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Abstract: Intelligent condition monitoring and fault diagnosis by analyzing the sensor data can 
assure the safety of machinery. Conventional fault diagnosis and classification methods usually 
implement pretreatments to decrease noise and extract some time domain or frequency domain 
features from raw time series sensor data. Then, some classifiers are utilized to make diagnosis. 
However, these conventional fault diagnosis approaches suffer from the expertise of feature 
selection and they do not consider the temporal coherence of time series data. This paper proposes 
a fault diagnosis model based on Deep Neural Networks (DNN). The model can directly recognize 
raw time series sensor data without feature selection and signal processing. It also takes advantage 
of the temporal coherence of the data. Firstly, raw time series training data collected by sensors are 
used to train the DNN until the cost function of DNN gets the minimal value; Secondly, test data 
are used to test the classification accuracy of the DNN on local time series data. Finally, fault 
diagnosis considering temporal coherence with former time series data is implemented. 
Experimental results show that the classification accuracy of bearing faults can get 100%. The 
proposed fault diagnosis approach is effective in recognizing the type of bearing faults. 

Keywords: faults diagnosis; deep neural networks; raw sensor data; temporal coherence 
 

1. Introduction 

Monitoring machinery health conditions is crucial to its normal operation. Recognizing the 
deficiencies of machinery contributes to the control of the overall situation. Fault diagnosis models 
based on data-driven methods are a great advantage since that they require no physical expertise and 
provide accurate and quick diagnosis from data which are easily obtained by sensors. Traditional 
data-driven fault diagnosis models are usually based on signal processing methods and some 
classification algorithms. Signal processing methods are mainly used to decrease noise and extract 
features from the raw data. In this field, time domain feature methods [1–3], including Kernel Density 
Estimation (KDE), Root Mean Square (RMS), Crest factor, Crest-Crest Value and Kurtosis, frequency 
domain features [4] such as the frequency spectrum generated by Fourier transformation, time-
frequency features obtained by Wavelet Packet Transform (WPT) [5] are usually extracted as the 
gauge of the next process. Other signal processing methods such as Empirical Mode Decomposition 
(EMD) [6], Intrinsic Mode Function (IMF), Discrete Wavelet Transform (DWT), Hilbert Huang 
Transform (HHT) [7,8], Wavelet Transform (WT) [9] and Principal Component analysis (PCA) [10] 



Sensors 2017, 17, 549 2 of 17 

 

are also implemented for signal processing. These signal processing and feature extraction methods 
are followed by some classification algorithms including Support Vector Machine (SVM), Artificial 
Neural Networks (ANN), Wavelet Neural Networks (WNN) [11], dynamic neural networks and 
fuzzy inference. These classification algorithms are usually used to recognize faults according to the 
extracted features. Yu et al. [7] used Window Marginal Spectrum Clustering (WMSC) to select 
features from the marginal spectrum vibration signals by HTT and adopted SVM to classify faults. 
Wang et al. [8] used the statistical locally linear embedding algorithm to extract low dimensional 
features from high dimensional features which are extracted by time domain, frequency domain and 
EMD methods. Regression trees, K-nearest-neighbor classifier and SVM were adopted as the 
classifiers, respectively. Li et al. [12] used Gaussian-Bernoulli Deep Boltzmann Machine (GDBM) to 
learn from statistical features of time domain, frequency domain and time-frequency domain. GDBM 
was also taken as the classifier. Cerrada et al. [13] used a multi-stage feature selection mechanism to 
select best set of features for the classifier. These researches focus on the steps of feature extraction 
and selection. 

However, these fault diagnosis approaches suffer from some drawbacks. Firstly, applying noise 
decreasing and feature extraction methods to practical issues properly requires specific signal 
processing expertise. Specific circumstances call for specific signal processing methods which depend 
on signal and mathematics expertise; Secondly, the performances of these classifiers completely 
depend on the features which are extracted from time series signals. Although appropriate features 
help the decision and recognition, ambiguous features will mislead the model. Thirdly, the feature 
extraction methods will definitely lose some information such as the temporal coherence of time 
series data which cannot be ignored. 

This paper presents a novel model based on DNN to recognize the raw sensor signals, which are 
time series data. It has been proved that Deep Learning [14], or Deep Neural Networks are able to 
reduce the dimensionality and learn characteristics from nonlinear data in the fields of image 
classification [15], speech recognition [16] and sentiment classification [17]. There are great 
advantages in the fact that the model can learn directly from the raw time series data and make use 
of the temporal coherence. The merits of the proposed model are as follows: (1) pretreatments such 
as noise decreasing and specific time domain and frequency domain feature extraction methods are 
not needed since the proposed model is competent for the task of learning characteristics from raw 
time domain signals adaptively; (2) the temporal coherence of time series data is taken into 
consideration in the proposed model; (3) the proposed model is a supervised learning model and has 
great abilities of generalization and recognition for the normal and faults data. The classification 
accuracy on bearing vibration datasets can be 100%. 

Complex models are capable of generalizing well from raw data so data pretreatment(s) can be 
omitted. Models with simple structure do not perform as well as those with deeper and more complex 
structures, but they are easy to train because they need less parameters. Complex models can get a 
better understanding of the data due to their multitude of units and layers, however, complex models 
do not always perform better than simple models. This paper also discusses how the structure of the 
model affects the performance. 

In order to clearly illustrate the model and their performance, the rest of this paper is grouped 
together as follows: Section 2 describes the details of the proposed fault diagnosis model. Section 3 
describes our experiments and results. Section 4 discusses some details of the model structure and 
makes some comparisons with traditional methods. Section 5 draws the conclusions. 

2. Methods 

This paper presents a fault diagnosis model based on DNN to recognize defects. Inputs of DNN 
are raw time domain data instead of time domain or frequency domain features. Outputs are the 
targets, i.e., the categories of data. A deep neural networks structure model is used to learn local 
characteristics adaptively from the raw time series data. Then temporal coherence is taken into 
consideration to make a diagnosis. 
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2.1. Structure of Proposed Fault Diagnosis Model 

As shown in Figure 1, segments of time series data are used as training and testing samples. The 
size of the segment is set to be a fixed value and it is also the input size of a deep neural networks. 
The data from time t1 to t2 are taken as inputs to the proposed model and the size of the segmentation 
is t2 − t1. In this way, the continuous one dimensional time series data is divided into segments. The 
time memory is n, in other words, n is the number of outputs of DNN y(t) which is temporarily stored 
for fault diagnosis considering temporal coherence. Therefore, the first output of proposed model 
which is denoted as Y(n) is at time n × (t2 − t1). Then, for every single length time, which is t2 − t1, 
there is an output Y(t). For the simplification of representations, Y(t) denotes the final output of the 
proposed model at time t in rest of this article. 

 
Figure 1. The structure of proposed fault diagnosis model. 

The proposed model is based on the deep structure of neural networks. A logistic function is 
used as the activation function among input layers and hidden layers. For every segmentation, the 
model could get a set of output values. Time memory is set to record values of output value y(t). 
These sets of former outputs of DNN values are gathered to get final outputs of time considering 
model via linear transformation: 


=0

1( ) = (  )
n

T
T

Y t λ y t T
n

 (1) 

In the above equation, Y(t) is the final outputs at current time and y(t) is the outputs of DNN at 
current time.  is the weights connecting the output units of DNN y(t) and the final output units of 
proposed model Y(t). n is the number of DNN outputs which the proposed model takes into account. 
It can also be considered as the time length. 
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2.2. Deep Neural Networks 

Deep learning is firstly introduced in image classification [18] and it is used to reduce the 
dimensionality of data and recognize images. Deep Learning, or DNN can learn some useful features 
from the data adaptively without expertise in specific fields. It has received extensive attention in the 
fields concerned with nonlinear mapping. 

DNN is a model of stacked layers of units which are connected layer by layer and there is no 
connection among the units in the same layer. There are an input layer and an output layer in the 
model. Also, a few hidden layers are placed between the input layer and output layer. The number 
of input layer units and output layer units are set according to the dimensionalities of the input data 
and the target data, respectively. However, there are no strict rules for the settings of the number of 
every hidden layer’s units. There are nonlinear relationships between the adjacent layers. They are 
defined as follows: 

( )m m
j ja  = σ z  (2) 

m m-1 m
j ij i j

i
z  = w a + b  (3) 

where m
ja  is the activation of neural j in layer m, m

jz  is the sum of bias and linear combination of 

former activations, m
jb  is the biases vector of neural j in layer m. jiw  is the weight matrix between 

layer i and layer j, ( ) z  is the activation function and there are a few kinds of this function as follows: 

( ) 1 ( )-zσ z  = / e  + 1  (4) 

( )
z -z

z -z

e  eσ z  = 
e + e

 (5) 

( ) (0 )σ z  = max ,z  (6) 

Equation (3) is a logistic function and this is mostly used in DNNs. Equation (4) is called the tanh 
function. The range of output values are from −1 to 1. It is different from the logistic function which 
is easier to implement in the DNNs sometimes. Equation (5) represents rectified linear units (ReLU). 
Its output is always positive. In this paper, the logistic function are used as the activation function. 

Every unit in the next layer is connected to all units in the formal layer. The activation units of 
input layer are the input data while output units of last layer are targets. W and b are the parameters 
of the model and they are randomly initialized. Thus, the outputs y can be calculated layer by layer 
given the input data x and the model’s parameters: 

1a  =  x  (7) 

( )m m-1 m-1
j ij i j

i
a  = σ w a + b , j > 1  (8) 

My = a  (9) 

where M is the number of layers in the network. The inputs of first layer 1a  are the inputs of DNN. 
The outputs of last layer Ma  are defined as the outputs of DNN. The error can be worked out by 
contrasting the calculated outputs y with targets t: 

( ) ( )2
i i

k i

1C t, y  = t   y
k

 (10) 

where C is the cost function, k is the number of training samples and i represents the dimension of y 
and t. The cost function is used to measure the error and the usual form is squared reconstruction 
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error. The aim of training DNN is to minimize the cost function, in other words, to make the error of 
outputs close or equal to zero. To minimize it, a gradient descent algorithm is utilized and the 
gradient is calculated as follows: 

  
  

 
  1 1

( , ,..., )
N

C C CC  (11) 

In the equation, θ represents parameters including the weights and biases of the layers in DNN 
model and the total number of parameters is N. Partial derivatives of weights and biases of last layer 
are first calculated according to the error in the last layer. Then the error is back propagated to former 
layers and all the partial derivatives are worked out. Once the gradient is computed, parameters are 
updated by the following rules: 





Cw = w + η
w

 (12) 





Cb = b + η
b

 (13) 

In the equation,  is the learning rate. The process of computing gradient and updating 
parameters is in an epoch. The epochs can either be set to a fixed number or adjusted according to 
the performance of networks. We train the networks and fine tune the parameters over and over 
again until the error of the network has declined to the minimum value. 

2.3. Cross Entropy Cost Function and Partial Derivations 

When training neural networks, gradient descent and back propagation algorithms are utilized. 
Gradients can be calculated by the partial derivative of the cost function for parameters such as 
weights and biases. Traditional work chooses the squared reconstruction error (Equation (9)) as cost 
function. However, in the training process of deep neural networks, this will lead to a saturation 
problem [19]. In other words, all the partial derivatives will be close to zero so the parameter updating 
will be slow before the networks achieve the best performance. When the cross entropy, also known 
as Kullback-Leibler (K-L) divergence, is chosen as cost function, the saturation problem will be avoid. 

In the proposed model, cross entropy is taken as the cost function to compute the errors. The 
dimension of inputs, i.e., the number of input neurons is determined by the size of the inputs data 
and the outputs dimension equals to the number of data types. The cross entropy cost function is defined 
as follows: 

  ( ) [ ( ) ( )]i i i i
k i

1C t, y  =  t lny + 1  t ln 1  y
k

 ) (14) 

where t are targets, y are the outputs of the model, k is the number of training samples. The main 
purpose of training is to minimize the cost function. It is obviously that when the outputs y are close 
to the targets t, the value of cost will be close to zero. Also the value of the cross entropy cost function 
will always be positive. These two properties are fundamental for a proper cost function. 

A gradient descent is used to minimize the cost function, so the partial derivations are calculated 
as follows: 




 = m 1 m
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where k is the number of training samples, layer M is the last hidden layer.  is the error of neural 
j in layer m, t are the targets. 1m

ia  is the activation value of neural i in layer m − 1.  represents 
the weight from neural i in layer m − 1 to neural j in layer m. While the error is back propagated to 
the former layer, the partial derivations of weights and biases are calculated layer by layer so the 
parameters can be updated. 

2.4. Training of DNN and Fault Diagnosis Steps 

The flow chart of the proposed fault diagnosis approach is shown in Figure 2. 

 
Figure 2. Flowchart of the proposed fault diagnosis approach. 

Firstly, the DNN model is trained using historic data and the time memory of the model is set 
to 0. That is to say, the output of DNN is used as the output of the whole model. In the training 
process, the time coherence is not utilized so the DNN can independently learn the local 
characteristics from local vibration data. In this way, the current segmentation will not have any effect 
of adjacent segments, which is helpful to train a better model. After the training processes come the 
testing process and fault recognition process. The test data are used to test the classification ability of 
the trained DNN without considering temporal coherence. In the fault recognition process, the 
temporal coherence is taken into consideration. The output Y(t) of proposed model at current time 
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can be computed by the current output of DNN y(t) and the former outputs y(t − n) to y(t − 1) which 
were stored for a specific time period. The detailed training steps are as follows: 

(a) Set the size of segmentation and divide the time series data into segments. 
(b) Randomly initialize the parameters of DNN including weights and biases of every hidden and 

output layer. 
(c) Select a group of segments as DNN inputs. 
(d) Compute the activations of every layer according to the input raw data, weights, biases. 
(e) Cross entropy is used to compute the error of outputs compared to targets. 
(f) Use the back propagation algorithm to compute the error of every layer and the gradients of 

parameters. 
(g) Update parameters with the gradients and learning rate. 
(h) Repeat steps (c) to (g) until the error of outputs reach the minimum value. 

The detailed fault recognition steps are as follows. 

(a) Set the model’s memory length n and connection weights  . 
(b) Divide the time series data into segments. If current time is t and the size of segmentation is s, 

the segmentation t are sample points from t − s to t and segmentation t − n are sample points from 
t − (n + 1) × s to t − n × s. 

(c) Compute the outputs y(t − n) to y(t) of DNN using segmentation t − n to segmentation t as inputs 
and store them. 

(d) Compute Y(t) using outputs of DNN from y(t − n) to y(t) and recognize the data. 
(e) When new time series data is available, make them new segments and compute the DNN output. 

Then, compute the outputs of the proposed model which considers the DNN output history. 

3. Experiments and Results 

3.1. Intelligent Maintenance System (IMS) Bearing Dataset 

3.1.1. Experimental Apparatus and Data Collection 

In order to validate the proposed method, experimental data are applied to test its performance. 
The dataset is provided by the University of Cincinnati Center for Intelligent Maintenance Systems 
[20]. The experiment apparatus is shown in Figure 3. 

(a) (b)

Figure 3. Experimental apparatus. (a) is the photo of bearings with sensors. (b) is the structure 
diagram of apparatus. 

As depicted in Figure 3, there was a shaft on which four bearings were installed. There were 
eight accelerometers in total, two accelerometers for each bearing. The rotation speed of the shaft was 
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kept constant at 2000 revolutions per minute (RPM). It was driven by an alternating current (AC) 
motor which was connected to the shaft by friction belts. What’s more, there was a 6000 lbs radial 
load which was added to the bearings and shaft by a spring mechanism. All four bearings were force 
lubricated. The bearings were Rexnord ZA-2115 double row bearings. Accelerometers were installed 
on the bearing housing. The accelerometers were PCB 353B33 High Sensitivity Quartz ICPs. 
Thermocouple sensors were placed on the bearings as shown in Figure 3. After rotating for more than 
100 million revolutions, failures such as inner race defect, outer race failure and roller element defect 
occurred since the bearings worked for a long period which exceeded the designed life time. Data 
were collected by a NI DAQ Card 6062E. The sampling rate was set as 20 kHz and every 20,480 data 
points were recorded in a file. In every 5 or 10 min, the data were recorded and written in a file while 
the bearings were rotating. 

3.1.2. Data Segmentation 

Four kinds of data including normal data, inner race defect data, outer race defect data and roller 
defect data were selected. There are 20,480 data points in each file. For every kind of data, 20 files are 
chosen. It is too complex if they are directly used as the inputs of DNN since the data dimensionality 
is 20,480, so the data are cut into segments to form the samples. The sampling rate is 20 kHz and the 
rotation speed is 2000 RPM, so it can be computed that the rotation period is 600 data points per 
revolution. The size of the segmentation is set to be a quarter of the rotation period, which is 150 data 
points. Therefore, each file is separated into 136 segments. Then the total number of samples is 10,880 
with 150 data points in each segmentation. That is to say, there are 2720 samples for every kind of 
data. Figure 4 shows an example of one rotation period of normal data and fault data. As we can see, 
the four kinds of data show in similar tendency and it is hard to classify them just by intuition, 
therefore, some mathematical method(s) should be implemented for the recognition. A selected 
dataset description is shown in Table 1. 

 
Figure 4. Four kinds of bearing vibration signals. (a) is the normal vibration data and the following 
three lines (b–d) are three kinds of fault data, inner race fault, outer race fault and roller defect, 
respectively. The x axis represents time series and y axis represents the collected data value. 

Table 1. Description of selected IMS dataset. 

Data Type Number of Samples Label
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Normal 2720 1 
Inner race fault 2720 2 
Outer race fault 2720 3 

Roller defect 2720 4 

3.1.3. Training 

There are similar tendencies and features in the same kinds of data, which facilitates the 
classification of data. DNN has the capacity of learning the characteristics and similarities from raw 
time domain signals. The raw data collected by sensors are taken as inputs of the model and the 
outputs are data classifications. To select the best neural networks structure, DNN models with 
different structures are established. An upper bound of neurons is set. 

Before the training process, the dataset is divided into three parts: training dataset, testing 
dataset and validation dataset. The validation dataset is used to select the best trained neural network 
and to prevent overfitting. The testing dataset is used to calculate the classification accuracy of the 
networks. 

By training these supervised DNN models for hundreds of epochs, model parameters including 
weights and biases are adjusted to an expected value. In the meantime, the error of this model is 
decreased to the minimal value and the performance, which is measured by cross entropy, also 
reaches the expected level. Actually, cross entropy is directly related to errors between model outputs 
and targets. The cross entropy becomes less when model errors are decreased. The aim of training is 
to minimize the cross entropy. After training, the five layers model can get an accuracy of 94.4% on 
the test data when the temporal coherence is not taken into consideration. The simulation models are 
based on MATLAB. The CPU is an Intel(R) Core(TM) i7-4720HQ @ 2.60 GHZ (Intel Corporation, 
Santa Clare, CA, USA) and the computation time of the five layers model is 131.161 s for the whole 
training and testing process. Experimental results show that it can recognize the normal and fault 
data well, so the model attained good generalization ability. The classification accuracies of these 
models on the validation dataset (Val) and testing dataset (Test) are shown in Table 2. The confusion 
matrix of the best model on the testing dataset is shown in Table 3. 

Table 2. Classification accuracies of models with different layers. 

Label 
3 Layers Model 4 Layers Model 5 Layers Model 6 Layers Model 

Val Test Val Test Val Test Val Test 
1 98.9% 98.2% 99.3% 98.2% 98.2% 98.9% 97.8% 98.9% 
2 92.3% 92.6% 91.9% 91.5% 93.8% 91.5% 90.1% 90.8% 
3 100% 100% 100% 100% 100% 100% 100% 100% 
4 93.0% 84.9% 90.8% 85.7% 91.9% 87.1% 87.9% 83.5% 

Total 96.0% 93.9% 95.5% 93.8% 96.0% 94.4% 93.9% 93.3% 

Table 3. Confusion matrix of best model (five layers model) on testing dataset. 

Actual Classes Predicted Classes 
 1 2 3 4 

1 269 5 0 1 
2 0 249 0 34 
3 1 0 272 0 
4 2 18 0 237 

The accuracies of the four classifications are measured separately. Outer race faults (label 3) are 
the easiest to recognize, so their classification accuracy is always 100% no matter how the structure 
of the model changes. Normal data (label 1) are also easy to recognize, so their accuracies are close 
100% too. Inner race fault data (label 2) and roller defect data (label 4) are not so easy to classify, but 
the accuracies are improved when appropriate models are chosen. Without considering temporal 
coherence, the four classification accuracies of the five layers DNNs on the testing dataset are 98.9%, 
91.4%, 100%, 87.7% and the total accuracy is 94.9%. 
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3.2. Case Western Reserve University (CWRU) Bearing Dataset 

3.2.1. Experimental Apparatus and Data Collection 

The experiment apparatus and procedures are shown in Figure 5. The dataset is provided by the 
Bearing Data Center of Case Western Reserve University [21]. There was a 2 hp motor on the left of 
the test stand, a torque transducer/encoder in the center and a dynamometer on the right. The control 
electronics was not shown in the figure. The motor shaft was supported by the bearings in the 
experiment. Single point faults produced by electro-discharge machining were caused in the test 
bearings. SKF (Svenska Kullagerfabriken AB, Gothenburgh, Sweden) bearings were used in 
experiments of 7 mils (1 mil equals to 0.001 inches) diameter bearing faults. The motor rotation speed 
is 1797 RPM. Accelerometers were attached to the housing with magnetic bases and vibration data 
were collected using these accelerometers. The accelerometers were placed at the 12 o’clock position 
at the drive end of the motor housing and vibration signals were collected by a 16 channel DAT 
recorder. Digital data was collected with the sample rate of 12 kHz for normal vibration and fault 
vibration. Five kinds of fault vibration signals, including inner race fault, ball fault and three kinds 
of outer race fault were collected in this experiment. Outer race faults were stationary faults. 
Placement of the fault with respect to the load zone of bearing had a direct impact on the vibration 
response of the system. The drive end bearing experiments were conducted with outer race faults 
located at 3 o’clock which was directly in the load zone, at 6 o’clock which was orthogonal to the load 
zone, and at 12 o’clock, respectively. 

 
Figure 5. Apparatus for the bearing vibration signal collection of the CWRU bearing dataset. 

3.2.2. Data Segmentation 

For every kind of data, there are at least 121,200 sample points which means that the length of 
the time series data is at least 121,200. If we directly use them as inputs of deep neural networks, it 
will be too large to train. The sample rate is 12 kHz and the approximate motor speed is 1797 RPM. 
Therefore, it can be calculated that there are approximately 401 sample points per revolution. That is 
to say, the sampling period is approximately 401 points. In this paper, all the data are segmented with 
the size of one quarter of the sampling period so that the local characteristics can be learnt. There are 
1210 samples for every kind of data. Therefore, the total number of samples of the dataset is 7260. 
The dimension for each sample is 100 and the corresponding target is a six dimensional vector. 
Examples of six kinds of vibration data are shown in Figure 6 and a selected dataset description is shown 
in Table 4. 
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Figure 6. Normal and fault vibration signals are shown in the figure. The x axis is the time series and 
y axis is the data which is collected by the accelerators on drive end. The first row (a) is a part of 
normal data; (b–f) are a part of data of inner race fault, ball defect, outer race fault at center @ 6:00, 
outer race fault at orthogonal @ 3:00, outer race fault @ oppositely @ 12:00, respectively. 

Table 4. Description of selected CWRU dataset. 

Data Type Fault Diameter (Inches) Number of Samples Label 
Normal 0 1210 1 

Inner race 0.007 1210 2 
Ball 0.007 1210 3 

Outer race fault at center @ 6:00 0.007 1210 4 
Outer race fault at orthogonal @ 3:00 0.007 1210 5 
Outer race fault at oppositely @ 12:00 0.007 1210 6 

3.2.3. Training 

To choose the best neural network parameters, DNN models of different structures are adopted 
to be trained. In the same way as the method used in the IMS bearing dataset, an upper bound of 
neurons is set and the dataset is divided into three parts: training dataset, testing dataset and 
validation dataset. In the DNN model, the first layer is the input layer of which the size is the length 
of segmentation. The dimension of last layer of DNN is the number of data types. Classification 
accuracies without considering temporal coherence on test data are shown in Table 5 and the 
confusion matrix of the best model on the testing dataset is shown as Table 6. 
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Table 5. Classification accuracies of models with different layers. 

Label 
3 Layers Model 4 Layers Model 5 Layers Model 6 Layers Model 7 Layers Model

Val Test Val Test Val Test Val Test Val Test 
1 97.5% 100% 100% 100% 100% 100% 99.2% 100% 98.3% 100% 
2 94.2% 91.7% 92.6% 88.4% 98.3% 92.6% 98.3% 95.0% 95.0% 91.7% 
3 92.6% 87.6% 93.4% 90.9% 93.4% 83.5% 92.6% 85.1% 92.6% 86.0% 
4 97.5% 95.0% 96.7% 95.0% 95.0% 94.2% 93.4% 96.7% 92.6% 94.2% 
5 95.9% 98.3% 100% 99.2% 99.2% 98.3% 100% 100% 99.2% 100% 
6 91.7% 84.3% 90.9% 92.6% 91.7% 83.5% 90.9% 82.6% 81.0% 71.9% 

Total 94.9% 92.8% 95.6% 94.4% 96.3% 92.0% 95.7% 93.3% 93.1% 90.6% 

Table 6. Confusion matrix of best model (four layers model) on testing dataset. 

Actual Classes 
Predicted Classes

1 2 3 4 5 6
1 121 0 0 0 0 0 
2 0 107 0 1 1 2 
3 0 2 110 0 0 7 
4 0 3 0 115 0 0 
5 0 0 0 0 120 0 
6 0 9 11 5 0 112 

The simulation models are based on MATLAB. The CPU is an Intel(R) Core(TM) i7-4720HQ @ 
2.60 GHZ and the computation time of the four layers model is 198.925 s for the whole training and 
testing process. Experimental results show that normal data (label 1) and outer race fault at 
orthogonal @ 3:00 (label 5) are easy to recognize, so their classification accuracy are always close to 
100%, no matter how many layers are chosen in the DNN. Although the accuracies on other labels 
are not so great, they can reach around 90%. The four layers model performs best for the whole 
dataset. The DNN classification accuracies of the six labels are 100%, 88.4%, 90.9%, 95.0%, 99.2% and 
92.6%, respectively. The total accuracy is 94.4%. 

3.3. Performance of the Diagnosis Model Considering Temporal Coherence 

In the IMS bearing dataset, the time series data were divided into segments of which the length 
is a quarter of the sample points in a rotation period. The sampling frequency is 20 kHz so the time 
length for the segmentation is 7.5 ms. In the CWRU dataset, the inputs of DNN are segments of 100 
continuous data points, which is also a quarter of the sample points in a rotation period. They were 
sampled with the frequency of 12 kHz, so the time length which the model considers is approximately 
8.33 ms for every sample. The specifications of these two experiments are shown in Table 7. 

Table 7. Specifications of experiments. 

Specifications IMS CWRU
sampling frequency (kHz) 20 12 

rotation speed (RPM) 1797 2000 
rotation period (points per round) 600 401 

segmentation points 150 100 
segmentation on time length (ms) 7.5 8.33 

In the above two experiments, a quarter of the sample points in a rotation period is used as one 
training sample. Therefore, the DNN only learns the local characteristics from the time series data 
and the recognition is drawn out only from local information. As the experiments show, the best total 
accuracy of DNN on IMS and CWRU bearing data is 94.4% and 94.4%, respectively. The classification 
accuracy is not so perfect. However, if the outputs of former samples which is computed by the DNN 
are taken into consideration, the classification accuracy on test data will show a significant progress. 
The sigmoid function is used as the activation function so the output of DNN is during 0 and 1 and 
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they can be considered as the probabilistic distribution on different kinds of data. The weighted sum 
of former outputs and current outputs on specific kind of data can be considered as the probability. 
The outputs of former segmentations are stored. When a new segmentation of sample points occurs, 
the current DNN output is computed and the recognition is drawn considering former outputs. The 
recognition can be drawn out when every segmentation of sample points is collected. Although the 
memory is increased, the time delay remains unchanged. 

As shown in Tables 2 and 5, the total accuracy on the IMS bearing dataset can reach the best 
value by setting the number of hidden layers of the DNN as five and four, respectively. The best 
DNN model is adopted to learn the local characteristics of the time series data of above two datasets. 

The total accuracy on the IMS bearing dataset is 94.4% when the model only takes 7.5 ms of data 
into account. 7.5 ms is the time length of one segment of data which is used in the IMS experiment. 
When one former segmentation output is taken into consideration, the total accuracy jumps to over 
97% as shown in Figure 7a. The classification accuracy of a single kind of data also improves when 
the time length is set to be longer. The total classification accuracy on the IMS bearing dataset can be 
increased to 100% if the time length is set to be 45 ms, that is to say, five former segments are taken 
into account. 

In the same way, the accuracy on the CWRU bearing dataset also improves a lot with the increase 
of time length, as shown in Figure 7b. The time length for a single segmentation is 8.33 ms. However, 
the outer race faults at 12 o’clock (label 6) are not easy to recognize. The classification accuracy of 
outer race faults at 12 o’clock data can reach over 98% when the time length is set to be longer than 
25 ms and it fluctuates with the increase of the time length. The classification accuracies of six kinds 
of data can all get 100% with enough long time length. When the time length is equal to 58.33 ms, the 
total classification accuracy on test data is 100%. Figure 7a and Table 8 show the testing dataset 
accuracies of proposed model considering temporal coherence of IMS bearing dataset. Figure 7b and 
Table 9 show the accuracies of CWRU bearing dataset. 

(a) (b)

Figure 7. Classification accuracies of IMS (a) and CWRU (b) bearing dataset considering different time 
length. The horizontal axis is the time length of data which the model takes into consideration and 
the vertical axis is the accuracy. 
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Table 8. Classification accuracies considering temporal coherence on IMS dataset. 

Time (ms) 
Accuracies on Different Labels 

1 2 3 4 Total 
7.5 98.9% 91.5% 100% 87.1% 94.4% 
15 100% 97.1% 100% 93.0% 97.5% 

22.5 100% 98.2% 100% 97.8% 99.0% 
30 100% 99.6% 100% 98.5% 99.5% 

37.5 100% 100% 100% 98.9% 99.7% 
45 100% 100% 100% 100% 100% 

Table 9. Classification accuracies considering temporal coherence on CRWU dataset. 

Time (ms) 
Accuracies on Different Labels 

1 2 3 4 5 6 Total 
8.33 100% 88.4% 90.9% 95.0% 99.2% 92.6 94.4% 

16.67 100% 95.0% 95.0% 98.3% 100% 95.8% 97.4% 
25 100% 100% 98.3% 98.3% 100% 98.3% 99.2% 

33.33 100% 100% 98.3% 100% 100% 100% 99.7% 
41.67 100% 100% 100% 100% 100% 99.2% 99.9% 

50 100% 100% 99.1% 100% 100% 99.1% 99.7% 
58.33 100% 100% 100% 100% 100% 100% 100% 

4. Discussion 

4.1. The Selection of the DNN Structure 

The number of neurons in the first layer, i.e., the input layer, is same as the number of data points 
of one segmentation. The reason is that raw data points collected by the sensors are directly used as 
DNN inputs. Their dimensionalities must be same. In the IMS bearing dataset, one segment contains 
150 data points which is a quarter of the data points collected in one rotation. The sampling rate is 20 
kHz and the rotation speed is 2000 RPM so it can be calculated that 600 data points are collected in 
one rotation. In the CWRU bearing dataset, one segment contains 100 data points which is also 
approximately a quarter of the data points collected in one rotation. It also can be calculated by the 
sampling rate 12 kHz and rotation speed 1797 RPM that approximately 401 data points are in one 
rotation. 

The number of neurons in the last layer, i.e., the output layer, is the same as the number of data 
categories, which includes one normal type and several fault types. In the IMS bearing dataset, there 
are four types of data, including normal data, inner race fault data, outer race fault data and roller 
defect data, so the number of output neurons is four. In the CWRU bearing dataset, there are six kinds 
of data, including normal data, inner race fault data, ball defect data, outer race fault at center @ 6:00 
data, outer race fault at orthogonal @ 3:00 data, outer race fault @ oppositely @ 12:00 data, therefore, 
the number of output neurons is set to six. 

There is no strict criterion for selecting the number of neurons in hidden layers. An upper bound 
of neurons is set. The classification accuracies will be different when these parameters are set to be 
different. The number of first hidden layers can be set to be larger or smaller than or equal to the 
number of input layers. The number of neurons in a former hidden layer is simply set to be larger 
than the number of neurons in the next layer so as to learn more abstract representations. In this 
paper, the specific numbers of hidden layers are chosen according to the experimental requirements 
such as the number of first layer and computational complexity. 

The number of hidden layers is set to various values and they will give different performance. 
Comparisons are made for models with different structure. Then the best DNN model is chosen. The 
experimental results show that the performance of DNN does not always increase with more layers. 
For example, in the CWRU bearing dataset experiment, the performance of the seven layers model 



Sensors 2017, 17, 549 15 of 17 

 

decreased compared with shallower models. Therefore, the DNN structure is selected according to 
the performance. 

4.2. Comparision with Other Methods 

Table 10 shows classification accuracies of different methods, including Genetic Algorithm with 
Random Forest [22], Chi Square Features with different classifiers [23], Continuous Wavelet 
Transform with SVM, Discrete Wavelet Transform with ANN [24], Statistical Locally Linear 
Embedding with SVM [8] and the method proposed in this paper. 

Table 10. Classification accuracy of different methods. 

Methods Accuracies 
Genetic Algorithm + Random Forest 97.81% 

8 Chi Square Features + Random Forest 93.33% 
8 Chi Square Features + SVM 100% 
7 Chi Square Features + SVM 92% 

8 Chi Square Features + Multilayer Perceptron 97.33% 
Continuous Wavelet Transform + SVM 100% 

Discrete Wavelet Transform (mother wavelet: morlet) + ANN 96.67% 
Discrete Wavelet Transform (mother wavelet: daubechies10) + ANN 93.33% 

Statistical Locally Linear Embedding + SVM 94.07% 
DNN considering temporal coherence 100% 

Genetic Algorithm with Random Forest can get an accuracy of 97.81%. Conventional fault 
diagnosis methods usually select specific features as the classification basis. Some methods can get 
perfect 100% classification accuracy with the best features. Therefore the features which are extracted 
from the raw data are the crucial points of these methods. Selecting appropriate features makes a 
great contribution to the discrimination of the data collected by sensors. For example, chi square 
feature ranking with SVM can achieve a classification accuracy of 100% when eight features are 
chosen as the basis. However, the classification accuracy will decrease to 92% when seven features 
are used. Another example is that the classification accuracy of Discrete Wavelet Transform (Morlet 
mother wavelet) with ANN can be 96.67%, but it will decrease to 93.33% when the mother wavelet is 
changed to Daubechies10. Another drawback of these methods is that they do not consider the 
temporal coherence, i.e., the former data is not taken into account in the current classification process. 
This paper proposed a DNN-based model without a feature selection process. It learns characteristics 
directly from raw sensor data and also considers the temporal coherence. The classification accuracy 
can reach 100%. 

5. Conclusions 

In this paper, a DNN-based model to classify faults is proposed. The raw time series data 
collected by sensors are directly used as inputs of the proposed model because DNNs are component 
of learning characteristics from raw sensor data. Conventional fault diagnosis usually focuses on the 
feature extraction with signal processing methods such as time domain and frequency domain 
feature representation, EMD, IMF, HHT and DWT. Feature extraction from the time series data is the 
key point of these approaches, therefore, different data require different feature extraction methods. 

The proposed model can autonomously learn the features that are helpful to machinery fault 
diagnosis. Expertise in feature selection and signal processing is not required. Also, the temporal 
coherence is taken into consideration. This is a great advantage for prognostics using the proposed 
method when comparing with conventional fault diagnosis approaches which require of signal 
processing expertise and extract specific time domain or frequency domain features. 
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