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Abstract: A novel micro-electro-mechanical systems (MEMS) inertial microswitch with a flexible
contact-enhanced structure to extend the contact duration has been proposed in the present work.
In order to investigate the stiffness k of the stationary electrodes, the stationary electrodes with
different shapes, thickness h, width b, and length l were designed, analyzed, and simulated using
ANSYS software. Both the analytical and the simulated results indicate that the stiffness k increases
with thickness h and width b, while decreasing with an increase of length l, and it is related to the
shape. The inertial micro-switches with different kinds of stationary electrodes were simulated
using ANSYS software and fabricated using surface micromachining technology. The dynamic
simulation indicates that the contact time will decrease with the increase of thickness h and width b,
but increase with the length l, and it is related to the shape. As a result, the contact time decreases
with the stiffness k of the stationary electrode. Furthermore, the simulated results reveal that the
stiffness k changes more rapidly with h and l compared to b. However, overlarge dimension of
the whole microswitch is contradicted with small footprint area expectation in the structure design.
Therefore, it is unreasonable to extend the contact duration by increasing the length l excessively.
Thus, the best and most convenient way to prolong the contact time is to reduce the thickness h of
the stationary electrode while keeping the plane geometric structure of the inertial micro-switch
unchanged. Finally, the fabricated micro-switches with different shapes of stationary electrodes have
been evaluated by a standard dropping hammer system. The test maximum contact time under
288 g acceleration can reach 125 µs. It is shown that the test results are in accordance with the
simulated results. The conclusions obtained in this work can provide guidance for the future design
and fabrication of inertial microswitches.

Keywords: inertial micro-switch; surface-micromachining; stationary electrode; geometrical
parameters; contact time

1. Introduction

Recently, MEMS inertial microswitches based on surface micromachining technology have been
attracting much attention due to many advantages, such as lower cost, less power consumptions,
larger volume production, smaller size, better performance, and more functionality than conventional
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mechanical inertial switches fabricated with precision machining processes [1]. Therefore, they are
widely used in an array of applications, such as accessories, automotive electronics and remote
monitoring (RMON) [2–4]. Compared to the accelerometer, the inertial microswitch is both a sensor and
an actuator. Firstly, this purely mechanical trigger in the inertial switch is superior to the accelerometer
because they can avoid the risk of mis-operation from electromagnetic interference [5]. Secondly, it is
not necessary to measure the continuously varying acceleration signals in some long-lifetime or small
scale systems because of the limited power supply, where accelerometers are not suitable because of
the necessity for a continuous power supply [6]. However, the inertial microswitch can overcome the
above shortcoming and be applied to some long-lifetime systems, since the inertial microswitch, as a
sort of passive device, draws no power until an acceleration event happens [7–10].

In traditional designs, both the movable electrode and the stationary electrode in the inertial
microswitch are usually rigid, which will result in an extremely short contact duration. However,
this extremely transient contact time will become a significant obstacle for subsequent signal processing
if the microswitch is applied in an integrated circuit [10–13]. In order to facilitate the signal processing
and enhance the contact effect, Wang et al. designed a laterally-driven inertial microswitch using two
cantilever beams as the fixed electrode, which can reduce the contact-bouncing effect and prolong
the contact time [14]. Then, Qihuan Zhang et al. reported a laterally-driven inertial microswitch with
the double-stair shape flexible cantilever beam as the movable electrode for prolonging the contact
time [15]. Deng et al. designed the inertial microswitch with double flexible electrodes based on the
silicon bulk micromachining process, which can further improve the contact effect [16]. Several kinds
of vertically-driven inertial microswitches with flexible contacts have been proposed and fabricated in
our previous works [5,6,17–19]. In these cases, one elastic crossbeam was regarded as the stationary
electrode instead of rigid electrode, which indicates that the contact duration has been extended
to some extent. However, the test contact time was less than 60 µs. A convenient way to further
prolong the contact time is to decrease the stationary electrode’s stiffness. Unfortunately, the influence
of geometric parameters of the stationary electrode on the contact time in the inertial microswitch
was hardly studied in detail. In the present work, two different designs of elastic cross beams with
holes were introduced into the vertically-driven inertial microswitch as the stationary electrode for
extending the contact duration. The effect of shape, thickness (h), width (b), length (l) of the stationary
electrode on the contact duration will be fully analyzed by analytical and finite-element simulation
methods. Finally, the fabricated inertial micro-switch devices will be also evaluated by a standard drop
hammer system.

2. Analysis, Design, and Simulation

2.1. Theoretical Analysis of the Stiffness of the Stationary Electrode

Sample 1 is the originally-designed stationary electrode as shown in Figure 1a, which includes
two linear structure cantilever beams. In consideration of the geometric symmetry of the structure,
it can be seen from Figure 1b that the stationary electrode can be simplified as one linear structure
cantilever beam (PN) to analyze, the stiffness k of the stationary electrode in sample 1 is equal to the
total sum stiffness of two linear cantilever beams (2 kbeam). The thickness, width, and length of linear
cantilever beam are h, b, and l, respectively. Both ends (P and N) of the cantilever beam is constrained
to be zero, and the center point (O) is applied by a concentrated force F in z direction as shown in
Figure 1b. x is in x direction along the length of cantilever beam. The total length of the cantilever
beam (PN) is approximately 2l. According to the data [20], the maximum deflection of the center point
O under the concentrated force F can be obtained by Equation (1):

δ =
Fl3

24EI
(1)
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The stiffness kbeam of the linear cantilever beam (AB) in z direction can be expressed by Equation (2)
according to Hooke’s Law:

kbeam =
F
δ
=

24EI
l3 (2)

where E and I are the Young’s modulus and the bending moment of inertia of the linear cantilever
beam, respectively. I can be defined as:

I =
bh3

12
(3)

Substituting Equation (3) into Equation (2), the stiffness k of the stationary electrode in sample 1
can be written as:

k = 2kbeam =
4Ebh3

l3 (4)
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Figure 1. (a) Two-dimensional sketch of the stationary electrode in sample 1; and (b) the plane 
structure diagram of the cantilever beam in sample 1. 

The analytical stiffness k of the stationary electrode in sample 1 is proportional to b and ℎଷ, while 
being inversely proportional to ݈ଷ. Figure 2a–c shows that the stiffness k of the stationary electrode 
in sample 1 varies with h, b, and l. It reveals that h and l more easily affects the stiffness k compared 
to b. However, the dimension of the fabricated microswitch cannot be too large because of the 
expected small footprint in the structure design. Therefore, the length l cannot be too long. Thus, the 
best way to control the stiffness k is to change the thickness h instead of b and l. The analytical models 
neglect the deformation from beam elongation, beam shortening, and shear. This assumptions is 
reasonable because these deformations are smaller than the deformation from bending moment and 
the deflection	from torsion. The limitations of the analytical models neglect a series of holes in the 
cantilever beam. 

The mouth-shape crossbeam in sample 2 (see Figure 3d) is used as the stationary electrode. 
Considering that the calculation of deflection in sample 2 must consider more factors than the one in 
sample 1 because of its complicated struture, the calculated process of the analytical solution in 
sample 2 is very fussy and difficult. Therefore, only the analytical solution in sample 1 is provided in 
this paper. 

Figure 1. (a) Two-dimensional sketch of the stationary electrode in sample 1; and (b) the plane structure
diagram of the cantilever beam in sample 1.

The analytical stiffness k of the stationary electrode in sample 1 is proportional to b and h3,
while being inversely proportional to l3. Figure 2a–c shows that the stiffness k of the stationary
electrode in sample 1 varies with h, b, and l. It reveals that h and l more easily affects the stiffness k
compared to b. However, the dimension of the fabricated microswitch cannot be too large because of
the expected small footprint in the structure design. Therefore, the length l cannot be too long. Thus,
the best way to control the stiffness k is to change the thickness h instead of b and l. The analytical
models neglect the deformation from beam elongation, beam shortening, and shear. This assumptions
is reasonable because these deformations are smaller than the deformation from bending moment and
the deflection from torsion. The limitations of the analytical models neglect a series of holes in the
cantilever beam.

The mouth-shape crossbeam in sample 2 (see Figure 3d) is used as the stationary electrode.
Considering that the calculation of deflection in sample 2 must consider more factors than the one
in sample 1 because of its complicated struture, the calculated process of the analytical solution in
sample 2 is very fussy and difficult. Therefore, only the analytical solution in sample 1 is provided in
this paper.
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Figure 2. Dependence of analytical stiffness k of the stationary electrode on its geometric parameters 
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stiffness k versus the length l. 
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Two vertically-driven inertial microswitches with differently-shaped crossbeams as the 
stationary electrode for extending contact duration are designed. It can be seen from Figure 3a that 
the inertial microswitch of sample 1 is mainly made up of two parts. The first part is one elastic cross 
beam as the stationary electrode. A series of holes in the stationary electrode can facilitate the final 
device’s release. Additionally, it can reduce the stiffness of the elastic crossbeam and effectively 
extend the contact duration. The second part is the suspended proof mass which connects with four 
serpentine springs. The previous report [10,11] and simulations in the present work show that the 
contact time of sample 1 is less than 100 µs. In order to further prolong the switch-on time, one 
redesigned inertial micro-switch of sample 2 with a mouth-shaped cross beam as the stationary 
electrode is shown in Figure 3b. The geometric parameters of the stationary electrode in samples 1 
and 2 are shown in Figure 3c,d. The thickness (h), width (b), and length (l) of the stationary electrode 
are chosen as variables. Figure 3e,f show the top view and side views of the inertial microwitch. The 
main geometric parameters are marked in Table 1. 

 

Figure 2. Dependence of analytical stiffness k of the stationary electrode on its geometric parameters
(h, b, l): (a) the stiffness k versus the thickness h; (b) the stiffness k versus the width b; and (c) the
stiffness k versus the length l.

2.2. Structure Design

Two vertically-driven inertial microswitches with differently-shaped crossbeams as the stationary
electrode for extending contact duration are designed. It can be seen from Figure 3a that the inertial
microswitch of sample 1 is mainly made up of two parts. The first part is one elastic cross beam as
the stationary electrode. A series of holes in the stationary electrode can facilitate the final device’s
release. Additionally, it can reduce the stiffness of the elastic crossbeam and effectively extend the
contact duration. The second part is the suspended proof mass which connects with four serpentine
springs. The previous report [10,11] and simulations in the present work show that the contact time of
sample 1 is less than 100 µs. In order to further prolong the switch-on time, one redesigned inertial
micro-switch of sample 2 with a mouth-shaped cross beam as the stationary electrode is shown in
Figure 3b. The geometric parameters of the stationary electrode in samples 1 and 2 are shown in
Figure 3c,d. The thickness (h), width (b), and length (l) of the stationary electrode are chosen as
variables. Figure 3e,f show the top view and side views of the inertial microwitch. The main geometric
parameters are marked in Table 1.
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When the mass-spring system is shocked by an acceleration in its sensing direction (z direction), 
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Figure 3. Three-dimensional view of the micro-switch (a) in sample 1 and (b) in sample 2; 2D sketch
of the stationary electrode (c) in sample 1 and (d) in sample 2; (e) top view of the whole structure;
and (f) side view of one-half structure.

Table 1. Main geometric parameters of the designed device.

Components Geometric Parameters Value (µm)

Proof mass
Thickness t1

app:ds:length 80

Length L 620

gaps x1 5
x2 15

spring

Thickness t2 10
Width w 12

Inside diameter r 10
Length d 180

Fixed electrode
Thickness h variable

Length l variable
Width b variable

2.3. Simulation

When the mass-spring system is shocked by an acceleration in its sensing direction (z direction),
the sensing movable system can be described as follows [21]:

m
..
x + c

.
x + kx = ma(t) (5)

where m stands for the proof mass, x is the displacement, c is the damping coefficient, k is the whole
system, stiffness and a(t) represents the applied acceleration.

One-quarter of the inertial microswitch will be simulated by the commercial ANSYS software
in order to save computing time, as shown in Figure 4a. The symmetric boundary conditions were
applied onto the symmetric surface of the model. The end sections of the fixed electrode and the
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two suspended serpentine springs away from the proof mass are constrained to zero in all degrees of
freedom. The serpentine springs and the stationary electrode have the finest mesh in order to model the
dynamic contact process more accurately. While, for the proof mass, only the region near the springs
has the finer mesh grid for saving the computing time. Transient analysis has been introduced to gain
the displacement curves changing with the time. In this simulation, we selected SOLID 186, TARGE170,
and CONTA174 as the element types with the SWEEP method of meshing the model. The contact
pair between the stationary electrode and the proof mass is shown in Figure 4b. Electroplated metal
nickel (Ni) is chosen as the main structure material. In light of our previous experimental results,
the properties of electroplated nickel are as follows: Young’s modulus is 171.5 GPa, Poisson’s ratio is
0.3, and density is 8.96 g·cm−3 [22].
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Figure 4. (a) ANSYS finite element simulation model of the inertial microswitch in sample 1;
(b) its contact pair in sample 1.

2.3.1. Dependence of the Contact Time on Different Shape of the Stationary Electrode

For a microswitch device, the shape of the stationary electrode is a crucial factor which can
affect the contact time. In the designed inertial microswitch, samples 1 and 2 have the same
geometric parameters (h, b, l) of the stationary electrode. In order to study the effect of the stationary
electrode’s shape on the contact time, the same acceleration a0 (288 g) applied to the two FE models
in samples 1 and 2. Figure 5 shows the simulated dynamic response displacement curves of the
proof mass and the contact time of samples 1 and 2 under the acceleration 288 g is 26 µs and 53 µs,
respectively. The simulated result in Figure 5 shows that the contact time relates to the shape of the
stationary electrode. This reason is mainly that the shape of the stationary electrode determine the
stiffness of the stationary electrode compliant cantilever beam. The contact time decreases with the
increase of the stiffness of elastic cross beam. It can be seen from Figure 2 that the stiffness of the
mouth-shaped stationary electrode in sample 2 is smaller than the one in sample 1. Thus, the contact
time is longer in sample 2. This reveals that the shape of the stationary electrode is also a key factor
to prolong the contact time. Figure 6 shows the stress distribution of the serpentine springs and the
stationary electrode in sample 1 reaching the maximum displacement when the acceleration 288 g was
applied to the microswitch. It is evident that the maximum stress spot (73 MPa) is smaller than the
yield strength (317 MPa) of electroplated nickel. Therefore, it is a purely elastic deformation during the
whole dynamic contact process and the springs cannot break.
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2.3.2. Effect of Thickness of the Stationary Electrode on the Contact Time

In addition, the thickness of the stationary electrode has also a great impact on the contact time.
For the inertial microswitch, decreasing the thickness of the stationary electrode is a key method to
extend contact duration. In order to study the impact of the thickness (h) of the stationary electrode on
the contact time, the width (b) and length (l) of the stationary electrode in samples 1 and 2 are invariant
and set as 51.5 µm and 550 µm, respectively. The stiffness of the two designs of elastic cross cantilever
beams was simulated by ANSYS software [23]. The simulated stiffness of the stationary electrode k = F

δ

can be obtained according to Hooke’s law. Figure 7 shows that the stiffness of the stationary electrode
increases with the thickness, and the stiffness in sample 1 is larger than the one in sample 2 for the
same thickness. When samples 1 and 2 are shocked by the same acceleration 288 g, the contact time of
the inertial microswitch as a function of the thickness (h) is shown in Figure 8. The simulated results
indicate that the contact time decreases with the increase of the thickness (h). That is to say, the contact
time of the inertial micro-switch device decreases with the increase of the stiffness of the stationary
electrode. It can be seen from the plot in Figure 8 that the contact time in sample 2 is larger than the
one in sample 1 since the stiffness of the stationary electrode in sample 2 is smaller compared to the
one in sample 1. It is evident that the contact time can be controlled by changing the thickness of the
stationary electrode.
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2.3.3. Effect of Width of the Stationary Electrode on the Contact Time

It is well known that the width (b) of the stationary electrode also has a great impact on the contact
time. For the inertial micro-switch, minimizing the stiffness of the stationary electrode is a crucial way
to prolong the contact time. One of the best ways to lessen the stiffness of the stationary electrode is to
lessen its width (b). It can be seen from Figure 9 that the stiffness of the stationary electrode increases
with the width (b). Figure 10 shows the contact time-width (b) curves of samples 1 and 2 under the
applied acceleration 288 g. The contact time in samples 1 and 2 decreases with the increase of the
width (b) of the stationary electrode. That is to say, the contact time decreases with the increase of the
stiffness of the stationary electrode. It is evident that the contact time can be controlled by changing
the width (b) of the stationary electrode. It can be seen from Figure 10 that the contact time in sample 2
is larger than the one in sample 1 since the stiffness of the stationary electrode in sample 2 is smaller.
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2.3.4. Effect of Length of the Stationary Electrode on the Contact Time

For a microswitch device, length (l) of the stationary electrode is a key factor affecting the contact
time of the inertial micro-switch. In the designed inertial microswitch, samples 1 and 2 have the same
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geometric parameters (h, b) of the stationary electrode, but length (l) is variable. Figure 11 shows the
stiffness-length curves of the stationary electrode in samples 1 and 2 under the acceleration 288 g.
It can be seen that the stiffness of the stationary electrode decreases as the length increases. At the same
time, Figure 12 shows that the contact time increases with the length of the stationary electrode. It can
be seen from Figure 12 that the contact time in sample 2 is larger than the one in sample 1, since the
softer the stationary electrode is, the longer the contact time is. However, overly large dimensions of
length are not a satisfactory choice since the dimension of the whole microswitch cannot be too large,
considering the miniature structure design.
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The thickness, width, and length of the stationary electrode in samples 1 and 2 are key factors
affecting the stiffness of the stationary electrode. Firstly, it reveals that the stiffness of the stationary
electrode increases with the thickness and width of the stationary electrode. Secondly, the stiffness
decreases with the increase of the length. Thirdly, the stiffness in sample 1 is larger than the one in



Sensors 2017, 17, 527 11 of 17

sample 2 for the same geometric parameters (h, b, l) of the stationary electrode. Therefore, the stiffness
relates to the shape of the electrode. In conclusion, the contact time decreases as the stiffness of
the stationary electrode increases. It has been proven that the simulated stiffness in sample 1 is in
agreement with the above analytical calculation in sample 1. The slight deviation may be attributed
to the following reasons: Firstly, the center cross part of the simulated model shown in Figure 3c is
an area while the center cross part of the analytical model in Figure 1a is simplified as a point(O);
secondly, the simulated model has a series of holes to reduce the stiffness.

3. Micro-Fabrication

The prototype of the vertically-driven inertial microswitch was fabricated by low-cost
nickel-electroplating technology. In this work, we selected PR AZP4620 as the mold and sacrificial
layer. We used electroplating nickel as the main structure material due to its excellent mechanical
property. The electroplating-nickel residue can be reduced by optimizing the electroplating conditions.
In the present work, the electroplating nickel’s condition can be listed as follows: temperature 45 ◦C,
current density 125 mA/cm2, and pH 4.0. The entire micro-fabrication process as shown in Figure 13
can be listed as follows:

(a) The Cr/Cu was sputtered on the insulated quartz substrate as the first seed layer. We can
electroplate the anchors of the spring and an array of raised strips after 10 µm photoresist
(PR, AZP4620) spining-on and patterning.

(b) The anchors which suspended the spring and the stationary electrode were electroplated in Ni
metal. Therefore, the first suspending layer gap (x1) can be formed.

(c) The four serpentine springs were electroplated after the second chromium/copper seed layer
was sputtered.

(d) The proof mass was electroplated up to its required thickness (70 µm) in terms of multiple
electroplated technology.

(e) A gap x2 (15 µm) between the proof mass and the stationary electrode was formed after the
anchors which suspend the stationary electrode were electroplated higher (15 µm) than the
proof mass.

(f) The stationary electrode was electroplated up to the required thickness.
(g) The photoresist was dissolved in 7% sodium hydroxide solution. Then the completed released

device which was rinsed in isopropyl alcohol was dried in the oven to avoid stiction.

The inertia microswitch was sealed using an all-metal cap that was fabricated by ultraviolet
Lithographie Galvanoformung Abformung technology. The dimension of the packaged single device
by epoxy adhesive bonding is about 2.4 mm × 1.9 mm × 1.1 mm, which is smaller than existing
devices [6]. The stationary electrode and the movable electrode are leaded from the sealed cap
at the bottom of the insulation layer, respectively. The encapsulated device substrate is cut into a
lot of discrete components. The scanning electron micrographs (SEM) of the completed released
microswitches (2.4 mm × 1.9 mm × 1.1 mm) in samples 1 and 2 are shown in Figure 14a,b.
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Figure 14. SEM photos of the fabricated inertial microswitch (a) with a cross beam as the stationary
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4. Experiment Test

It can be seen from Figure 15 that the drop hammer system was used to test the fabricated device.
The standard accelerometer, ADXL-193, which has a sensitivity of 8 mV/g and was made by Analog
Devices Inc. in Norwood, MA, USA, can be applied to the calibration. Simultaneously, the output
signal was collected by an Agilent 6000 oscilloscope which was made in Agilent Technologies Co. Ltd.,
Santa Clara, CA, USA. Firstly we can fix the test device and the accelerometer on the dropping table,
whose sensing direction is vertical to the base platform. The drop hammer could be dropped freely
onto the base platform from different pre-set height H as shown in Figure 14, generating different
accelerations which were applied to the test microswitch. It is evident that the amplitude of
the acceleration changes with the pre-set height H. The drop hammer can drop freely from a
different pre-set height H, and an array of heights correspond to a series of acceleration amplitudes.
The amplitude of the acceleration increases with H. The acceleration signal and the trigger signal can
be detected by the oscilloscope when the test microswitch switches on.
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When the drop hammer falls from the required height of 52 cm, a half sine wave acceleration
with the amplitude of 288 g which was applied to the test device could be generated. The oscilloscope
records the test results of the fabricated micro-switches with different stationary electrode’s geometric
parameters h, b, and l.

The original design inertial micro-switch in sample 1 (h = 12 µm, b = 51.5 µm, and l = 550 µm) was
shocked by the applied acceleration of 288 g. As is shown in Figure 16a, the test contact time was about
62 µs, which is much longer than the one reported elsewhere. In order to further extend the contact
duration, the redesigned inertial microswitch in sample 2 (h = 8 µm, b = 51.5 µm, and l = 550 µm) can
be triggered with 125 µs contact time under the applied acceleration of 288 g as shown in Figure 16b.
The stationary electrode in the first case is one elastic crossbeam, and its stiffness is high. Therefore,
the contact time is short. The redesigned stationary electrode in the second case is a mouth-shape
crossbeam with a low stiffness, and it can further prolong the switch-on time. Figure 17 indicates a
series of test contact time with a different thickness of the stationary electrode. Each thickness (h) test
result is the average value of three samples’ repeated experiments. According to the former analytical
and the simulation results, it reveals the thickness h easily affects the stiffness k and the plane geometric
structure cannot be changed. The simulated results indicate that the contact time decreases with the
increase of the thickness (h). That is to say, the contact time of the inertial microswitch device decreases
with the increase of the stiffness of the stationary electrode. It can be seen from the plot in Figure 7 that
the contact time in sample 2 is larger than the one in sample 1. The test results, as shown in Figure 16,
have an agreement with these simulated results. The test contact time decreases with the increase
of the thickness of the stationary electrode as shown in Figure 17. The simulated result as shown in
Figure 8 is in accordance with these test results. The little difference between the simulated results
and test results is attributed to the fabrication imperfection and the deviation between the applied
acceleration and the ideal half-sine wave acceleration [10].
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(a) The geometric parameters (l, b, h) of the stationary electrode are 550 µm, 51.5 µm, and 12 µm
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and 8 µm in sample 2.
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5. Conclusions

A MEMS inertial microswitch with an elastic crossbeam stationary electrode for extending the
contact duration has been designed, simulated, and fabricated on a quartz substrate using surface
micromachining technology. The simulation reveals that the stiffness of the stationary electrode relates
to the shape of the stationary electrode and increases with the width (b) and thickness (h), but decreases
with the increase of length (l). Meanwhile, the contact time decreases with the increase of the stiffness
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of the stationary electrode. Both the analytical results and the simulated results indicate that among
all of the factors, h and l more easily affect the stiffness k compared to b. However, the dimension of
the whole microswitch cannot be too large considering the miniature structure design. Therefore, it is
not a workable way to prolong the contact time by increasing the length l too much. It is evident that
to reduce the thickness h will not affect the plane geometric dimension of the inertial microswitch.
Thus, the best and most convenient way to extend the contact duration is to reduce the thickness h.
Finally, the fabricated microswitch has been tested by a drop hammer system. The redesigned inertial
micro-switch of sample 2 (h = 8 µm, b = 51.5 µm, and l = 550 µm) can realize the contact time of
125 µs when a half-sine wave acceleration of 288 g is applied, which would facilitate the subsequent
signal processing in its application system. The test results indicate that the contact time increases
when decreasing the stiffness of the stationary electrode, which is in accordance with the simulated
ones. These conclusions obtained in this work will provide some guidance for the future design and
fabrication of the inertial microswitch.
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