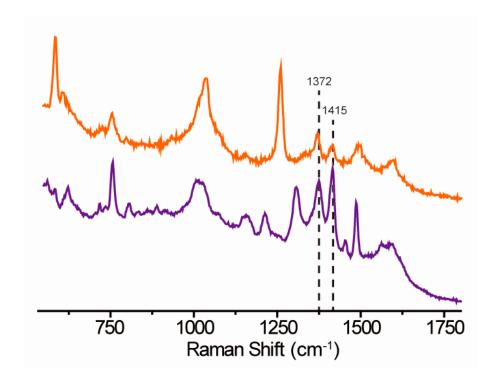

Supporting Information


Real-time sensing of o-phenylenediamine oxidation on gold nanoparticles

Ru-Jia Yu¹, Jia-Jia Sun¹, Heng Song¹, Jing-Zhi Tian², Da-Wei Li¹*, and Yi-Tao Long¹

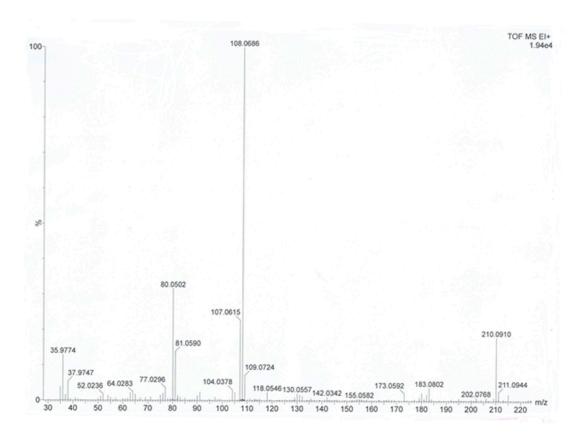

- ¹ Key laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, & College of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- ² College of Chemistry and Chemical Engineering, Qiqihar University, 42 Culture Road, Qiqihar, 161006, P. R. China
- * To whom correspondence should be addressed. E-mail: daweili@ecust.edu.cn; Tel/Fax: +086-21-6425-0032.

Figure S1. UV-Vis spectra (**a**) and transmission electron microscope image (**b**) of the synthesized gold nanoparticles with a diameter of 60 nm.

Figure S2. SERS spectra of pure 2,3-diaminophenazine solution (purple) and AuNPs/OPD+Cu²⁺ incubated at 37 °C for 30 min (orange).

Figure S3. Mass spectrum (HREI⁺) of Au NPs/OPD+Cu²⁺ incubated at 37 °C for 30 min.

Table S1. SERS Spectral data of AuNPs/OPD before and after reaction with Cu²⁺ and Raman spectral data calculated with DFT for OPD and OPDox corresponding band assignments.

	OPD			OPDox	
Theory	Experimental	Assignment	Theory	Experimental	Assignment
(cm ⁻¹)	(cm ⁻¹)		(cm ⁻¹)	(cm ⁻¹)	
592	585	ho CCC ring	586	585	ho CCC ring
760	753	vCC ring, vC-NH ₂	752	753	v CC ring, v C-NH $_2$
1055	1037	v CC ring, δ CCH ring	1034	1037	v CC ring, δ CCH ring
1257	1262	δCCH ring, vCC ring, vC-NH ₂	1262	1262	δCCH ring, vCC ring, vC-NH ₂
1512	1500	v CCC ring, δ CCH ring,	1372	1372	υC-N=C, υCC ring

		v C-NH ₂ , ρ NH ₂			
1592	1600	vCCC ring, δ CCH ring, ρ NH ₂	1413	1415	δ C-N=C
			1499	1500	vCCC ring, δ CCH ring, vC-NH ₂ ,
			1601	1600	$ ho \mathrm{NH}_2$
					vCCC ring, δ CCH ring, ρ NH ₂

v, stretching; δ , in-plane bending; ρ , scissoring