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Abstract: With the development of satellite mobile communications, large antennas are now widely 
used. The precise pointing of the antenna’s optical axis is essential for many space missions. This 
paper addresses the challenging problem of high-precision autonomous pointing control of a large 
satellite antenna. The pointing dynamics are firstly proposed. The proportional–derivative feedback 
and structural filter to perform pointing maneuvers and suppress antenna vibrations are then 
presented. An adaptive controller to estimate actual system frequencies in the presence of modal 
parameters uncertainty is proposed. In order to reduce periodic errors, the modified controllers, 
which include the proposed adaptive controller and an active disturbance rejection filter, are then 
developed. The system stability and robustness are analyzed and discussed in the frequency 
domain. Numerical results are finally provided, and the results have demonstrated that the 
proposed controllers have good autonomy and robustness. 
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1. Introduction 

In recent years, the development of large orbiting structures to support Earth observation and 
mobile communication technology has been witnessed [1–3]. These applications generally require 
large, satellite-borne antennas. Due to the restrictions of the fairing of launch vehicles, the paradigm 
of large satellite antennas (LSAs) is being gradually implemented in both commercial and scientific 
missions such as Thuraya and National Reconnaissance Office Launch 26 (NROL-26) [4–7]. Since the 
antenna signal is weak during satellite on-orbit operations, the optical axis of the antenna should be 
continuously directed towards the target. High-precision pointing of the optical axis of an LSA is 
therefore extremely desirable. 

Some research works have proposed different control methodologies to increase the LSA 
pointing precision. The LSA pointing control can be generally divided into two separate types: the 
first achieves the antenna pointing maneuver through the satellite attitude control and the second by 
means of an antenna pointing mechanism (APM) on board a satellite. The linear quadratic gaussian 
based control was proposed for large space antennas [8], and the effect of parameter variations was 
further discussed in [9]. A beacon-based pointing control design synthesis for a large flexible antenna 
was studied in [10], and a method of integrating the structure design into the design procedure was 
also addressed. Collocated and noncollocated pointing control strategies were proposed, and the 
results demonstrated that noncollocated pointing control is more accurate during both transient and 
steady-state modes [10]. The antenna pointing control strategy for tracking and data relay satellites 
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was also studied [11], in which the antenna pointing control concepts were described, and an on-
board autonomous control scheme, including acquisition and autotrack modes, was proposed. An 
active disturbance rejection control for the antenna pointing control of a large flexible satellite system 
was proposed in [12], and the inner and outer loops of the control system were studied to improve 
pointing accuracy and rotation speed. The attitude control system on the Engineering Test Satellite-
VIII, which has two large deployable antennas, was studied in [13]. The phase stabilization control 
for low mode frequencies and small damping, and the gain stabilization control for higher mode 
frequencies were respectively designed. Classical control design techniques were proposed for the 
Tracking and Data Relay Satellite antenna. The loop shaping provides good single loop stability 
margins, and multiloop stability margin analysis verifies stability robustness against sensor 
parametric uncertainties, modal frequency shifts and gain/phase variations [14]. An H∞ control 
approach, to achieve pointing control design of a flexible spacecraft antenna, was addressed in [15]. 
A proportional–derivative (PD) plus structural filter was designed to improve pointing accuracy and 
suppress vibration, and the frequency-domain method was used to analyze system performance [16]. 

All the above-mentioned works utilize satellite attitude maneuvers to perform large antenna 
pointing control. Meanwhile, an APM-based approach, to perform pointing control of LSA, was 
proposed in [17,18]. The APM, which can drive antenna maneuvers and then correct the pointing 
errors, is installed on the satellite body. If the antenna is relatively small and its structural frequency 
is high, the APM-based approach can be used for a high-performance antenna pointing control. 
However, if the antenna is large with high moments of inertia and low structural frequency, the 
fundamental frequency of the whole satellite–antenna system will be mainly driven by the antenna. 
In this case, the bandwidth of APM-based pointing control loop is then not much higher than that of 
the satellite attitude control loop, which will thus lead to complicated attitude dynamic coupling 
problems. In this scenario, satellite attitude stabilization could be significantly disturbed during APM 
maneuvers. Correcting the pointing error of the LSA optical axis by means of the satellite attitude 
control is therefore more practical [19–22].  

The main factors that influence on-orbit pointing precision of LSA are twofold [16]. On the one 
hand, the LSA has very large dimensions and low stiffness, and the structural vibrations that may 
arise due to disturbances could seriously affect pointing and even system stability. On the other hand, 
the flexible satellite and LSA are subject to weight loss, thermal radiation and temperature variation 
in space. The modal parameters, which are uncertain or even time-varying, cannot not be known 
exactly. Besides, the thermal deformation error due to solar radiation, installation error and the 
deployment error also affect LSA pointing. All the above issues make it difficult to achieve high 
precision for LSA optical axis pointing. Besides, current space missions always require autonomy and 
intelligence, such as on-orbit identification and intelligent control. That means intelligent control 
techniques are applied in spacecraft systems, which could make the spacecraft perform on-orbit 
operations autonomously without the support of the ground station and astronauts. Consequently, 
it is imperative to take the stability of closed-loop system, parametric uncertainty and pointing errors 
into consideration simultaneously, and then develop a new intelligent control algorithm to achieve 
autonomous pointing maneuvers. The adaptive control approach provides an ideal solution to deal 
with this problem since it can handle online estimation for uncertain and unknown system 
parameters. 

To address these challenges, frequency-domain methodology is used to design the autonomous 
pointing controllers in this paper. The proportional–derivative feedback and structural filter, to 
perform pointing maneuvers and suppress antenna vibrations, are firstly proposed. A modified 
adaptive controller, based on above controller and adaptive filter technique is then developed in the 
presence of modal parameter uncertainty. The active disturbance rejection filter is finally designed 
and integrated into the closed-loop system. The novelty lies in that the proposed autonomous 
controller could estimate in orbit, compensate the uncertain modal parameters and decrease the 
periodic pointing error simultaneously. The proposed control approach can avoid excessive 
complexity of the control laws, and reduce the dependency of the controller on the knowledge of the 
system parameters. 
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2. LSA Pointing Dynamics 

The LSA is fixed on the satellite body, as shown in Figure 1, and the attitude dynamics include 
two components: the attitude dynamic model of the flexible satellite and the antenna pointing in the 
satellite body coordinate system. The attitude dynamics of flexible satellite is governed by the 
following differential equations [23–25]: 
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where I is the inertia matrix, θ is the vector of the satellite attitude angles, Broti  is the rotational 

coupling coefficient of the ith flexible appendage, ηi  is the modal coordinate, ςi  is the modal 

damping ratio, Λi  is the modal frequency, and T  and Td  are the control torque and disturbance 
torque respectively. According to Craig–Bampton mode synthesis, the internal degree of freedom 
(DOF) of LSA is given by: 

Ιa IJa Ja aIa X X η   (2) 

where IJa  is the constrained modal matrix, Ia  is the main modal matrix, JaX  represents 

interface DOF and aη  is the LSA modal coordinate. Let , ,i j k  represent the LSA pointing DOF and 
, ,i j k   L L L L

 denotes the pointing DOF matrix. Then, the pointing DOF in the satellite body 
coordinate system is [9,10]: 

a a aIa IJa Ja Ia Iaη    θ LX L X L θ L η    (3) 

For each LSA pointing DOF, there is  1 2 3 n, , , , ,ν ν ν ν νl l l l ν i j k L
, where 1 nν νl l  

represents the weight of each DOF in antenna pointing. Considering the thermal deformation error 

theθ , the installation error insθ  and the deployment error repθ
, Equation (3) can be rewritten as: 

a a the ins repIa    θ θ L η θ θ θ  (4) 

where 

T

a ax ay azθ θ θ   θ
. Combining Equations (1) and (4) yields the following attitude 

dynamics with antenna pointing: 
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Then, the LSA pointing dynamics are given by: 
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where a the ins repIa    θ L η θ θ θ
. 

 
Figure 1. A satellite with flexible appendages. 

Remark 1. If we define the pointing angle  T
φ σ    in the antenna body coordinate system, then   

can be obtained by: 

aCθ  (7) 

where C  is the transformation matrix from the satellite body coordinate system to the antenna body coordinate 

system. The rotation order is Z-X-Y and rotation angles are zθ , xθ  and yθ ; then, C  is given by: 
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C  (8) 

where c represents cosine function and s denotes sine function.  

3. Autonomous Controller Design 

The pointing angles of the LSA are measured by an appropriate sensor, and this measured value 
can be used as feedback to correct pointing errors, considered as the noncollocated control. As can be 
seen in Equation (6), there exists coupling among satellite attitude angles, antenna pointing angles 
and control torques. A commonly-used method in practice is to diagonalize I  and rotiB  through 
satellite structure design, then the satellite with large antenna is designed as three-axis decoupling. 
The autonomous pointing control of LSA pitch-axis, which is the most representative, is therefore 
proposed in this paper; others are similar with respect to pitch axis and are thus omitted here.  

The design process of the autonomous pointing controller is addressed below. PD feedback plus 
a structural filter to perform pointing maneuvers and suppress antenna vibration are firstly presented 
in this section. Based on the controller, a modified adaptive controller is proposed subject to 
parametric uncertainty and pointing errors. Furthermore, the frequency-domain analysis technique 
is employed to design the control system, which is more practical in engineering problems. The 
proposed control approach has a simple structure, low orders and clear physical significance, which 
therefore avoids excessive complexity and provides a possible solution for engineering projects. 

Paddle 1

Antenna

Paddle 2
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3.1. PD Plus Structural Filter Design 

It is assumed that the satellite has only one flexible appendage, the LSA. We firstly propose a 
pointing controller, and the transfer function of the satellite pitch axis can be then given by: 

2
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where 
y  and yT  are the satellite pitch angle and pitch-axis control torque respectively, yI  is the 

pitch inertia, s  is the Laplace transform variable, jk  is the jth modal gain of LSA, jς  and jΛ  
are the modal damping ratio and the modal frequency of LSA pitch axis. The LSA pointing can be 
transformed as: 
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where ayθ  is the LSA pitch pointing angle. According to Equations (9) and (10), the transfer function 
of LSA pitch pointing in the satellite body coordinate system is given by: 

2
2 2

2
2

2 2

1
2

s
1

2

y rotj

jay j j j

y j
y

j j j j

IayL B
s

θ s ς Λ s Λ

T k
I s

s ς Λ s Λ




 


 
    




 (11) 

where the subscript y represents pitch axis variables of satellite and LSA.  
For the system presented in Equation (11), the conventional PD feedback can stabilize the 

antenna pointing control system, but cannot effectively suppress structural vibrations of the antenna. 
Figure 2 shows the open-loop Bode diagram of the LSA pointing control system (dashed line). As can 
be seen, the magnitude is amplified and exhibits a large discontinuity at the bending frequencies of 
0.198 rad/s and 0.745 rad/s corresponding to unstable poles for the control system. This arises from 
the vibrations of the antenna structure, which can seriously affect pointing precision and wreck 
system stability.  

The structural filter (SF) can provide a possible solution to suppress the vibration, and improve 
system performance. The SF can be realized from a second-order filter, represented as: 

2 2

2 2

/ 2 / 1

/ 2 / 1
z z z

p p p

s s

s s

  
  

 

 
 (12) 

where z  and 
 p  are the frequencies of SF zeros and poles, and  z  and 

 p  are the damping 

ratios. For different choices of z , 
 p ,  z  and 

 p , different filters can be achieved. The principle 
and design process of the SF have been clearly investigated by the authors of [16]. The notch filter is 
a kind of gain-stable filter, and can be used to suppress structure vibration for LSA pointing control. 
Let the frequencies of SF zeros equal to the frequencies of unstable poles, then the vibration caused 
by the unstable poles could be suppressed in the closed-loop system.  

The inertia matrix of the pitch-axis is 2
y 18,050 kg mI   , and other representative parameters 

are given in Table 1 [16]. As shown in Figure 2, the magnitude jumps at the frequencies of 0.198 rad/s 
and 0.745 rad/s. Then controller is therefore given by: 
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where ( )s  denotes the pitch pointing angle error, the subscript j represents the modal order, and 
the first four-order modal parameters are chosen. The magnitude plot of open loop system with 
controller from Equation (13) is shown in Figure 2 (solid line). Obviously, the magnitude at the 
frequencies of 0.198 rad/s and 0.745 rad/s is well reduced through introducing a notch filter into 
feedback loop. The SF can effectively remove the vibration signals embedded in the attitude 
dynamics. 

Table 1. The modal parameters of pitch axis. 

j jΛ  rotjB  
jς  y IayL  

1 0.1270 103.491 0.005 -21.01 10 × 10-
2 0.1420 6.485 0.005 -45.51 10

3 0.3401 2.667 0.005 -44.433 10

4 0.5510 −55.281 0.005 -37.48 10 × 10-

 
Figure 2. Bode magnitude diagram of satellite and antenna pitch axis. 

Remark 2. The closed-loop system with controller from Equation (13) has a gain margin of 60.2 dB and phase 
margin of 155 deg, which is therefore stable. For the proposed notch filter presented in the controller from 

Equation (13), the maximum magnitude gain can be obtained by 
1020log z

p





 which occurs at z . The filter 

damping ratios will also determine the effective notch region and system settling time. 

3.2. Adaptive Filter Control Design 

In practice, the flexible satellite and LSA will be subject to weight loss, thermal radiation and 
temperature variations once in orbit. The modal parameters may well be uncertain, and even time-
varying, which would render achieving the actual bending frequency extremely difficult. If the first-
order modal parameters presented in Table 1 were to change, for example in the case that the values 

of 1Λ , 1ς  and 1rotB  changed to 0.082, 0.004 and 93, respectively, and the controller from Equation 
(13) was still adopted in the control loop to perform pointing maneuvers, then the corresponding 
Bode magnitude plot is that shown in Figure 3.  
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Figure 3. Bode magnitude diagram subject to modal parameter uncertainty. 

As can be seen, the magnitude presents significant discontinuity at the bending frequencies of 
0.11 rad/s and 0.68 rad/s although the controller in Equation (13) is included in the system. This is 
because a particular SF can only remove particular bending vibration signals. Thus, in order to meet 
the principle of the same SF frequency as that of the bending vibration, an adaptive algorithm that 
estimates the actual system bending frequency is required. Based on the estimated values, the 
controller from Equation (13) is then redesigned. The block diagram of the LSA pointing control 
system is shown in Figure 4. 

Adaptive Filter 

Errors
the expected

pointing angle 

PD Feedback
Structural 

Filter  

+ + 
Disturbances 

The LSM 

Estimation 

Estimated 

Frequencies

Satellite Attitude

Dynamics 

LSA Pointing 

Transformation

Pointing Dynamics 

 
Figure 4. Adaptive filter control system. PD: proportional–derivative; LSM: least squares method; 
LSA: large satellite antenna 

The least squares method (LSM) is proposed to estimate the actual bending frequency. The 
transfer function from Equation (11) is discretized, and its difference equation can be written as: 

1 1( ) ( ) ( ) ( ) ( )A z y k B z u k d k     (14) 

where 
1 1( ), ( )A z B z 

 are discrete unit operator polynomials, ( )k  represents the external 

disturbances and d  denotes the order of delay links. 
1( )A z  and 

1( )B z  can be developed as 
series expansions: 

1 1 2
1 2( ) 1 ... a

a

n
nA z a z a z a z       (15) 
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0 1 2( ) ... b

b

n
nB z b b z b z b z       (16) 

where an  and bn  denote the system orders, while ia  and ib  represent the parameters to be 
estimated. Equation (14) is rewritten as: 
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where ( )kφ  and δ  are the observation vector of system inputs and outputs and the coefficient 
matrix, and are respectively given by: 

T( ) [ ( 1),..., ( ), ( ),..., ( )]
a an nk y k y k n u k d u k d n       φ  (18) 

T
1 0[ ,..., , ,..., ]

a bn na a b bδ  (19) 

The quadratic performance index is defined as: 
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φ δ φ δ
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where δ̂  is the estimated value of δ . We can minimize J  to obtain δ̂ , namely 
0

ˆ
J


δ . δ̂  can 
be then obtained by the batch processing, and there exists: 

T 1 Tˆ ( )δ Φ Φ Φ Y  (21) 

where 
T T T T[ (1) (2) ,..., ( )]nΦ φ φ φ  and T[ (1), (2) ,..., ( )]y y y nY . Hence, we can solve 

Equations (15) and (16) for ia , ib . The actual bending frequency can be calculated by: 

1
ln lnr r

s

z z
T

   (22) 

where sT  is the sampling time, rz  and rz


 are conjugate poles with maximum imaginary part of 
discrete system as shown in Equation (14). Considering the first order modal parameter uncertainty 

mentioned above, we can obtain 1 0.5041+0.816irz   , 1 0.5041 0.816irz
    , 

2 0.7860+0.6081irz   , 2 0.786 0.6081irz
     and 1 0.11    rad/s, 2 0.66    rad/s. Then 

the controller as shown in Equation (13) can be redesigned. The technical process can be readily 
accomplished by following the line in the above section. Then, the adaptive-filter-based pointing 
controller is finally given by: 

2 2

2 2

82.645 0.1 1 2.3 0.01 1
( ) (520 10) ( )

82.645 18.2 1 2.3 2 1y

s s s s
T s s s

s s s s


   
     

   
 (23) 

Only the uncertainties of the first order modal parameters are discussed above. If the 
uncertainties on the modal parameters of other modes are also considered, such as the second-order 
modal parameters, the actual bending frequencies could change and the magnitude will present 
discontinuity as well. Then, the adaptive filter control is designed as similar to the above process, and 
is thus omitted here.  
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3.3. Active Disturbance Rejection Filter 

Thermal deformation errors, installation errors and deployment errors can all negatively affect 
the accuracy and stability of LSA pointing. The installation error and the deployment error can 
generally be assumed to be constant, and thus can be compensated through precise calibration and 
adding an integrator in a closed-loop system. During in-orbit operations, solar radiation pressure 
may periodically lead to antenna thermal deformation, which brings about periodic errors in the LSA 
pointing. After successful stabilization of the satellite and flexible LSA, to decrease the periodic 
pointing error, the active disturbance rejection technique is introduced into the feedback loop. The 

solar radiation-induced periodic error, theyθ
, is firstly modeled as: 

1 1 1sin( )theyθ θ p t    (24) 

where 1θ  and 1  are the unknown amplitude and phase angle, while 1p  denotes the known 

frequency. In general, the error theyθ
 can be described by a Laplace transformation: 

( )
( )

( )
they

they
they

N s
θ s

D s
  (25) 

where 
( )theyN s

 is arbitrary, while the roots of 
( )theyD s

 correspond to the frequencies at which 
periodic excitation takes place. The active disturbance rejection filter in the control loop provides a 

solution for effective cancellation of the poles of 
( )theyθ s

, which is on the basis of the internal model 
principle. As shown in Figure 5, the closed-loop transfer function is: 

they they

they

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
SF

they SF SF PD

D s D s N s
y s

D s D s D s N s N s D s



 (26) 

The presence of they1 ( )D s
 in the control loop results in the effective cancellation of the poles 

of 
( )theyθ s

, provided that no root of they ( )D s
 is a zero of the system transfer function. Then, an 

active disturbance rejection filter can be designed that has proper transfer function and uses 

they1 ( )D s
. Besides, a proper numerator is chosen to go with they1 ( )D s

, which is of the same order 

as they ( )D s
, and as such that there is a zero for each pole. 

 

Figure 5. Active disturbance rejection control system. SF: structural filter. 

The active disturbance rejection filter can employ a zero-pole combination, and is given by: 
2 2

1 1
2 2

1

/ 2 / 1

/ 1

s z s z

s p

 


z  (27) 

where 1z  and 1p  are a pair of zero poles, and z  is a gain. The modified controller is thus given 
by: 
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Equation (28) can then be rewritten as: 
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where dK , pK , 1zD , 2zD , 1zT  and 1zD  are the design parameters. For the solar radiation 

induced error 1 0.01 rad / sp  [16], hence, the modified autonomous pointing controller is 
governed by the following equations: 

6 2

6 2
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1 10 200 1
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25.5 0.1 1 1.83 0.01 1
( )

25.5 18.2 1 1.83 2 1
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T s s F s s

s

s s s s
F s

s s s s


  

    
 

   
 

   

 (30) 

Remark 3. The separation between the zero and the pole affects the setting time of the closed-loop system. 
Generally, the larger the separation is, the shorter the settling time will be. This is a consequence of the position 
of the closed-loop eigenvalue corresponding to the zero-pole. As the separation is increased, the eigenvalue is 
pushed farther to the left, speeding up the response time of the rejection filter. The separation however also 
influences the gain-phase characteristics of the system. The magnitude of the gain actually increases with the 

separation between zero and pole. A proper 1z  and 1p  should be chosen to balance the settling time and the 
stability of the closed-loop system.  

Remark 4. If the constant errors are further considered in the closed-loop system, the controller from Equation 
(30) can be rewritten as:  

6 2

6 2

0.02 1 10 200 1
( ) (520 10 ) ( ) ( )

1 10 1z

s s
T s s F s s

s s


  
     

 
 (31) 

where an integrator 

0.02

s  is added to the closed-loop system, and then a proportional-integral-derivative 
controller is achieved. The integrator and rejection filter have different effects, where the integrator is used to 
decrease the steady-state constant error and rejection filter can decrease periodic error of the closed-loop system. 
However, an integrator could also destroy dynamic performance of closed-loop system. 

4. Numerical Results 

In this section, numerical results showing the performance of the proposed autonomous control 
algorithms are presented. The satellite parameters are given in Table 1, and the first four-order modal 
parameters are chosen. The periodic error is firstly given as 0.3° sin(0.01t). The controllers are given 
by Equations (13), (23) and (30). The expected antenna pitch angle is 6°, the initial pointing angle and 
angular velocity are both 0, and the installation error and the deployment error of pitch angle are 
both set at 0.001°. Figures 6 and 7 present the outcome of the performance of the controller in Equation 
(13) subject to the first-order modal parameter uncertainty. As can be seen, the pointing angle error 
and the angular velocity error can converge to ±0.1° and ±0.01°/s, while there obviously exists periodic 
oscillation along the pitch axis. This demonstrates that a particular SF is only effective for the 
particular bending vibration signal. Once the modal parameters change, the performance of the 
closed-loop control system becomes worse. 
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Figure 6. Antenna pitch angle error—controller (13). 

 
Figure 7. Antenna pitch angular velocity error—controller (13). 

Figures 8–10 show the pitch angle error, angular velocity error and control torque resulting from 
the implementation of controller in Equation (23). The steady-state errors converge to ±0.01° and ±1 
× 10−4°/s in approximately 600 s. However, the steady-state errors appear to have periodic oscillations. 
Comparing Figures 8 and 9 with Figures 6 and 7, it can be seen that the proposed adaptive filter 
controller (23) provides a better pointing accuracy and stability in the presence of modal parameter 
uncertainty. This is because an LSM is employed to estimate the actual frequencies and the SF is 
therefore redesigned. The numerical results of implementing the controller shown in Equation (30) 
are shown in Figures 11–13. As can be seen, the pitch pointing errors are decreased, namely less than 
to ±0.01° and ±1 × 10−4°/s in approximately 1000 s, with a decrease by one order of magnitude further 
in time as shown in sub-plots. This means that the periodic error is effectively compensated by the 
rejection filter. Figures 10 and 13 present the control torques of controllers in Equations (23) and (30), 
which have similar amplitude. The pointing errors include two components: the constant error and 
the periodic error, such as 0.3° sin(0.01t) + 0.29°. The pointing errors of pitch axis by implementing 
controllers in Equations (30) and (31) are then shown in Figures 14 and 15 respectively. As can be 
seen, the integrator in Equation (31) can decrease the steady-state constant error. It can be therefore 
concluded that different control schemes are able to reduce different pointing errors, and then finally 
increase the pointing accuracy and robustness.  
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Figure 8. Antenna pitch angle error—controller, Equation (23). 

 
Figure 9. Antenna pitch angular velocity error—controller, Equation (23). 

 
Figure 10. Control torque—controller, Equation (23). 

 
Figure 11. Antenna pitch angle error—controller, Equation (30). 
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Figure 12. Antenna pitch angular velocity error—controller, Equation (30). 

 
Figure 13. Control torque—controller, Equation (30). 

 
Figure 14. Antenna pitch angle error—controller, Equation (30). 

 
Figure 15. Antenna pitch angle error—controller, Equation (31). 
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5. Conclusions 

The autonomous pointing problem of a large satellite antenna, which is achieved through 
satellite attitude maneuvers, is addressed in this paper. The LSA pointing dynamics are firstly 
proposed. The LSM-based adaptive controllers and active disturbance rejection filter are then 
respectively implemented in the presence of modal parameter uncertainty and pointing errors. It 
should be noted that the modal parameter uncertainty could lead to poorer performance for LSA 
pointing control. This is because a particular SF can only remove particular bending vibration signals. 
The LSM can effectively estimate the actual bending frequency, and then the LSM-based adaptive 
controller can increase pointing accuracy and stability. The active disturbance rejection filter is 
designed in the modified controller, which can further reduce periodic pointing errors. To deal with 
constant error, the integrator provides a realizable solution for a closed-loop system. Numerical 
results are finally presented to show that the proposed autonomous controllers are effective and 
simple, which makes them easier to implement in real-time applications. For the future work, the 
modified least squares methods, to further improve the estimation performance and efficiency of 
actual frequency, could be investigated for autonomous controller design.  
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