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Abstract: Resolution is the bottleneck for the application of radar imaging, which is limited by
the bandwidth for the range dimension and synthetic aperture for the cross-range dimension.
The demand for high azimuth resolution inevitably results in a large amount of cross-range
samplings, which always need a large number of transmit-receive channels or a long observation
time. Compressive sensing (CS)-based methods could be used to reduce the samples, but suffer
from the difficulty of designing the measurement matrix, and they are not robust enough in practical
application. In this paper, based on the two-dimensional (2D) convolution model of the echo after
matched filter (MF), we propose a novel 2D deconvolution algorithm for turntable radar to improve
the radar imaging resolution. Additionally, in order to reduce the cross-range samples, we introduce
a new matrix completion (MC) algorithm based on the hyperbolic tangent constraint to improve
the performance of MC with undersampled data. Besides, we present a new way of echo matrix
reconstruction for the situation that only partial cross-range data are observed and some columns
of the echo matrix are missing. The new matrix has a better low rank property and needs just one
operation of MC for all of the missing elements compared to the existing ways. Numerical simulations
and experiments are carried out to demonstrate the effectiveness of the proposed method.

Keywords: radar imaging; deconvolution; matrix completion; undersampled data

1. Introduction

Inverse synthetic aperture radar (ISAR) is an important imaging mode of radar application for
detecting and recognizing moving targets. In conventional ISAR imaging, after removing the radial
motion via motion compensation methods, the ISAR imaging is the same as turntable radar imaging,
which uses the rotational motion to provide high cross-range resolution and a wide signal bandwidth
to get high range resolution [1–5]. Traditional imaging methods based on the matched filter (MF)
are robust, but fail to achieve good performance due to the convolution effect of target scattering
coefficients and the point spread function (PSF). Additionally, one-dimensional (1D) deconvolution
algorithms, such as Wiener filtering, iterative constraint deconvolution (CID), Bayesian angular
superresolution algorithm, and so on, have been used in forward looking scanning radar imaging for
removing the convolution effect and achieving high cross-range resolution [6,7]. Nevertheless, the
deconvolution methods always need many measurements in the range frequency and cross-range
time domains to ensure the performance of deconvolution. However, the resulting high sampling rate
poses difficulties for raw data transmission and storage. The recently-developed compressive sensing
(CS) framework can reduce the measurements, but under the situation that the target is constructed by
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some sparsely-distributed scattering points, and the number of scattering points is much less than the
number of imaging grids [8,9]. Additionally, the CS-based algorithms need to design a very accurate
measurement matrix, and their recovery quality may be seriously affected by the accuracy of the
measurement matrix, which is always influenced by system errors and off-grid error [10–12]. Besides,
the complexity of CS-based algorithms is huge, and the required signal to noise ratio (SNR) is relatively
high, which results in instability in practical application.

Recently, matrix completion (MC) has been used for recovering a low rank matrix from a small
set of corrupted entries by minimizing an objective function with a penalty term based on the matrix
rank [13–15], and it has been introduced to radar applications for reducing the measurements and
recovering missing data [16–18]. Bi et al. proposed a new high-resolution change imaging scheme
based on MC and Bayesian compressive sensing for undersampled stepped-frequency-radar data [16].
Yang et al. developed the link between MC and undersampled SAR imaging and further provided a
practical way to recover the data [17]. For the application of radar data completion, the strategy of
random rows or columns of missing data are more often used. However, the MC will not be useful
for this situation because it can not recover a row or column without any information of this row or
column [14]. Therefore, [16,17] proposed the matrix reconstruction method for the echo of every row
or column, and the reconstructed matrix satisfies the condition of MC because the observed data are
randomly distributed in the reconstructed matrix. Both of their constructed matrices have a small size,
and the low rank property may not hold. Then, Hu et al. proposed a new way of reshaping the sparse
stepped frequency echo into a large-sized Hankel matrix form for ISAR imaging and improved the
low rank property of the echo matrix [18]. However, both the ways of matrix reconstruction must be
repeated many times in order to complete the missing rows or columns, which would greatly increase
the computational burden.

Inspired by the high resolution radar imaging with 1D deconvolution operation for forward
looking radar, we generalize it to 2D turntable radar imaging to achieve 2D high resolution radar
imaging. Firstly, we derive the 2D convolution model for the turntable radar based on the MF
algorithm and analyze the influence of azimuthal undersampled data on the deconvolution method.
Then, in order to complete the missing data and improve the performance of deconvolution, we use
the MC technique for missing data completion. Compared to other existing methods for real data MC,
we propose an improved method for complex echo MC based on the hyperbolic tangent constraint
to improve the performance of MC. In addition, we modify the way of echo matrix reconstruction to
improve the low rank property of the echo matrix and need only one MC operation for all elements
completion. Then, after the MC of echo, we introduce a new 2D deconvolution algorithm for improving
the ill condition of deconvolution. At last, through many simulation and experimental results, we can
verify the effectiveness of the proposed method.

The outline of this paper is summarized as follows. The 2D convolution signal model and
direct deconvolution problem under undersampled data for turntable radar imaging are formulated
in Section 2. Novel algorithms for MC and 2D deconvolution imaging are proposed in Section 3.
Extensive numerical simulations and experiments are presented to verify the proposed method in
Section 4. Finally, the conclusions are drawn in Section 5.

Notations used in this paper are as follows. Bold case letters are reserved for vectors and matrices,
respectively. diag (x) is a diagonal matrix with its diagonal entries being the entries of a vector x. F2 {·}
and F−1

2 {·} are two-dimensional Fourier and inverse Fourier transform. svd (·) denotes the singular
value decomposition. 〈·〉,�, ∗ and⊗ indicate the inner product, the Hadamard (element-wise) product,
the convolution and the correlation operation. ‖·‖2, ‖·‖F and ‖·‖∗ are the l2 norm, Frobenius norm
and nuclear norm. (·)T , (·)H , (·)∗ and Re {·} denote the transpose, conjugate transpose, conjugate and
real part operations, respectively.
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2. Problem Formulation

2.1. Turntable Radar Imaging Model

Consider a typical arrangement of turntable radar given in Figure 1, which consists of the
transmitting and receiving system, a high precision turntable with the target placed on it rotating
with ∆θ each time, respectively. A Cartesian coordinate is constructed with the center of the turntable
as the origin, and the positions of the transmitting and receiving antenna are (−R, − D/2, Z0)

and (−R, D/2, Z0), where D, R, Z0 indicate the distance between the transmitting and receiving
antennas, the distance from the antenna to the YZ and XY planes. Assuming the transmitted signal
can be written as:

s (t) = u (t) ej2π fct (1)

where u (t), fc are the complex envelop with bandwidth B and the carrier frequency, respectively.
For the n-th rotating angle θn = n∆θ, n = 1, 2, . . . , N, the echo reflected by the target within an

imaging plane S, i.e., (x, y) ∈ S can be represented as:

f (t, θn) =
∫∫
S

σ (x, y) u (t− τn (x, y)) ej2π fc(t−τn(x,y))dxdy (2)

where σ (x, y) represents the complex reflection coefficient of the scattering point located in (x, y), and
τn (x, y) is the propagation delay, which can be expressed as:

τn (x, y) =
1
c


√
(x cos θn − y sin θn + R)2 + (x sin θn + y cos θn + D/2)2 + Z2

0

+
√
(x cos θn − y sin θn + R)2 + (x sin θn + y cos θn − D/2)2 + Z2

0

 . (3)

Additionally, we have the following approximation in the far-field and small rotation angle case:

τn (x, y) ≈ 2
c
(

R0 + (x− θny) R
/

R0
)

(4)

where R0 =
√

R2 + (D/2)2 + Z2
0 .

Quadrature down converted by the carrier wave ej2π fct, sampling and taking the correlation
operation for (1) and (2), we can get:

z (tm, θn) =
∫∫
S

σ (x, y)
{

u (tm − τn (x, y)) e−j2π fcτn(x,y)
}
⊗ u (tm) dxdy. (5)

The frequency spectrum of (5) can be written as:

Z ( fm, θn) =
∫∫
S

σ (x, y)U∗ ( fm)U ( fm) e−j2π( fm+ fc)τn(x,y)dxdy (6)

where Z ( fm, θn) and U ( fm) are the frequency spectrum form of z (tm, θn) and u (tm), fm ∈ (0, B) and
fm = m∆ f , m = 1, 2, . . . , M and ∆ f is the frequency sampling interval.

Designing a filter function H ( fm):

H ( fm) = U∗ ( fm)U ( fm) e−j2π( fc+ fm)
2R0

c (7)
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and applying it to (6), the frequency spectrum echo can be rewritten as:

Y (m, n) =
∫∫
S

σ (x, y) e−j2π( fm+ fc)
2(x−θny)R/R0

c dxdy. (8)

Under the narrow band approximation, we have λc = c
/
( fc + f ) ≈ c

/
fc, and the echo (8) can be

further written as:
Y (m, n) =

∫∫
S

e−j4π R
R0c ( fm+ fc)x

σ (x, y) ej4π R
λc R0

θnydxdy. (9)

Clearly, the two dimensions of scattering data are separated for x and y, respectively. What we
want to do is to recovery the 2D reflectivity σ (x, y) from the 2D observation data Y.

Discretizing the continuous imaging area into P× Q grids, then (9) can be expressed in a 2D
matrix form:

Y = ΨxœΨy + N (10)

where Ψx ∈ CM×P and Ψy ∈ CQ×N are the observation matrices, (Ψx)m,p = e−j4π R
R0c ( fm+ fc)xp and(

Ψy
)

q,n = ej4π R
λc R0

θnyq . N represents the noise and error matrix.

X

Y

Z

R

0Z 0R

D



O

0R

Figure 1. Geometry of turntable radar imaging.

2.2. 2D Convolution Model for Turntable Radar

By applying the MF algorithm, the target reflectivity can be expressed as:

_œ = ΨH
x YΨH

y . (11)

Combining Formulas (10) and (11), we have:

_œ = ΨH
x ΨxœΨyΨH

y . (12)

For every estimated scattering coefficient of target on the imaging area gird
(
xp, yq

)
, we have:

_
σ (p, q) =

P

∑
p′=1

Q

∑
q′=1

σ
(

p′, q′
) ( M

∑
m=1

N

∑
n=1

ej4π R
R0c ( fm+ fc)(xp−x′ p)e−j4π R

λc R0
θn

(
yq−y′q

))
. (13)

Define the PSF as:

h (x, y) =
M

∑
m=1

N

∑
n=1

ej4π R
R0c ( fm+ fc)xe−j4π R

λc R0
θny. (14)

Then, we can rewrite (13) in 2D convolution form as:

_
σ (p, q) ≈ σ (p, q) ∗ h (p, q) + n (p, q) . (15)
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Therefore, the signal after MF _
σ (p, q) is a 2D convolution result of the target’s scattering

coefficients and the PSF just as shown in Figure 2. For one target, the MF result will be proportional to
the PSF of system, and for two targets that are closely spaced, the MF result will have only a single
peak. Thus, the performance of the MF result is decided by the characteristic of PSF.



  

nh

Figure 2. Schematic diagram of the convolution model.

Then, the characteristic of the PSF will be analyzed. Computing the PSF according to (14) under a
uniform sampling condition, we have:

h (x, y) = ej2π R
R0

(
(2 fc+M∆ f )

c x− N∆θ
λc y

) sin
(

2π R
R0c M∆ f x

)
sin
(

2π R
R0c ∆ f x

) sin
(

2π R
R0λc

N∆θy
)

sin
(

2π R
R0λc

∆θy
) . (16)

We can see from (16) that the PSF has a wide 2D main lobe decided by the bandwidth of the
transmitted signal for the range direction and the total rotation angle for azimuth direction and a high
sidelobe decided by the frequency sampling interval for the range direction and the angle sampling
interval for the azimuth direction.

2.3. 2D Direct Deconvolution Problem from Undersampled Data

As mentioned above, the MF result can be treated as the 2D convolution of the target’s scattering
coefficients and PSF, so the MF result is blurred by the PSF. For the purpose of getting the true target’s
scattering coefficients, deconvolution is a simple solution.

In order to simply solve the deconvolution problem, we rewrite (15) in spatial spectrum domain
form as follows:

_
σF (p, q) = σF (p, q) · hF (p, q) + nF (p, q) (17)

where _œF = F2

(
_œ
)

, œF = F2 (œ), hF = F2 (h), nF = F2 (n).
Therefore, the target’s scattering information could be restored by inverse filtering according

to (17), which can be theoretically expressed as:

σ̂F (p, q) =
_
σF (p, q) h∗F (p, q)

|hF (p, q)|2
= σF (p, q) + nF (p, q)

/
hF (p, q). (18)

However, in practice, the result of (18) does not turn out so well because of the band limited
characteristic of PSF, which can be clearly seen from Figure 3.
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Figure 3. Point spread function (PSF) and its spatial spectrum domain with all data. (a) PSF and its
two-dimensional profile; (b) spatial spectrum domain of PSF and its two-dimensional profile.

From (18) and Figure 3, we can see that the noise out of the band of PSF will result in tremendous
amplification of noise and obtain valueless results since 1

/
hF will be very large at those frequencies.

Thus, the direct deconvolution processing is an ill-posed inverse problem.
The performance of deconvolution is influenced by the bandpass characteristic of PSF, which is

decided by the sampling of the frequency and rotation angle for turntable radar in the case of fixed
bandwidth and rotation angle. In order to reduce the observation time and data transferred, we need
to reduce the azimuth samples. However, this will result in performance deterioration of PSF in the
band, and it is illustrated by Figure 4.
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Figure 4. PSF and its spatial spectrum domain with 20% azimuth sampling data. (a) PSF and its 2D
profile; (b) spatial spectrum domain of PSF and its 2D profile.

The undersampled result is shown in Figure 4, where only 20% azimuthal sampling data are
available. Compared with the PSF and its spatial spectrum of full azimuth sampling data, we can find
that the range dimension changes little because the range dimension sampling data have not been
changed, but the azimuthal sidelobe of PSF is raised and leads to bad flatness in the band due to the
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reduction of azimuth data. Although the values of hF beyond the bandwidth increase, it is of little help
to the performance improvement because the values are still too small. However, the deconvolution
imaging performance will decline greatly when the values within the bandwidth reduce too much.
Especially, when grating lobes of PSF appear, the deconvolution results would appear as a false target.
Therefore, it is necessary to complete the undersampled data, and the recently proposed MC theory
can be used for completion, which will be introduced in detail next.

3. Proposed 2D Deconvolution Algorithm with Proposed MC Algorithm

As noted before, the direct deconvolution is ill-posed for the situation of undersampled data.
In this section, a 2D iterative deconvolution algorithm with MC is derived to solve the ill-posed
problem, increase the operational accuracy and improve the resolution.

3.1. Reconstruction of Unknown Samples via MC

3.1.1. MC Introduction

Before presenting our proposed MC algorithm, we introduce the problem of MC briefly. MC
means recovering a low rank matrix based on partial knowledge of its entries, and it can be solved via
solving a rank minimization problem [14]:

min
X

rank (X) s.t. PΩ (X) = PΩ (M) (19)

where M is the data matrix, which has some available sampled entries and Y = PΩ (M) is defined as:

[Y]ij =

{
[M]ij, (i, j) ∈ Ω

0, otherwise
(20)

where Ω is the set of indices of observed entries.
However, (19) is an NP-hard problem; the most commonly-used way is using a tightest convex

relaxation optimization problem as follows:

min
X
‖X‖∗ s.t. PΩ (X) = PΩ (M) . (21)

It can be solved by the singular value thresholding (SVT) method [15]. It tends to underestimate
the nonzero singular values; therefore, several recent studies have emphasized the benefit of nonconvex
penalty functions compared to the nuclear norm for the estimation of singular values [19–21]. However,
the nonconvex optimization problem suffers from numerous issues, such as spurious local minima
and initialization issues. Taking into account the shortcomings of the traditional methods, we propose
our MC method with a parameterized nonconvex penalty function.

3.1.2. Proposed MC Algorithm by the Nonconvex Low Rank Minimization

Firstly, we introduce our parameterized nonconvex penalty function, which can be written as:

gγ (x) = tanh
(

x
/

γ
)
=

ex/γ − e−x/γ

ex/γ + e−x/γ
(22)

where γ is the shape parameter that determines the trend of its approximation to the rank function,
just as shown in Figure 5, and the function with small γ is close to the rank function.
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Figure 5. Illustration of the hyperbolic tangent function under different shape parameters.

Compared to other commonly-used nonconvex penalty functions (Gaussian function, Laplace
function, etc.), it has better approximation to the rank function under the same parameter (γ = 1),
which can be seen in Figure 6.
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Laplace
Hyperbolic Tangent

Figure 6. Illustration of different nonconvex penalty functions.

Then, we define our MC problem as:

min
X

r

∑
i=1

gγ (σi (X)) s.t. PΩ (X) = PΩ (M) (23)

where r = rank (X) and σi (X) is the i-th singular value of matrix X. Obviously, the nonconvex
constraint with a smaller shape parameter is more approximate to rank constraint. Formula (23) can
also be expressed in another form:

min
X

r

∑
i=1

gγ (σi (X)) s.t. X + E = M, PΩ (E) = 0. (24)

Instead of using a hyperbolic tangent penalty function with a fixed shape parameter, parameter
adjustment approximation is used to help in achieving the rank minimizer by gradually decreasing γ,
which can avoid the above problems of spurious local minima and initialization issues.
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Under a fixed parameter, we apply the augmented Lagrange multiplier method [22], which can
guarantee quadratic convergence, and define the Lagrangian function as:

L (X, E, Z, µ) =
r

∑
i=1

gγ (σi (X)) + Re {〈Z, M− X− E〉}+ µ

2
‖M− X− E‖2

F (25)

where Z is Lagrange multiplier matrix. µ > 0 is the regularization parameter.
Then, the optimization problem (24) is equivalent to:

min
X, PΩ(E)=0,Z,µ

L (X, E, Z, µ) (26)

Using the alternating direction technique to solve the optimization problem (26):

Xk+1 = arg min
X

L
(

X, Ek, Zk, µk
)

(27)

Ek+1 = arg min
PΩ(E)=0

L
(

Xk + 1, E, Zk, µk
)

(28)

Zk+1 = Zk + µk
(

M− Xk+1 − Ek+1
)

(29)

µk+1 = ρµk, ρ > 1. (30)

It remains to compute the minimizer of (27) and (28), and note that for (27), it can be specifically
rewritten as:

Xk+1 = arg min
X

r

∑
i=1

gγ (σi (X)) +
µk

2

∥∥∥∥∥M +
Zk

µk − Ek − X

∥∥∥∥∥
2

F

. (31)

Because the hyperbolic tangent function gγ is a concave function, according to Figure 7, we have:

gγ (σi) ≤ gγ

(
σk

i

)
+ wk

i

(
σi − σk

i

)
(32)

where wk
i is the derivative of gγ on σk

i , calculated as:

wk
i = ∂gγ

(
σk

i

)
= 1

/
γcosh2

(
σk

i
γ

)
. (33)

When the value of γ becomes large enough, the equality in (32) holds, which can be seen directly
from Figure 5. Then, the proposed hyperbolic tangent function is the same as the nuclear norm.

0 1 2 3 4 5
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0.4

0.6

0.8

1

x

g
γ
(x
)

 

 

σiσ
k
i

gγ(σ
k
i )

gγ(σi)

gγ(σ
k
i ) + wk

i (σi − σ
k
i )

Figure 7. Gradient of the proposed nonconvex function.
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Using majorization-minimization (MM) [23], we obtain Xk+1 by the following procedure:

Xk+1 = arg min
X

r

∑
i=1

(
gγ

(
σk

i (X)
)
+ wk

i

(
σi (X)− σk

i (X)
))

+
µk

2

∥∥∥∥∥M +
Zk

µk − Ek − X

∥∥∥∥∥
2

F

= arg min
X

r

∑
i=1

wk
i σi (X) +

µk

2

∥∥∥∥∥M +
Zk

µk − Ek − X

∥∥∥∥∥
2

F

.

(34)

From (34), we can also give the reason that the nonconvex constraint is superior compared with the
nuclear norm. For the nuclear norm, the punishment is the same for all of the variables, which is unfair
to the large variables. However, for the nonconvex constraint, we can see that large variables have a
small punishment according to Figure 8. If γ is large enough, the values of weighted coefficient w are
almost exactly equal, which means our proposed nonconvex function is the same as the nuclear norm.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

x

∂
g γ

(x
)

 

 

γ = 10
γ = 1

Figure 8. Gradient of gγ(x).

According to Lemma 1 [24], it has a closed form solution for (34) despite its nonconvexity.
Lemma 1: For any λ > 0 and 0 ≤ w1 ≤ · · · ≤ wr, the following problem (35) has a globally

optimal solution:

min
X

λ
r

∑
i=1

wiσi (X) +
1
2
‖Y− X‖2

F (35)

and it can be given by the weighted singular value thresholding as:

X̂ = USλw (Σ)VT (36)

where Y = UΣVT is the singular value decomposition (SVD) of Y and Sλw (Σ) is defined as:

Sλw (Σ) = diag
{
(Σii − λwi)+

}
, (Σii − λwi)+ =

{
Σii − λwi, Σii − λwi > 0

0, Σii − λwi ≤ 0
. (37)

Obviously, (34) has the same form as (35). Thus, we can solve (34) via Lemma 1, which can be
given by:

Xk+1 = US
w
/

µk (Σ)VT (38)

where UΣVT = svd(M + Zk
/

µk − Ek).
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For (28), it can be rewritten as:

Ek+1 = arg min
PΩ(E)=0

µk

2

∥∥∥∥∥M− Xk+1 +
Zk

µk − E

∥∥∥∥∥
2

F

. (39)

Thus, we can solve the problem (39) to update Ek+1 by:

Ek+1 = PΩ̄

(
M− Xk+1 +

Zk

µk

)
(40)

where Ω̄ is the complement set of Ω.
Then, the procedure of the proposed MC algorithm is described in Algorithm 1. The out loop is

used for updating shape parameter γ.

Algorithm 1 Procedure of the proposed matrix completion (MC) algorithm

1: Initialization: X0 = M, Z0 = 0, E0 = 0 , µ0 = 1
/
‖X0‖2, γ0 > 0, β < 1

2: For l = 0, · · · , L
3: X0 = Xl
4: For k = 1, · · · , K
5: Update Xk via (38);
6: Update Ek via (40);
7: Update Zk via (29);
8: Update µk via (30);
9: if

∥∥∥Xk+1 − Xk
∥∥∥

F

/∥∥∥Xk
∥∥∥

F
< ε, then break;

10: End
11: Xl+1 = Xk+1, γl+1 = βγl
12: if ‖Xl+1 − Xl‖F

/
‖Xl‖F < ε, then break;

13: End
14: Output: Xl+1

3.1.3. Low Rank Echo Matrix Model for Turntable Radar

In this paper, we are more interested in reducing the number of azimuthal samples. However,
it is difficult to directly use the proposed MC algorithm to complete the missing elements in this case
because the echo matrix to be restored does not satisfy the strong incoherence property (SIP) [14].
Therefore, we rearrange the original echo matrix and construct a new low rank echo matrix that satisfies
SIP. The work in [17] proposed a method for matrix construction, which constructed a small matrix
with a size of N1 × N2 = N for each echo vector of the same frequency. Additionally, [18] introduced
another way to reshape the stepped frequency echo into a Hankel matrix form of size d× (N − d + 1),
which is much larger than N1 × N2. Therefore, the reconstructed matrix has a better low rank property.
However, the exiting forms for matrix reconstruction should process every frequency echo separately
just as shown in Figure 9; it is complex, and the low rank property is also not very good because
of limited samples. In this paper, we propose a new form of matrix reconstruction using all of the
echo data together, which can improve the low rank property of the echo matrix and reduce the
computational complexity.
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M

N
Missing Data

Observed Data

N1

N2

(d)

(N-d+1)

Raw echo matrix

Reconstructed 

echo matrix

Figure 9. Matrix reconstruction for undersampled azimuth data.

According to (10), under the assumption that the target satisfies the a priori point scattering,
the echo of the m-th frequency can be expressed as:

Y (m, n) =
K

∑
k=1

e−j4π R
R0c ( fm+ fc)xk σ (xk, yk) ej4π R

λc R0
θnyk (41)

where K is the number of scattering points.
Constructing a small matrix Ym as (42) using the m-th row elements of original matrix Y:

Ym =


Y (m, 1) Y (m, N1 + 1) · · · Y (m, (N2 − 1) N1 + 1)
Y (m, 2) Y (m, N1 + 2) · · · Y (m, (N2 − 1) N1 + 2)

...
...

. . .
...

Y (m, N1) Y (m, 2N1) · · · Y (m, N2N1)


N1×N2

. (42)

Additionally, it can be written as:
Ym = AmœB (43)

where œ = diag (σ (x1, y1) , · · · , σ (xK, yK)) and matrices Am, B are defined as:

Am =


a1 (m, 1) a2 (m, 1) · · · aK (m, 1)
a1 (m, 2) a2 (m, 2) · · · aK (m, 2)

...
...

. . .
...

a1 (m, N1) a2 (m, N1) · · · aK (m, N1)


N1×K

, B=


b1 (1) b1 (2) · · · b1 (N2)

b2 (1) b2 (2) · · · b2 (N2)
...

...
. . .

...
bK (1) bK (2) · · · bK (N2)


K×N2

(44)

where,

ak (m, n) = e−j4π R
R0c ( fm+ fc)xk ej4π R

λc R0
n∆θyk , bk (n) = ej4π R

λc R0
(n−1)N1∆θyk (45)

Then, we can reconstruct matrix Y as:

Ynew =


Y1 YM1+1 · · · Y(M2−1)M1+1
Y2 YM1+2 · · · Y(M2−1)M1+2
...

...
. . .

...
YM1 Y2M1 · · · YM2 M1


M1 N1×M2 N2

=


A1C0

A1C1

...
A1CM1−1


M1 N1×K

·
[

C0œB CM1 œB · · · C(M2−1)M1 œB
]

K×M2 N2

(46)
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where M = M1 ×M2 and:

C = diag (c1, c2, · · · , cK) , ck = e−j4π R
R0c ∆ f xk . (47)

Obviously, the new echo matrix Ynew is low rank with rank (Ynew) ≤ K � min {M1N1, M2N2}.
For the new matrix Ynew, its missing elements are randomly distributed, so it satisfies the SIP. Besides,
it has a larger size than [17,18] with the same rank K, which means that it has better low rank property.
Additionally, it only needs one matrix reconstruction for all of the elements, which is much less than
the methods of [17,18]. Therefore, we can use the proposed MC algorithm for the new echo matrix.
After MC, we reshape Ynew to the original echo matrix Y.

3.2. 2D Proposed Deconvolution Algorithm for High Resolution Radar Imaging

We have mentioned in Section 2.3 that direct deconvolution suffers from the ill-posed problem.
In this part, we will introduce a new deconvolution method to reduce the ill-posed condition and
achieve high resolution radar imaging.

For Formula (15), it can be expressed in matrix vector form as:

g = Hu + n (48)

where g = vec
(

_œ
)

, u = vec (œ) and H is a block circulant matrix formed by the PSF.
Additionally, for the direct deconvolution algorithm, it can be written in vector form as:

u =
(

HHH
)−1

HHg. (49)

Regarding the ill-posed problem for direct deconvolution, a regularization method is given by the
l2 norm as:

min
u

J (u) =
1
2
‖g−Hu‖2

2 + λ ‖u‖2
2 . (50)

The optimization result of (50) can be written as:

u =
(

HHH + λI
)−1

HHg (51)

which can also be expressed in frequency domain form as Wiener filtering:

σ̂F (p, q) =
h∗F (p, q)_

σF (p, q)∣∣hF (p, q)
∣∣2 + λ

. (52)

The regularization parameter λ is difficult to choose and usually determined according to
experience. In order to avoid the problem of parameter selection, we modify the the Wiener filter
algorithm to further improve the performance of deconvolution. Here, we also use the l2 norm function
as the regularization constraint and define the corresponding augmented Lagrangian function as:

L (u, y, µ) =
µ

2
‖g−Hu‖2

2 + Re {〈y, g−Hu〉}+ ‖u‖2
2 . (53)

Then, the ALMupdate takes the form of:

uk+1 = arg min
u

L
(

u, yk, µk
)

(54)

yk+1 = yk + µk
(

g−Huk+1
)

(55)
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µk+1 = ρuk, ρ > 1. (56)

We can solve the optimization problem (54) as:

uk+1 = arg min
u

1
2

∥∥∥∥∥g +
yk

µk −Hu

∥∥∥∥∥
2

2

+
1
µk ‖u‖

2
2 . (57)

Additionally, it can be solved with:

uk+1 =

(
HHH +

1
µk I
)−1

HH

(
g +

yk

µk

)
. (58)

In order to reduce the computational load, we rewrite the iterative process in the frequency
domain. Let yF = F2 {reshape (y, P, Q)}; the frequency domain form of (55) and (58) can be
expressed as:

yF (p, q)k+1 = yF (p, q)k + µk
(
_
σF (p, q)− hF (p, q) σF (p, q)k+1

)
(59)

σF (p, q)k+1 =

h∗F (p, q)
(

_
σF (p, q) + yF (p,q)k

µk

)
∣∣hF (p, q)

∣∣2 + 1
µk

. (60)

Further to improve the performance, we combine the soft thresholding function [25] to reduce the
sidelobe caused by noise and model errors, which can be written as:

σF (p, q)k+1 = F2

so f t

F−1
2


h∗F (p, q)

(
_
σF (p, q) + yF (p,q)k

µk

)
∣∣hF (p, q)

∣∣2 + 1
µk

 , τ


 (61)

where τ is decided by the noise level and:

x̂ = so f t (y, τ)
.
=

max {|y| − τ, 0}
max {|y| − τ, 0}+ τ

y. (62)

Then, we can get the proposed deconvolution algorithm as shown in Algorithm 2.

Algorithm 2 Proposed 2D Deconvolution Algorithm

1: Initialization: y0
F = 0, µ0 = 1

/∥∥∥F−1
2

{
_œF
}∥∥∥

F
, τ > 0

2: For k = 1, · · · , K
3: Update œk

F via (61);
4: Update yk

F via (59);
5: Update µk via (56);
6: if

∥∥∥œk+1
F −œk

F

∥∥∥
F

/∥∥∥œk
F

∥∥∥
F
< ε, then break;

7: End
8: Output: F−1

2

{
œk+1
F

}

At the beginning of the iteration, 1/µ is large, which means that the main lobe of the recovery
result is wide, but the sidelobe caused by the noise is very low. With the increase of iterations,
1/µ becomes smaller, and the sidelobe caused by noise raises, but the denoise operation can remove
the noise effectively and improve the performance of recovery result.
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By combining the proposed MC algorithm with the proposed matrix reconstruction method and
the proposed 2D deconvolution algorithm, our proposed method for radar imaging under the situation
of azimuth undersampled data can be described as shown in Figure 10.

Echo Matrix

Reconstruction

Echo 

Completion 
MF

2D 

Deconvolution

Imaging 

Result

Proposed Deconvolution 

Algorithm

Proposed MC 

Algorithm 

Echo

Matrix
Inverse Echo Matrix

Reconstruction

Figure 10. Diagram of the proposed method.

4. Simulation and Experimental Results

In this section, we present several numerical simulation and experimental results to illustrate
the performance of the proposed method. All of the results are performed by using MATLAB R2014a
on a PC equipped with an Inter Core i5-4590 CPU, 3.3 GHz and 12 GB memory. The normalized
mean square error (NMSE) is used for evaluating the performance of simulation results. The image
entropy (IE) [26] and image contrast (IC) [27] are used for measuring the performance of experimental
results, where low values of IE and high values of IC generally mean that the image is well recovered.
The most commonly-used classical MC algorithms, such as SVT [15], the inexact ALM method [28], etc.,
and deconvolution algorithms, like Wiener filtering algorithm [29], iterative constraint deconvolution
(CID) [30], etc., are selected for comparison.

4.1. Numerical Simulations

The simulation conditions are given in Table 1. Ten point targets are randomly distributed in the
imaging area. We set M1 = 10, M2 = 20, N1 = 20, N2 = 10 for the echo reconstruction.

Firstly, during the iterative process, the cost functions for the proposed MC and deconvolution
algorithm keep decreasing after each iteration, as shown in Figure 11, which further demonstrates the
convergence of the proposed algorithms.
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Figure 11. Convergence curves of (a) the proposed MC algorithm and (b) the proposed 2D
deconvolution algorithm.

For the next simulation, we use the matrix reconstruction method of [17] + SVT and the
matrix reconstruction method of [18] + the inexact ALM method for comparing the MC algorithms.
The winnerfiltering algorithm and CID are used for comparing deconvolution algorithms. Figure 12
shows the NMSE of results without and with MC versus the number of missing data and echo SNR
using different MC algorithms, which is averaged over 100 Monte Carlo trials. The missing data
are randomly distributed. We can see that our proposed MC algorithm has the best recovery result
because our reconstructed matrix has the best low rank property, and our proposed MC algorithm
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with the nonconvex constraint has better performance than the traditional nuclear norm. SNR has
greater impact on the MC algorithm because when the SNR is very low, the low rank property of
the echo matrix will decrease rapidly. Figure 13 is the NMSE of the results versus the number of
missing data and SNR using different deconvolution algorithms. It can be seen from Figure 13a that
the performance of the deconvolution algorithms becomes worse with the increase of missing data.
The conclusion is similar to our previous analysis and illustrates the necessity of echo completion.
In Figure 13b, the SNR has little influence on the performance of deconvolution because after MF,
the noise is suppressed, and the SNR of echo is enhanced.

Table 1. Simulation parameters.

Parameter Value

Distance between the transmitting and receiving antenna D 0.04 m
Distance from antenna to YZ plane R 1 m
Distance from antenna to XY plane Z0 0.7 m

Frequency step4 f 20 MHz
Number of frequency M 200
Rotation angle step4θ 0.025◦

Number of rotation angle N 200
Wavelength λc 0.01 m
Imaging scene 1 m ×1 m

Number of grids for range direction P 100
Number of grids for azimuth direction Q 100
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Figure 12. MC recovery comparison of (a) the missing data ratio (SNR = 10 dB) and (b) SNR (missing
data ratio = 0.5).
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Figure 13. Deconvolution comparison of (a) the missing data ratio (SNR = 10 dB) and (b) SNR (missing
data ratio = 0.5).
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The NMSE results after both MC and deconvolution versus the number of missing data and SNR
are shown in Figure 14. Comparing Figure 13a with Figure 14a, we can see that the MC can improve
the performance of deconvolution with undersampled data. The recovery results in Figure 14b are
affected by SNR, which is different from Figure 13b, because the performance of MC algorithms is
affected by noise, as shown in Figure 12b. In practical applications, the echo SNR after MF is usually
not very high, and our proposed method will have better performance. From Figures 12–14, we can
see the superiority of the proposed algorithm compared to traditional algorithms, and we choose the
matrix reconstruction method of [18] + the inexact ALM method + CID for comparison in the following
processing of experimental data.
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Figure 14. Imaging results comparison of (a) the missing data ratio (SNR = 10 dB) and (b) SNR (missing
data ratio = 0.5).

4.2. Experimental Results

In this subsection, some experimental results are reported to illustrate the validity and
effectiveness of the proposed method. We also show the reconstructed results by MF and the matrix
reconstruction method of [18] + the inexact ALM method + the CID method for comparison.

4.2.1. ISAR Imaging

As we all know, after translational motion compensation, the ISAR imaging is similar to the
turntable model in this paper under the assumption that D = 0, Z0 = 0. In this subsection,
the quasi real data of an airplane (MIG25) provided by the U.S. Naval Research Laboratory are
used, which transmit the stepped frequency (SF) signal with the center frequency of 9 GHz and the
bandwidth of 512 MHz and consist of 512 cross-range samplings with 128 samplings used here and
64 range samplings.

To illustrate the validity of the proposed method, the reconstructed results of different methods
with 25% cross-range data (32 samplings) are compared in Figure 15, where we set M1 = 8, M2 = 8,
N1 = 16, N2 = 8. The observed data are randomly selected. Figure 15a–c shows the recovery results
by different methods without MC. Figure 15d–f is the recovery results by different methods with
MC. We can clearly see that without MC, the results of MF and deconvolution appear as many false
scattering points, which are caused by partial data missing, and the false points can be eliminated
through MC shown as Figure 15d–f. Our proposed method has better recovery performance with a
clear object image by comparing Figure 15e with Figure 15f, which can be further validated by the IE
and IC values of the recovered ISAR images under different methods calculated in Table 2. Although
only 25% of the data are used here and the target model consists of many scattering points, good
imaging results are obtained due to the high SNR of echo. Both the IC and the IE values confirm image
quality improvement when the proposed method is used.



Sensors 2017, 17, 542 18 of 23

R
an

ge
 c

el
l n

um
be

r

Corss range cell number
100 200 300 400 500 600

100

200

300

400

500

600

(a)

R
an

ge
 c

el
l n

um
be

r

Corss range cell number
100 200 300 400 500 600

100

200

300

400

500

600

(b)

R
an

ge
 c

el
l n

um
be

r

Corss range cell number
100 200 300 400 500 600

100

200

300

400

500

600

(c)

R
an

ge
 c

el
l n

um
be

r

Corss range cell number
100 200 300 400 500 600

100

200

300

400

500

600

(d)

R
an

ge
 c

el
l n

um
be

r

Corss range cell number
100 200 300 400 500 600

100

200

300

400

500

600

(e)

R
an

ge
 c

el
l n

um
be

r

Corss range cell number
100 200 300 400 500 600

100

200

300

400

500

600

(f)

Figure 15. Imaging results of the MIG25. (a) Matched filter (MF) result without MC; (b) iterative
constraint deconvolution (CID) result without MC; (c) proposed deconvolution algorithm result
without MC; (d) MF result with all data; (e) CID result with the inexact ALMmethod; (f) proposed
deconvolution algorithm result with the proposed MC algorithm.

Table 2. Values of image entropy (IE) and image contrast (IC) in different schemes.

(a) (b) (c) (d) (e) (f)

IE 11.5975 8.7454 8.1093 10.0024 8.0969 7.3564
IC 2.4010 10.5054 14.1812 5.6070 13.7945 19.4382

4.2.2. Turntable Radar Imaging

An SF radar is used in the experiment as shown in Figure 16, which contains a vector network
analyzer (VNA) operating within 0.1∼40 GHz, two horn antennas, a high precision turntable and
a control computer. The targets are four metal balls with an 8-mm diameter, a toy gun and a knife.
The measurement parameters are shown in Table 3. We divide the azimuthal data into 72 segments,
and for each segment, we can use the proposed model for approximation. Then, we process every
segment and fuse the results of all of the segments in order to avoid the changing of the scattering
characteristic due to different observation angles in the case of a large rotation angle. Fifty percent
of cross-range data chosen randomly are used here. We set M1 = 16, M2 = 16, N1 = 4, N2 = 5 for
matrix reconstruction.

Horn antennas

VNA

High precision 

turntable 

Computer Toy gun

Knife

Figure 16. Surveillance scene of the experiment.
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Table 3. Experimental parameters.

Parameter Value

Distance between the transmitting and receiving antenna D 0.04 m
Distance from antenna to YZ plane R 1.25 m
Distance from antenna to XY plane Z0 0.6 m

Frequency step4 f 40 MHz
Number of frequency M 256
Rotation angle step4θ 0.25◦

Number of rotation angle N 1440
Wavelength λc 0.01 m

Number of grids for range direction P 200
Number of grids for azimuth direction Q 200

Figure 17 shows the results of MF, the inexact ALM method + the CID method and the proposed
method, respectively, by using 50% of the azimuth full data. The used data are randomly selected.
In this experiment, we use three different kinds of targets to test our proposed method, including
the simple target of metal balls and complex targets, like toy gun and knife. The metal balls can be
treated as the scattering model with fewer targets, while the toy gun and knife are composed of a
large number of scattering points. Therefore, the imaging results of toy gun and knife are not as
good as metal balls due to the poor low rank property under a large number of scattering points.
It should be noticed that the handle of the knife has diffuse reflectivity, and the blade has specular
reflectivity, so the strong scattering points of the knife are located in the handle, and the blade is
not very clear, as shown in Figure 17g–i. Figure 17a,d,g is the results of MF, and they are blurred
by the convolution effect under limited bandwidth and rotation angle. After the process of MC and
deconvolution, the recovered images become much clearer and more conducive to target recognition.
Our proposed method has a narrower main lobe and can obtain the object contour clearly compared to
traditional methods. Additionally, the image quality improvement of our proposed method can be
further confirmed according to the IE and IC values shown in Table 4. Our proposed method does not
get a very significant performance boost for the complex targets according to Figure 17 and Table 4.
This is mainly due to two following reasons. The low rank property of the reconstructed echo matrix
is not very good because of the large number of scattering points and the small size of the matrix.
The SNR of the raw data is not high under the constraint of transmit power and the influence of system
noise and errors.

Table 4. Values of IE and IC in different schemes.

Target Parameter MF Inexact ALM method + CID Proposed method

metal balls IE 9.3976 5.1976 4.4626
IC 2.6098 20.2438 29.0054

toy gun IE 8.4137 7.0569 6.6240
IC 3.7964 6.9976 9.0716

knife IE 8.7608 7.0287 6.5888
IC 3.4945 7.7789 9.9342
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Figure 17. Imaging results of metal balls: (a) MF result with all data; (b) CID result with the inexact
ALM method; (c) proposed deconvolution algorithm result with the proposed MC algorithm. Imaging
results of the toy gun: (d) MF result with all data; (e) CID result with the inexact ALM method;
(f) proposed deconvolution algorithm result with the proposed MC algorithm. Imaging results of
the knife: (g) MF result with all data; (h) CID result with the inexact ALM method; (i) proposed
deconvolution algorithm result with the proposed MC algorithm.

4.3. Discussion

Based on the above content, our proposed method can be mainly divided into two parts: MC
and deconvolution. For the algorithm of MC, the number of observed data (m), the size of the matrix
(n = max(M1N1, M2N2)), the rank of the matrix (r) and SNR are the main factors that affect the
performance of MC. According to the conclusion of Candès et al. [13,14], m ≥ Cµ2nr log6 n should
be satisfied, where C is a numerical constant and µ is the strong incoherence parameter. This means
that a fixed matrix with a larger rank demands more observed data. The result of MC X̂ obeys∥∥X− X̂

∥∥
F ≤ 4

√
(p+2)min(M1 N1,M2 N2)

p δ + 2δ, where p = m/MN, δ is decided by the noise level and

satisfies δ2 ≤
(

m +
√

8m
)

σ2 with high probability, and σ is the standard deviation of the white noise.
Obviously, less missing data and a high SNR lead to high recovery accuracy of MC, which can also
be obtained from our simulations and experimental results. From Figure 12, we can see that when
the missing data ratio is smaller than 0.5 and the SNR is larger than 10 dB, the recovery result of MC
shows good performance. For the deconvolution, its performance is affected by SNR and the spectral
characteristics of PSF. It is worth noting that MF can improve the SNR of echo because MF is based on
the maximum SNR criterion. Additionally, after MF, the SNR of the signal satisfies the requirement of
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the deconvolution algorithms, and the increased SNR of raw data has little impact on the performance
promotion of the deconvolution results, which can be seen from Figure 13b. The PSFs under different
missing data ratios are different, and the deconvolution has better performance when the ratio is
smaller than 0.5, as shown in Figure 13a. Therefore, if the missing data ratio is smaller than 0.5 and
SNR is larger than 10 dB, our proposed method has a significant performance boost. The requirement
of observed data will reduce if the SNR increases, and the requirement of SNR will decrease if the
number of observed data increases. In this paper, the influence of the number of scattering points
on the performance of the proposed method is not discussed under the assumption that the strong
scattering points for the turntable radar are sparsely distributed under high frequency. For the target
with too many scattering points, the performance of the proposed method will decrease because it
does not meet the condition of MC. In this situation, more observed data are needed to improve the
low rank property of the echo matrix.

5. Conclusions

A novel method for high resolution turntable radar imaging with undersampled data of the
cross-range is presented in this paper. The main work and contributions are summarized as follows:

1. Based on the result of MF, the 2D convolution model for turntable radar with arbitrary signals was
constructed. Considering the blurring of the image caused by convolution, a novel 2D iterative
deconvolution algorithm had been proposed for removing the convolution effect and achieving a
high resolution radar imaging result. Through the analysis of the simulation and experimental
results, the performance of the deconvolution algorithm could be further improved from the
following two aspects: optimization of PSF and improvement of SNR.

2. In order to compress the observed data for reducing the number of transmit-receive channels and
the difficulties of data transmission and storage, the MC algorithm with the nonconvex constraint
and a novel echo matrix reconstruction method were proposed to complete the cross-range missing
data for improving the characteristic of PSF. The data compression ratio was decided by the low
rank property and SNR of the echo matrix.

3. Extensive simulations and experiments with simple and complex targets had been conducted to
validate and compare the performance of the proposed method with several popular solvers.

According to the analysis of our proposed method in this paper, in the future, we will further
improve our method from the following aspects:

1. In each iteration of the proposed MC algorithm, the most expensive operation is SVD. The random
projection method [31] can be used to reduce the computation load of SVD, which operates SVD
with a matrix of a much smaller size.

2. The noise of the system can be further suppressed by low rank matrix denoising technology in the
image processing field using the low rank property of echo before and after MF.

3. Taking the fact that there are external disturbances and model mismatch into account, the error
tolerance of the proposed method should be considered.

4. A larger size of the matrix should be reconstructed to improve the low rank property for a complex
target with many scatterers.

5. The characteristic of the system PSF can be improved to enhance the imaging performance by
extending our proposed method to other imaging systems, such as the metamaterial imaging
system [32,33] and the coincidence imaging radar system [34], both of which have a better PSF
than the traditional radar system under fixed bandwidth and synthetic aperture.
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