55.6 39.3 5.1
14.2 9.2 76.6

 0.5696

72.8 18.1 9.1
18.3 65.4 16.3
15.8 6.6 77.6

 0.4962

81.5 11.7 6.8
31.1 43.4 25.5
11.9 15.0 73.1


GP (F2) 0.0958

0.0 3.7 96.3
0.0 6.1 93.9
0.0 0.2 99.8

 0.0005

0.0 1.3 98.7
0.0 0.0 100
0.0 0.0 100

 0.0486

0.0 4.2 95.8
0.0 2.9 97.1
0.0 0.3 99.7


NN(F2) 0.6461

91.7 1.8 6.5
56.4 37.6 6.0
4.9 2.1 93.0

 0.7927

95.9 2.3 1.8
28.7 68.2 3.1
6.9 1.0 92.1

 0.6557

95.9 0.2 4.0
11.7 22.9 65.4
0.0 0.0 100


SVM(F2) 0.3091

48.6 0.0 51.4
32.7 0.0 67.3
0.8 0.0 99.2

 0.1164

9.4 0.0 90.6
2.2 0.0 97.8
1.3 0.0 98.7

 0.3152

43.2 0.0 56.8
14.7 0.0 85.3
0.1 0.0 99.9



Sensors 2017, 17, 594 11 of 17

5.2. Performance Evaluation with Different Feature Vector Definitions

This section offers an experimental analysis to find a suitable selection of F for each classifier.
With this purpose, all classifiers have been trained with the five feature vector definitions described in
Section 3.3 using the Garden dataset. Table 3 summarizes this analysis by showing the corresponding
MCC values. These results indicate that GP and SVM are strongly affected by the choice of the feature
vector while GMM offers good results for all definitions. In this sense, the NN method achieves better
results with the non-normalized definitions, which can be explained by the nonlinear qualities of the
MLP. All in all, the best scores have been obtained with F2 for NN, F4 for GMM and GP, and F5 for
SVM. These definitions have been selected as the most appropriate choice for each classifier.

Comparative results with the corresponding F selections are given in Table 4. Regarding MCC,
the NN classifier maintains the best results in all datasets. In addition, GP becomes the second best,
clearly improving with respect to Table 2 (where it obtained the worst performance), which denotes
the importance of an appropriate selection of F . As for M, it can be noted that class C2 (tubular)
is the most difficult to classify (as indicated by low values of the M22 elements). In this difficult
class, NN consistently outperforms all other classifiers and reaches 68.2% of true positives in the
Natural_2 dataset.

Figures 6–8 illustrate the application of our NN classifier with the voxel-based neighborhood
approach for the three evaluation datasets. These classification results show good accordance with the
ground truth (i.e., hand labeled) values given in Figures 2–4.

Table 3. Performance of classifiers (MCC) for the training dataset with different definitions of the
feature vector F .

F1 F2 F3 F4 F5

GMM 0.8667 0.8725 0.7856 0.9562 0.7988
GP 0.3414 0.0042 0.5996 0.8224 0.7420
NN 0.8295 0.8384 0.5659 0.4240 0.5633

SVM 0.0723 0.1687 0.4722 0.3275 0.5268

Table 4. Performance of classifiers (MCC and M) for the evaluation datasets using selected feature
vector definition (F4 for GMM and GP, F2 for NN, and F5 for SVM).

Natural_1 Natural_2 Urban

MCC M MCC M MCC M

GMM (F4) 0.5352

94.4 2.8 2.8
81.2 12.7 6.1
13.1 1.1 85.8

 0.5756

93.9 4.1 2.0
66.7 27.4 5.9
8.8 2.8 88.4

 0.6021

97.4 1.3 1.3
32.6 14.1 53.3
2.6 0 97.4


GP (F4) 0.5382

93.9 1.2 4.9
64.2 9.6 26.2
6.9 1.0 92.1

 0.5871

96.3 0.8 2.9
32.0 23.0 45.0
7.4 2.7 89.9

 0.6384

98.8 0.1 1.1
13.6 15.3 71.1
0.5 0 99.5


NN(F2) 0.6461

91.7 1.8 6.5
56.4 37.6 6.0
4.9 2.1 93.0

 0.7927

95.9 2.3 1.8
28.7 68.2 3.1
6.9 1.0 92.1

 0.6557

95.9 0.2 4.0
11.7 22.9 65.4
0.0 0.0 100


SVM (F5) 0.4483

83.6 0.6 15.8
54.7 0.8 44.5
6.4 0.1 93.5

 0.4646

86.9 1.3 11.8
39.6 0.3 60.1
6.8 0.0 93.2

 0.5082

84.3 1.2 14.5
20.7 0.7 78.6
0.3 0.0 99.7



Sensors 2017, 17, 594 12 of 17

Figure 6. Urban point cloud classified by NN with F2.

Figure 7. Natural_1 point cloud classified by NN with F2.

Figure 8. Natural_2 point cloud classified by NN with F2.

Sensors 2017, 17, 594 13 of 17

5.3. Computation Time

Table 5 presents execution times corresponding to a Matlab (R2015b, MathWorks, Natick, MA,
USA) implementation of the classifiers running on a Core i7 processor with a clock frequency of
3.7 GHz and 16 GB of RAM. Computation of data structure V is common for all classifiers. Then, total
computation time is obtained by adding the time for V computation to the training process time (in the
offline procedure) or to the classification process time (in the online procedure).

V computation time includes voxelization as well as calculation of covariance matrices and their
associated eigenvalues for every voxel. This value is proportional to the number of voxels in the data
structure, which is greater for the Urban dataset (see Table 1).

Table 5 shows that GP requires much more computation time, for both training and classification,
than the rest of classifiers. For offline training, the times for the training process, which offer considerable
differences between the four classifiers, are greater than the time required for V computation. As for
online classification, GMM, NN and SVM achieve classification times that are significantly faster than
V computation, so their total computation times are similar and close to that value. Since the best
classification performance in Table 4 was achieved by NN, it can be concluded that NN accomplishes
an outstanding compromise between performance and computation time.

Table 5. Computation times for training and classification, in seconds.

Training Classification

Garden Urban Natural_1 Natural_2

V Computation 0.154 1.895 0.432 0.263
GMM 0.557 0.018 0.004 0.003
GP 104.673 3.995 4.010 3.795
NN 5.790 0.121 0.035 0.032
SVM 43.652 0.112 0.017 0.018

5.4. Comparison with Point-Wise Neighborhood Classification

Performance of voxel-based neighborhood has also been compared against point-wise
neighborhood. In particular, the experimental datasets have been processed with a point-wise GMM
classifier with F2 (i.e., the configuration used by Lalonde et al. [11]) with a support region defined
by a radius of 0.5 m. Classification performance and computation times are presented in Tables 6
and 7, respectively.

Regarding classification performance, Table 6 presents MCC and M for point-wise GMM in
all evaluation datasets. Comparing MCC values of Table 6 against the first row of Table 4, it can
be appreciated that performance results are very similar. Particularly, voxel-based neighborhood
outscores the point-wise method in the Natural_2 and Urban datasets.

Table 6. Performance of GMM classifier with point-wise neighborhood using feature vector definition
F2 for the evaluation datasets.

Natural_1 Natural_2 Urban

MCC M MCC M MCC M

Point−wise
GMM 0.5392

79.2 7.6 13.2
47.0 32.8 20.2
6.9 1.9 91.2

 0.5288

80.1 7.1 12.8
16.7 33.3 50.0
8.5 4.1 87.4

 0.5797

79.4 6.6 14.0
23.2 35.3 41.5
3.3 1.2 95.5



Sensors 2017, 17, 594 14 of 17

Table 7. Computation times for point-wise neighborhood training and classification, in seconds.

Training Classification

Garden Urban Natural_1 Natural_2

Neighborhood computation 63.12 933.73 574.98 166.28
Point-wise GMM 8.89 9.29 1.36 0.63

Total computation time is the sum of neighborhood computation and training/classification times,
which are given as two separate rows in Table 7. In this case, most of the time is used for neighborhood
computation. The comparison of this table with Table 5 shows that computation times for voxel-based
neighborhood are dramatically reduced with respect to point-wise neighborhood.

In general, these results indicate that voxel-based neighborhood classification achieves a dramatic
improvement in computation time with respect to point-wise neighborhood, while no relevant
differences in performance can be appreciated. Furthermore, voxel-based NN has accomplished
better classification performance with the experimental datasets.

6. Conclusions

Many point cloud classification problems targeting real-time applications such as autonomous
vehicles and terrestrial robots have received attention in recent years. Among these problems,
improving the effectiveness of spatial shape features classification from 3D lidar data remains a relevant
challenge because it is largely used as a fundamental step towards higher level scene understanding
solutions. In particular, searching for neighboring points in dense scans introduces a computational
overhead for both training and classification.

In this paper, we have extended our previous work [30], where we devised a computationally
simple voxel-based neighborhood approach for preliminary experimentation with a new a neural
network (NN) classification model. Promising results demanded deeper analysis of the NN method
(using performance metrics and different environments and sensors) as well as generalizing
voxel-based neighborhood that could be implemented and tested with other supervised classifiers.

The originality of this work is a new general framework for supervised learning classifiers to
reduce the computational load based on a simple voxel-based neighborhood definition where points
in each non-overlapping voxel of a regular grid are assigned to the same class by considering features
within a support region defined by the voxel itself. The contribution comprises offline training and
online classification procedures as well as five alternative feature vector definitions based on principal
component analysis for scatter, tubular and planar shapes.

Moreover, the feasibility of this approach has been evaluated by implementing four types of
supervised learning classifiers found in scene processing methods: our NN model, support vector
machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). An experimental
performance analysis has been carried out using real scans from both natural and urban environments
and two different 3D rangefinders: a tilting Hokuyo and a Riegl. The major conclusion from this
analysis is that voxel-based neighborhood classification greatly improves computation time with
respect to point-wise neighborhood, while no relevant differences in scene classification accuracy have
been appreciated. Results have also shown that the choice of suitable features can have a dramatic
effect on the performance of classification approaches. All in all, classification performance metrics
and processing time measurements have confirmed the benefits of the NN classifier and the feasibility
of the voxel-based neighborhood approach for terrestrial lidar scenes.

One additional advantage of processing each non-overlapping cell by using points from only that
same cell is that this favors parallelization [47]. Developing a parallel version of the proposed method
to improve online classification time with multi-core computers will be addressed in future work.
Furthermore, it will be also interesting to adapt the method for incremental update of classification
results with consecutive scans.

Sensors 2017, 17, 594 15 of 17

Acknowledgments: This work was partially supported by the Spanish project DPI2015-65186-R and the
Andalusian project P10-TEP-6101-R. The authors are grateful to anonymous reviewers for their valuable comments.

Author Contributions: The voxel-based neighborhood approach was developed by V. Plaza-Leiva. The Neural
Network classifier was developed by J.A. Gomez-Ruiz. The writing of the manuscript and the design and analysis
of experiments have been done by A. Mandow, J.A. Gomez-Ruiz and V. Plaza-Leiva. The work was conceived
within research projects led by A. García-Cerezo and A. Mandow.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, J.; Liang, H.; Wang, Z.; Chen, X. A Framework for Applying Point Clouds Grabbed by Multi-Beam
LIDAR in Perceiving the Driving Environment. Sensors 2015, 15, 21931–21956.

2. Menna, M.; Gianni, M.; Ferri, F.; Pirri, F. Real-time autonomous 3D navigation for tracked vehicles in rescue
environments. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems,
Chicago, IL, USA, 14–18 September 2014; pp. 696–702.

3. Shaukat, A.; Blacker, P.C.; Spiteri, C.; Gao, Y. Towards Camera-LIDAR Fusion-Based Terrain Modelling for
Planetary Surfaces: Review and Analysis. Sensors 2016, 16, 1952.

4. Lehtomäki, M.; Jaakkola, A.; Hyyppä, J.; Lampinen, J.; Kaartinen, H.; Kukko, A.; Puttonen, E.; Hyyppä, H.
Object Classification and Recognition From Mobile Laser Scanning Point Clouds in a Road Environment.
IEEE Trans. Geosci. Remote Sens. 2016, 54, 1226–1239.

5. Lafarge, F.; Mallet, C. Creating large-scale city models from 3D-point clouds: A robust approach with hybrid
representation. Int. J. Comput. Vis. 2012, 99, 69–85.

6. Zhou, Q.Y.; Neumann, U. Complete residential urban area reconstruction from dense aerial LiDAR point
clouds. Graph. Models 2013, 75, 118–125.

7. Sun, S.; Salvaggio, C. Aerial 3D building detection and modeling from airborne LiDAR point clouds. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1440–1449.

8. Behley, J.; Steinhage, V.; Cremers, A.B. Performance of histogram descriptors for the classification of 3D laser
range data in urban environments. In Proceedings of the IEEE International Conference on Robotics and
Automation, St. Paul, MN, USA, 14–18 May 2012; pp. 4391–4398.

9. Xiong, X.; Munoz, D.; Bagnell, J.A.; Hebert, M. 3-D scene analysis via sequenced predictions over points and
regions. In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China,
9–13 May 2011; pp. 2609–2616.

10. Zhang, F.; Knoll, A. Vehicle Detection Based on Probability Hypothesis Density Filter. Sensors 2016, 16, 510.
11. Lalonde, J.; Vandapel, N.; Huber, D.; Hebert, M. Natural Terrain Classification Using Three-Dimensional

Ladar Data for Ground Robot Mobility. J. Field Robot. 2006, 23, 839–861.
12. Golovinskiy, A.; Kim, V.; Funkhouser, T. Shape-based recognition of 3D point clouds in urban environments.

In Proceedings of the IEEE International Conference on Computer Vision, Kyoto, Japan, 27 September–
4 October 2009; pp. 2154–2161.

13. Choe, Y.; Shim, I.; Chung, M.J. Urban structure classification using the 3D normal distribution transform for
practical robot applications. Adv. Robot. 2013, 27, 351–371.

14. Lim, E.H.; Suter, D. 3D terrestrial LIDAR classifications with super-voxels and multi-scale conditional
random fields. CAD Comput. Aided Des. 2009, 41, 701–710.

15. Zhuang, Y.; Liu, Y.; He, G.; Wang, W. Contextual classification of 3D laser points with conditional random
fields in urban environments. In Proceedings of the IEEE International Conference on Intelligent Robots and
Systems, Hamburg, Germany, 28 September–2 October 2015; pp. 3908–3913.

16. Zhu, X.; Zhao, H.; Liu, Y.; Zhao, Y.; Zha, H. Segmentation and classification of range image from an intelligent
vehicle in urban environment. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 1457–1462.

17. Nguyen, D.V.; Kuhnert, L.; Jiang, T.; Thamke, S.; Kuhnert, K.D. Vegetation detection for outdoor automobile
guidance. In Proceedings of the IEEE International Conference on Industrial Technology, Auburn, AL, USA,
14–16 March 2011; pp. 358–364.

18. Hao, W.; Wang, Y. Classification-based scene modeling for urban point clouds. Opt. Eng. 2014, 53, 1–9.

Sensors 2017, 17, 594 16 of 17

19. Chen, T.; Dai, B.; Wang, R.; Liu, D. Gaussian-Process-Based Real-Time Ground Segmentation for Autonomous
Land Vehicles. J. Intell. Robot. Syst. Theory Appl. 2014, 76, 563–582.

20. Santamaria-Navarro, A.; Teniente, E.H.; Morta, M.; Andrade-Cetto, J. Terrain Classification in Complex
Three-dimensional Outdoor Environments. J. Field Robot. 2015, 32, 42–60.

21. Huang, W.; Gong, X.; Xiang, Z. Road scene segmentation via fusing camera and lidar data. In Proceedings
of the IEEE International Conference on Robotics and Automation, Hong Kong, China, 31 May–7 June 2014;
pp. 1008–1013.

22. Pan, R.; Taubin, G. Automatic segmentation of point clouds from multi-view reconstruction using graph-cut.
Vis. Comput. 2016, 32, 601–609.

23. Maligo, A.; Lacroix, S. Classification of Outdoor 3D Lidar Data Based on Unsupervised Gaussian Mixture
Models. IEEE Trans. Autom. Sci. Eng. 2016, 14, 5–16.

24. Flynn, T.; Hadjiliadis, O.; Stamos, I. Online Classification in 3D Urban Datasets Based on Hierarchical
Detection. In Proceedings of the International Conference on 3D Vision, Lyon, France, 19–22 October 2015;
pp. 380–388.

25. Zhou, Y.; Yu, Y.; Lu, G.; Du, S. Super-segments based classification of 3D urban street scenes. Int. J. Adv.
Robot. Syst. 2012, 9, 1–8.

26. Himmelsbach, M.; Hundelshausen, F.V.; Wuensche, H.J. Fast segmentation of 3D point clouds for ground
vehicles. In Proceedings of the IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 21–24 June 2010;
pp. 560–565.

27. Papon, J.; Abramov, A.; Schoeler, M.; Worgotter, F. Voxel Cloud Connectivity Segmentation-Supervoxels for
Point Clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Portland, OR, USA, 23–28 June 2013; pp. 2027–2034.

28. Lang, D.; Friedmann, S.; Paulus, D. Adaptivity of conditional random field based outdoor point cloud
classification. Pattern Recognit. Image Anal. 2016, 26, 309–315.

29. Habermann, D.; Hata, A.; Wolf, D.; Osorio, F. Artificial Neural Nets Object Recognition for 3D Point Clouds.
In Proceedings of the Brazilian Conference on Intelligent Systems, Fortaleza, Brazil, 19–24 October 2013;
pp. 101–106.

30. Plaza, V.; Gomez-Ruiz, J.A.; Mandow, A.; García-Cerezo, A.J. Multi-layer Perceptrons for Voxel-Based
Classification of Point Clouds from Natural Environments. In Proceedings of the 13th International
Work-Conference on Artificial Neural Networks, Palma de Mallorca, Spain, 10–12 June 2015; pp. 250–261.

31. Plaza, V.; Ababsa, F.; García-Cerezo, A.; Gomez-Ruiz, J.A. 3D Segmentation Method for Natural
Environments based on a Geometric-Featured Voxel Map. In Proceedings of the IEEE International
Conference on Industrial Technology, Seville, Spain, 17–19 March 2015; pp. 1602–1607.

32. Plaza-Leiva, V.; Gomez-Ruiz, J.; Ababsa, F.; Mandow, A.; Morales, J.; García-Cerezo, A. Occupancy grids
generation based on Geometric-Featured Voxel maps. In Proceedings of the 2015 23th Mediterranean
Conference on Control and Automation, Torremolinos, Spain, 16–19 June 2015; pp. 766–771.

33. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297.
34. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm.

Remote Sens. 2011, 66, 247–259.
35. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning (Adaptive Computation and Machine

Learning); The MIT Press: Cambridge, MA, USA, 2005.
36. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; Wiley-Interscience: New York, NY,

USA, 2000.
37. Bilmes, J. A Gentle Tutorial of the EM Algorithm and Its Application to Parameter Estimation for Gaussian Mixture

and Hidden Markov Models; Technical Report 510; International Computer Science Institute: Berkeley, CA,
USA, 1998.

38. Patterson, D.W. Artificial Neural Networks: Theory and Applications; Prentice-Hall Series in Advanced
Communications; Prentice Hall: Upper Saddle River, NJ, USA, 1996.

39. Xu, Z.; Wei, J.; Chen, X. Vehicle recognition and classification method based on laser scanning point cloud
data. In Proceedings of the International Conference on Transportation Information and Safety, Wuhan, China,
25–28 June 2015; pp. 44–49.

40. Theodoridis, S.; Koutroumbas, K. Pattern Recognition, 4th ed.; Academic Press: New York, NY, USA, 2009.

Sensors 2017, 17, 594 17 of 17

41. Martínez, J.L.; Reina, A.J.; Mandow, A.; Morales, J. 3D registration of laser range scenes by coincidence of
coarse binary cubes. Mach. Vis. Appl. 2012, 23, 857–867.

42. Douillard, B.; Underwood, J.; Kuntz, N.; Vlaskine, V.; Quadros, A.; Morton, P.; Frenkel, A. On the segmentation
of 3D LIDAR point clouds. In Proceedings of the 2011 IEEE International Conference on Robotics and
Automation, Shanghai, China, 9–13 May 2011; pp. 2798–2805.

43. Morales, J.; Martínez, J.L.; Mandow, A.; Reina, A.J.; Pequeño Boter, A.; García-Cerezo, A. Boresight Calibration
of Construction Misalignments for 3D Scanners Built with a 2D Laser Rangefinder Rotating on Its Optical
Center. Sensors 2014, 14, 20025–20040.

44. Amari, S.; Murata, N.; Müller, K.R.; Finke, M.; Yang, H. Statistical Theory of Overtraining—Is Cross-Validation
Asymptotically Effective? Adv. Neural Inf. Process. Syst. 1996, 8, 176–182.

45. Jurman, G.; Riccadonna, S.; Furlanello, C. A comparison of MCC and CEN error measures in multi-class
prediction. PLoS ONE 2012, 7, e41882.

46. Gorodkin, J. Comparing two K-category assignments by a K-category correlation coefficient. Comput. Biol. Chem.
2004, 28, 367–374.

47. Rusu, R.B.; Sundaresan, A.; Morisset, B.; Hauser, K.; Agrawal, M.; Latombe, J.C.; Beetz, M. Leaving Flatland:
Efficient real-time three-dimensional perception and motion planning. J. Field Robot. 2009, 26, 841–862.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Supervised Learning Methods for Point Cloud Classification
	Support Vector Machine
	Gaussian Processes
	Gaussian Mixture Model
	Neural Networks

	General Voxel-Based Neighborhood Framework for Geometric Pattern Classification
	Definitions
	Training and Classification Procedures
	Extracting Spatial Shape Features from Voxels
	Data Structures

	Experimental Setup and Methodology
	Experimental Datasets
	Classifiers Parametrization
	Methodology

	Performance Analysis and Comparison
	Performance Evaluation with Linear Combination of Eigenvalues
	Performance Evaluation with Different Feature Vector Definitions
	Computation Time
	Comparison with Point-Wise Neighborhood Classification

	Conclusions

