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Abstract: Dynamic magnetic resonance imaging (MRI) has been extensively utilized for enhancing
medical living environment visualization, however, in clinical practice it often suffers from long data
acquisition times. Dynamic imaging essentially reconstructs the visual image from raw (k,t)-space
measurements, commonly referred to as big data. The purpose of this work is to accelerate big
medical data acquisition in dynamic MRI by developing a non-convex minimization framework.
In particular, to overcome the inherent speed limitation, both non-convex low-rank and sparsity
constraints were combined to accelerate the dynamic imaging. However, the non-convex constraints
make the dynamic reconstruction problem difficult to directly solve through the commonly-used
numerical methods. To guarantee solution efficiency and stability, a numerical algorithm based on
Alternating Direction Method of Multipliers (ADMM) is proposed to solve the resulting non-convex
optimization problem. ADMM decomposes the original complex optimization problem into several
simple sub-problems. Each sub-problem has a closed-form solution or could be efficiently solved
using existing numerical methods. It has been proven that the quality of images reconstructed from
fewer measurements can be significantly improved using non-convex minimization. Numerous
experiments have been conducted on two in vivo cardiac datasets to compare the proposed method
with several state-of-the-art imaging methods. Experimental results illustrated that the proposed
method could guarantee the superior imaging performance in terms of quantitative and visual image
quality assessments.

Keywords: compressed sensing; dynamic magnetic resonance imaging; low-rank; non-convex
optimization; robust principal component analysis

1. Introduction

Magnetic resonance imaging (MRI) has been established as an advanced non-invasive diagnostic
imaging technique for visualizing the structure and functionality of the human body [1]. Many efforts
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have been made to dramatically improve the imaging speed and quality. In particular, the imaging
of dynamic medical information plays an important role in enhancing medical living environment
visualization [2–7]. Dynamic imaging has been becoming more and more important for several clinical
applications, such as perfusion [8], cardiac [9] and functional imaging [10]. A large number of advanced
image processing techniques (e.g., segmentation [11–13], classification [14–16], denoising [17,18] and
deconvolution [19,20], etc.) have been developed based on MRI data to assist medical diagnosis.

MRI often suffers from long data acquisition times in clinical practice. Essentially, dynamic MRI,
which reconstructs the visual image from raw (k,t)-space measurements, is commonly referred to
as big data computing. The inherently slow acquisition speed often makes it difficult for dynamic
MRI to capture high spatio-temporal resolutions, high signal-to-noise ratio, and proper volume
coverage. The low spatio-temporal resolutions easily lead to erroneous diagnostic information and
inaccurate estimation of tracer kinetic parameters, especially for dynamic susceptibility contrast
MRI (DSC-MRI) [21]. The current undersampled reconstruction methods are of importance for the
acceleration of imaging times in dynamic MRI. The spatio-temporal resolutions could be improved
accordingly to capture the rapid tracer kinetics and enhance the diagnostic accuracy [22]. In particular,
the accurate estimation of tracer kinetics plays a crucial role in quantifying the cerebral blood flow
(CBF), cerebral blood volume (CBV) and mean transit time (MTT) to assess brain perfusion [23].
The high spatio-temporal resolutions could provide more medical information which is able to assist
physicians in making an accurate diagnosis. Thus, there is a great potential to develop advanced
imaging techniques to accelerate dynamic MRI in clinical practice.

Compressed sensing (CS) [24–29], which exploits the fact that an image can be sparsely
represented in a certain transform domain, has been successfully used in dynamic MRI, such as k-t
SPARSE [30], k-t FOCUSS [31,32] and k-t SPARSE-SENSE [33]. Note that the dynamic MRI sequence is
both spatially and temporally correlated. The reconstructed results yielded by above CS-based methods
may suffer from low spatial or temporal resolution. The purpose of this study is to accelerate dynamic
MRI with high spatial and temporal resolutions. Recently, many efforts have been made to exploit
the low-rank property of dynamic MRI sequence, instead of its only sparsity. Inherently, low-rank
matrix completion can be considered as an effective extension of CS, which recoveries the missing
or corrupted entries of a matrix under low-rank and incoherent conditions [34–37]. For instance,
Lingala et al. [8,38] and Zhao et al. [39] have investigated the low-rank and sparse properties of the
Casorati matrix (i.e., spatio-temporal MRI signal) and combined them together to further accelerate
the dynamic MRI. The low-rank plus sparse decomposition model, referred to as robust principal
component analysis (RPCA) [40,41], has also attracted increasing attention recently. Many results in
the literature showed that it is possible to recover both low-rank and sparse components from a few
incoherent observations under some assumptions [40,42,43].

Motivated by the theory of RPCA, Trémoulhéac et al. [44] proposed to reconstruct the dynamic
MRI as the sum of low-rank plus sparse components. In this case, the dynamic MRI reconstruction
problem was formulated as a least-squares optimization problem which was regularized by convex
low-rank and sparsity constraints. Experimental results have demonstrated the effectiveness under
different imaging conditions. The combination of low-rank with sparsity constraints can significantly
improve the dynamic imaging result compared with the reconstruction models regularized by low-rank
or sparsity constraint alone. It is generally thought that the superior performance of the combination
version benefits from the full use of MRI data coherence and redundancy. Current studies [38,45–47]
have shown that non-convex minimization could generate sparser solutions and provide better
reconstruction in practice. It inherently means that the potential solutions can be sparsely represented
in certain transform domains. Non-convex minimization has gained increasing attention in the fields
of numerical optimization, image processing and computer version [48–51]. To make non-convex
minimization more practical, a large number of numerical methods have been presented to solve the
corresponding optimization problem. Inspired by success of non-convex optimization, there is a great
potential to use the non-convex Schatten-p norm (0 < p < 1) as the low-rank constraint. In addition,
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to further enhance the sparse component recovery, non-convex Lq quasi-norm (0 < q < 1) can be
effectively adopted to yield better result compared with commonly-used convex L1-norm [52–56].
In this paper, non-convex low-rank and sparsity constraints will be incorporated into our dynamic
MRI reconstruction framework to improve imaging speed and quality.

In this work, we propose to formulate the undersampled dynamic MRI reconstruction as a
least-squares optimization problem regularized by non-convex low-rank and sparsity constraints.
The quality of the reconstructed images can be significantly improved by taking advantages of these
constraints. However, due to the non-convex and non-smooth natures of the constraints, it is difficult
to directly solve the resulting optimization problem through commonly-used numerical methods.
To guarantee solution stability and efficiency, a numerical optimization algorithm based on Alternating
Direction Method of Multipliers (ADMM) is proposed to solve the resulting optimization problem.
In particular, the original non-convex non-smooth optimization problem will be decomposed into
several subproblems by introducing several intermediate variables. These subproblems have simple
closed-form solutions or could be efficiently handled using existing numerical methods. Thus, the
main contributions of this paper mainly rely on the non-convex dynamic MRI reconstruction model
and its numerical optimization algorithm. Experimental results on two in vivo cardiac MRI datasets
have verified the effectiveness of the proposed method in terms of both quantitative and qualitative
image quality evaluations.

The remainder of this paper is organized into several sections. The following section briefly
introduces the basic concepts of dynamic MRI and robust principal component analysis. In Section 3,
we tend to develop a non-convex minimization framework for accelerating dynamic MRI data
acquisition using both non-convex low-rank and sparsity constraints. The resulting optimization
algorithm is efficiently solved using an ADMM-based numerical algorithm. Numerous experiments
on two in vivo cardiac datasets are performed in Section 4. Finally, we conclude this work in Section 5
by summarizing our contributions.

2. Background

2.1. Dynamic MRI from Partial Measurements

We denote the dynamic MRI to be reconstructed as a spatio-temporal signal I(x, t), where x is the
spatial coordinate and t denotes time. The imaging equation in dynamic MRI is defined as follows:

S(k, ti) =
∫

I(x, ti) exp(−j2π(k·x))dx + N(k, ti) (1)

for i = 1, 2, · · · , T, where S(k, t) denotes the measured (k, t)-space signal, and N(k, t) is assumed to
be additive complex-valued Gaussian noise. For the sake of simplicity, we consider a discrete image
model in this dissertation. Given Nt MR images of dimension Nx × Ny. The spatio-temporal signal
I(x, t) can be rearranged into a matrix form, i.e.,

F =

 I(1, t1) · · · I(1, tNt)
...

. . .
...

I
(

Nx Ny, t1
)
· · · I

(
Nx Ny, tNt

)
 ∈ CNx Ny×Nt

The Casorati matrix F, whose first and second directions respectively represent the spatial and temporal
dimensions, is approximately low-rank due to the strong correlation existed between dynamic MR
images [38]. Thus, a finite-dimensional spatio-temporal MRI model equivalent to Equation (1) can be
written as:

d = A(F) + n (2)

where d ∈ CP denotes the vector of the stacked (k, t)-space measurements, A : CNx Ny×Nt → CP is
the undersampled Fourier transform operator with P � Nx Ny × Nt, n ∈ CP is the Gaussian noise
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vector. Recovering the matrix F from a limited number of measurements d is a typical ill-conditional
problem. To cope with the ill-conditional nature, there has been considerable interest in exploiting
low-rank and sparisty of the dynamic images to enhance the reconstruction accuracy [35]. Thus, there
is a great potential to combine low-rank with sparsity constraints to improve dynamic MRI from
partial measurements.

2.2. Robust Principal Component Analysis

Recent work has shown that robust principal component analysis (RPCA) [40,41] is capable
of decomposing a Casorati matrix X into a low-rank component L and a sparse component S by
constraining the rank of L and the sparsity of S simultaneously. It is worth noting that RPCA can be
regarded as a robust extended version of traditional PCA [57]. PCA is performed based on the basic
assumption of additive Gaussian noise and uses the sum of squared differences as the loss function.
Theoretically, it works well as long as the value of noise is small enough. However, if the data are
perturbed by high-level noise, it will be impossible to generate satisfactory reconstruction results since
the traditional PCA could be easily corrupted by these gross errors [58]. It is well known that raw
(k,t)-space data are often obtained from the MRI machines under complex imaging conditions. The raw
data may be significantly corrupted by the outliers and large noise in clinical practice. If we directly
adopt PCA to reconstruct the MRI images, it will be difficult to guarantee high-quality reconstruction
due to the inherent limitation of PCA. In contrast, RPCA can perform well when the observed data
are corrupted by severe perturbations because of its robust properties. The recent theoretical results
indicate that the low-rank matrix can be exactly recovered by considering the following constrained
convex minimization problem:

min
L,S
‖L‖∗ + ρ‖S‖1

such that X = L + S
(3)

where ρ is a weight parameter, the nuclear norm ‖L‖∗ is defined as ‖L‖∗ =
r
∑

i=1
σi with σ1, σ2, · · · , σr

being the singular values of L and r being the rank of L. In the literature, the classical ADMM [59]
can be exploited to efficiently solve the RPCA Problem (3) based on the following augmented
Lagrangian function:

LA = ‖L‖∗ + ρ‖S‖1 +
α

2
‖X− (L + S) +

Z
α
‖2

2 (4)

where Z denotes the Lagrange multiplier and α is a positive penalty parameter. ADMM makes full use
of the separable structure of Equation (4), and decomposes Equation (4) over primal variables L and S.
The iterative procedure is detailedly summarized in Algorithm 1.

In particular, ADMM minimizes LA in Equation (4) over L and S separately, and then updates the
Lagrange multiplier Z. The corresponding L-subproblem and S-subproblem are given by:

Lk+1 = min
L
‖L‖∗ +

α

2
‖
(

X− Sk +
Zk

α

)
− L‖2

2 (5)

Sk+1 = min
S

ρ‖S‖1 +
α

2
‖
(

X− Lk+1 +
Zk

α

)
− S‖2

2 (6)

where k represents the iteration number. The closed-form solutions to Equations (5) and (6)
are respectively obtained using the singular value thresholding operator Tτ(Y) = USτ(Ξ)VH

(where Y = UΞVH denotes the singular value decomposition) and shrinkage operator
Sτ(Y) = sign(Y)max(|Y| − τ, 0), i.e.,

Lk+1 = Tα−1

(
X− Sk + α−1Zk

)
(7)
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Sk+1 = Sρ/α

(
X− Lk+1 + α−1Zk

)
(8)

In Equations (7) and (8), the definition of sign function sign(·) is given by:

sign(s) =


1, s > 0
0, s = 0
−1, s < 0

Given the fixed values of Lk+1 and Sk+1, the Lagrange multiplier Z is accordingly updated
as Zk+1 = Zk + α

(
X− Lk+1 − Sk+1

)
. The parameter ρ can be seen as a trade-off between

low-rank and sparse components. The theoretically suggested value introduced in [40] is set to

ρ = 1/
√

max
(

Nx Ny, Nt
)
, where Nx Ny and Nt denote the number of pixels in each frame and the

number of time-frames in Casorati matrix X, respectively.

Algorithm 1. RPCA

1 Input: Casorati matrix X, decomposition parameter ρ > 0
2 Initialize: S0 = Z0 = 0, k= 0
3 while stopping criterion is not satisfied do

4 Lk+1 = Tα−1

(
X− Sk + α−1Zk

)
5 Sk+1 = Sρ/α

(
X− Lk+1 + α−1Zk

)
6 Zk+1 = Zk + α

(
X− Lk+1 − Sk+1

)
7 end while
8 Output: (L∗, S∗)

3. k-t NCRPCA: Formulation

3.1. Joint Non-Convex Low-Rank and Sparsity Constraints

In this study, it is assumed that the Casorati matrix F can be decomposed as a low-rank component
L and a sparse component S. Figure 1 shows the L + S decomposition of an axial cardiac MRI dataset,
where L captures the corrected background between time frames and S captures the temporal or
dynamic information.
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Figure 1. The low-rank plus sparse (L + S) decomposition of a fully sampled 2D axial cardiac MRI
dataset. RPCA decomposes the x-t (or y-t) temporal profiles (i.e., Casorati matrix) F into a low-rank
component L and a sparse component S. The singular values of both x-t and y-t L tend to zero quickly
as their index increases. S can be effectively represented using a sparsifying transform.
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In can be observed that the singular values of L tend to zero quickly as their index increases, and
S can be effectively represented using a sparsifying transform. Based on the spatio-temporal MRI
Model (2) and RPCA (3), Trémoulhéac et al. [44] proposed to reconstruct the dynamic MRI F as the
sum of low-rank L plus sparse S components. The dynamic MRI reconstruction can be formulated as a
least squares optimization problem regularized by convex low-rank and sparsity constraints, i.e.,

min
L,S

1
2
‖A(L + S)− d‖2

2 + µ1‖L‖∗ + µ2‖Ft(S)‖1 (9)

where both µ1 and µ2 are positive regularization parameters, and Ft represents the Fourier transform
operator along the temporal direction. The assumption behind the use of this sparsifying transform
is that the dynamic MRI in time exhibits strong correlation or periodicity. The unclear norm ‖ ◦ ‖∗ is
equivalent to the L1-norm ‖ ◦ ‖1 because the singular values are all nonnegative. Current studies in
the literature [38,45–47] illustrated that non-convex minimization could yield sparser solutions and
provide consistently better performance over convex minimization. Thus, there is a great potential
to use non-convex Schatten-p norm (0 < p < 1) as the low-rank constraint. To improve the sparse
component recovery, non-convex Lq quasi-norm (0 < q < 1) can yield better recovery results over
commonly-used convex L1-norm [52–55]. Motivated by the success of non-convex Lq quasi-norm,
we propose to replace the convex L1-norm ‖Ft(S)‖1 by its non-convex version ‖Ft(S)‖q

q in Equation (9)
to further improve the quality of reconstructed image.

With the above notations, we propose to formulate undersampled dynamic MRI reconstruction as
a least-squares optimization problem regularized by non-convex low-rank and sparsity constraints, i.e.,

min
L,S

1
2
‖A(L + S)− d‖2

2 + µ1‖L‖p
p + µ2‖Ft(S)‖q

q (10)

where ‖L‖p
p =

min{Nx Ny ,Nt}
∑

i=1
σ

p
i (L) for some p ∈ (0, 1) denotes the non-convex low-rank constraint

in which σi(L) is the ith largest singular value of L and min
{

Nx Ny, Nt
}

is the rank of the matrix L.

The non-convex sparsity constraint, defined as ‖Ft(S)‖q
q =

Nx Ny Nt

∑
i=1
|(Ft(S))i|

q for some q ∈ (0, 1), is used

to promote sparsity in Fourier transform domain. The positive regularization parameters µ1 and µ2 are
adjusted to balance the trade-off between the data-fidelity term and the joint non-convex low-rank and
sparsity constraints. The sparsifying transform Ft is incoherent with the Fourier sampling operator A,
thus the proposed regularized reconstruction is well posed in practice.

3.2. Numerical Optimization Algorithm

The resulting optimization Problem (10) includes both non-convex low-rank and sparsity
constraints. The introduced non-convex constraints make dynamic reconstruction problem difficult
to solve. Thus, it is intractable to solve Problem (10) directly using current minimization schemes.
To guarantee solution stability and efficiency, an ADMM-based optimization algorithm is proposed in
this work. Two auxiliary variables P = L and Q = Ft(S) are first introduced and the unconstrained
minimization Problem (10) is then transformed into the following constrained version:

min
P,Q,L,S

1
2
‖A(L + S)− d‖2

2 + µ1‖P‖
p
p + µ2‖Q‖

q
qsubject to P = L, Q = Ft(S) (11)

whose associated augmented Lagrangian function is given by:

LA =
1
2
‖A(L + S)− d‖2

2 + µ1‖P‖
p
p + µ2‖Q‖

q
q +

α1

2
‖L− P +

Z1

α1
‖2

2 +
α2

2
‖Ft(S)−Q +

Z2

α2
‖2

2 (12)
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where Z1 and Z2 denote the Lagrange multipliers, α1 and α2 represent positive penalty parameters
that control the weights of penalty terms. As α1, α2 → ∞ , solution of the above Problem (12) tends to
that of Problem (11).

Since the variables P, Q, L and S are coupled together in the augmented Lagrangian Function (12),
it is computationally intractable to solve them simultaneously. ADMM minimizes LA over P, Q, L and
S separately leading to several subproblems which have closed-form solutions or could be efficiently
solved using existing numerical methods. This decouples the individual updates of P, Q, L and S,
therefore the original optimization task can be simplified as follows:

Pk+1 = min
P

µ1‖P‖
p
p +

α1

2
‖P−

(
Lk + Zk

1/α1

)
‖2

2 (13)

Qk+1 = min
Q

µ2‖Q‖
q
q +

α2

2
‖Q−

(
Ft

(
Sk
)
+ Zk

2/α2

)
‖2

2 (14)

Lk+1 =
1
2
‖A
(

L + Sk
)
− d‖2

2 +
α1

2
‖L−

(
Pk+1 − Zk

1/α1

)
‖2

2 (15)

Sk+1 =
1
2
‖A
(

Lk+1 + S
)
− d‖2

2 +
α2

2
‖Ft(S)−

(
Qk+1 − Zk

2/α2

)
‖2

2 (16)

The first P-subproblem (13) can be considered as a similar form of the standard unclear norm
minimization problem. To achieve an efficient solution, the iterative singular value thresholding
scheme [60,61], originally proposed for unclear norm minimization, can be extended to solve (13)
which has a non-convex low-rank constraint. Let P̃k = Lk + Zk

1/α1, the solution Pk+1 is given by:

Pk+1 =
min{Nx Ny ,Nt}

∑
i=1

max

(
σi −

µ1σ
p−1
i

α1
, 0

)
uivT

i (17)

where the superscript T denotes the transpose (conjugate transpose) operator for real (complex)
matrices or vectors. In Equation (17), ui, vi and σi respectively represent the singular vectors and
values of P̃k. Note that, if p = 1, the expression in Equation (17) can be regarded as equivalent to a
standard shrinkage algorithm for nuclear norm optimization problem.

It is difficult to directly solve the second subproblem (14) owing to the non-convex sparsity
constraint. Motivated by the successful applications of soft thresholding [62] and iterative
shrinkage/thresholding [63], a generalized iterated shrinkage algorithm (GISA) algorithm [64] is
introduced in this study to efficiently solve the non-convex minimization problem. In particular,
the Q-subproblem (14) can be decoupled into Nx Ny×Nt independent and unconstrained subproblems.
The standard version of these subproblems is given by:

y∗ = min
y

µ̃|y|q + 1
2
(y− c)2 (18)

where µ̃ is a positive parameter, y denotes the scalar variable that needs to be estimated, and c is a
known scalar constant. As discussed in [64], the proposed GISA algorithm can be adopted to efficiently
solve the non-convex Problem (18) with high accuracy. Therefore, the optimal solution of (18) can be
obtained as follows:

y∗ =

{
0, if |c| ≤ τµ̃

sign(c)STq(|c|, µ̃), if |c| > τµ̃
(19)

where:
τµ̃ = (2µ̃(1− q))1/(2−q) + µ̃q(2µ̃(1− q))(q−1)/(2−q)

and STq(|c|, µ̃) can be obtained by iteratively performing the following equation:

STq(|c|, µ̃)− |c|+ µ̃q
(
STq(|c|, µ̃)

)q−1
= 0
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Thus, solution Qk+1 of the subproblem (14) is given by:

Qk+1 =

 0, if
∣∣∣Ft

(
Sk
)
+ Zk

2/α2

∣∣∣ ≤ τµ2/α2

sign
(

Ft

(
Sk
)
+ Zk

2/α2

)
STq

(∣∣∣Ft

(
Sk
)
+ Zk

2/α2

∣∣∣, µ2
α2

)
, if

∣∣∣Ft

(
Sk
)
+ Zk

2/α2

∣∣∣ > τµ2/α2

(20)

Both the third and fourth subproblems (15) and (16) are essentially quadratic and thus can be
solved analytically as:

Lk+1 = (AᵀA + α1I)−1
(

Aᵀd + α1Pk+1 − Zk
1 −AᵀASk

)
(21)

Sk+1 = (AᵀA + α2I)−1
(

Aᵀd + Fᵀt
(

α2Qk+1 − Zk
2

)
−AᵀALk+1

)
(22)

For fixed values of Pk+1, Qk+1, Lk+1 and Sk+1, the Lagrange multipliers Z1 and Z2 are updated
as follows:

Zk+1
1 = Zk

1 − α1

(
Pk+1 − Lk+1

)
(23)

Zk+1
2 = Zk

2 − α2

(
Qk+1 − Ft

(
Sk+1

))
(24)

Based on these analytic solutions, the proposed image reconstruction procedure is detailedly
summarized in Algorithm 2. The original non-convex optimization problem is decomposed into
four subproblems. Each of these subproblems has a closed-form solution or could be efficiently
solved using existing numerical method. Due to the non-convex and non-smooth constraints, it is
difficult to yield the resulting theoretical convergence result. However, the quality of reconstructed
image could be improved using the joint non-convex low-rank and sparsity constraints. In this
study, the proposed method is referred to as k-t NCRPCA for dynamic MRI reconstruction from
undersampled (k, t)-space measurements.

Algorithm 2. k-t NCRPCA

1 Input: Fourier transform A, (k, t)-space data d and parameters
(
µ1, µ2, α1, α2, p, q, τα2,µ2

)
.

2 Initialize: F0 = L0 = Aᵀd, S0 = Z0
1 = Z0

2 = 0.
3 while stopping criterion is not satisfied do

4 Pk+1 =
min{Nx Ny ,Nt}

∑
i=1

max
(

σi −
µ1σ

p−1
i

α1
, 0
)

uiv
ᵀ
i

5 Qk+1 =

 0, if
∣∣∣Ft

(
Sk
)
+ Zk

2/α2

∣∣∣ ≤ τµ2/α2

sign
(

Ft

(
Sk
)
+ Zk

2/α2

)
STq

(∣∣∣Ft

(
Sk
)
+ Zk

2/α2

∣∣∣, µ2
α2

)
, if
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)
7 Sk+1 = (AᵀA + α2I)−1
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)
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(
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(
Sk+1

))
10 Fk+1 = Lk+1 + Sk+1

11 α1 = 1.2α1 and α2 = 1.2α2

12 end while
13 Output: (F∗, L∗, S∗)

4. Experimental Results and Discussion

Experimental results on in vivo axial and coronal cardiac MRI datasets were conducted in this
study to demonstrate the superior performance of our proposed method in terms of both quantitative
and visual quality evaluations.
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4.1. Acquired Datasets

To evaluate the performance of dynamic MRI reconstruction, experiments were conducted on both
in vivo axial and coronal cardiac datasets. The 2D cardiac cine imaging was performed in a healthy
adult volunteer, with the approval from The Joint Chinese University of Hong Kong—New Territories
East Cluster Clinical Research Ethics Committee (The Joint CUHK-NTEC CREC). The datasets were
acquired from a clinical 3T MRI scanner (Achieva, Philips Medical Systems, Best, The Netherlands) with
an eight-channel receiver coil. The relevant imaging parameters were as follows: TR/TE = 3.8/1.9 ms,
flip angle = 45◦, image matrix size = 128 × 128, and temporal frames = 60. During cardiac
imaging, the volunteer was instructed to hold the breath for as long as possible. As shown in
Figure 2, the undersampled (k, t)-space measurements were obtained from 8, 12, 16, 24 and 32 radial
projections. To obtain a full Nyquist-sampled dataset, π

2 n projections (201 for n = 128 in our case)
should be acquired theoretically. Therefore, the above radial projections respectively correspond to
undersampling factors of ∼ 25, 16, 12, 8 and 6. In addition, the radial sampling pattern shown in
Figure 2 has uniformly spaced radial rays per frame and subsequent random rotations across time
frames for maintaining sampling incoherence. All experiments were implemented in MATLAB® (The
MathWorks Inc., Natick, MA, USA) using a computer with 3.1 GHz Intel Core i5-2500 PU, 4 GB RAM.
For comparison, the high-quality results reconstructed from fully sampled (k, t)-space measurements
were used as ground truth reference in our numerical experiments. The proposed method will be
compared with three state-of-the-art reconstruction methods, i.e., k-t FOCUSS [31,32], k-t SLR [38] and
k-t RPCA [44]. k-t FOCUSS is able to take full advantage of the sparse properties of dynamic MRI to
enhance reconstruction quality. The last two reconstruction methods were proposed by simultaneously
using the low-rank and sparsity constraints. The resulting optimization methods were effectively
solved through the alternating direction methods. Note that k-t RPCA can be considered as a special
case of our proposed method (10). The satisfactory reconstructed results were generated by these three
methods with the corresponding parameters manually optimized.

4.2. Parameters Settings

The accuracy of reconstruction results will be evaluated using the signal to error ratio (SER) [38]
and the structural similarity index (SSIM). SSIM is more consistent with the human visual perception.
The SER in mathematical form is defined as follows:

SER = −10 log10
‖Frec − Ftruth‖2

2
‖Ftruth‖2

2
(dB) (25)

where Frec and Ftruth denote the recovered matrix and the ground truth fully-sampled noiseless matrix,
respectively. Let frec and ftruth represent the time-frame magnitude images extracted from Frec and
Ftruth, respectively. The definition of SSIM between frec and ftruth is given by:

SSIM =

(
2µ frec µ ftruth

+ c1

)(
2σfrec ftruth

+ c2

)
(

µ2
frec

+ µ2
ftruth

+ c1

)(
σ2

frec
+ σ2

ftruth
+ c2

) (26)

where µ frec and µ ftruth
represent the local mean values, σfrec and σftruth

denote the standard deviations,
σfrec ftruth

is the covariance value, and c1 and c2 are two predefined constants to avoid instability with
weak denominator. Both SER and SSIM are able to provide quantitative indexes of reconstruction
results, but they cannot be well correlated with perceptual quality. Thus, the specific reconstructed
frames and the temporal profiles will also be shown to enhance visual comparisons.

The proposed method in Algorithm 2 mainly involves six parameters, i.e., µ1, µ2, α1, α2, p and q.

Inspired by previous work [40], a suggested µ2 is set to µ2 = ρµ1 with ρ = 1/
√

max
(

Nx Ny, Nt
)
, where

Nx Ny and Nt respectively denote the number of pixels in each frame and the number of time-frames
in Casorati matrix F. The regularization parameter µ1 is manually set as 2× 102 for k-t NCRPCA.
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The convergence rate of k-t NCRPCA is highly dependent on the selection of α1 and α2. It has been
proven that lower values of α1 and α2 result in a much faster convergence rate. However, the proposed
method would suffer from image quality degradation since constraints in Equation (4) are not satisfied.
Higher values of α1 and α2 can guarantee that all constraints can be satisfied, but generally lead to
slower convergence. To balance the trade-off between convergence rate and reconstruction accuracy,
the proposed method in Algorithm 2 employs a continuous strategy where both parameters α1 and α2

are initialized to small values, and are gradually increased until the stopping criteria is satisfied.
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Figure 2. Radial sampling trajectories with N number of uniformly spaced rays in each frame
with subsequent random rotations across time frames. From left to right: different number of
radial rays ranging from N = 8, 12, 16, 24 and 32 was considered to simulate the undersampled
(k, t)-space measurements.

The parameters p and q are respectively related to the non-convex low-rank and sparsity
constraints. They play an important role in the improvement of reconstructed image quality. Exhaustive
experiments in this section were performed to manually determine the optimal choices of p and q.
Take the in vivo axial cardiac dataset as an example, the undersampled (k, t)-space measurements
were generated using 12 radial projections. A series of searches within a predefined range of
parameters was performed to select the optimal values. For the sake of simplicity, the predefined
range [0.1, 0.2, · · · , 1.0] was set for both p and q. As shown in Figure 3, the proposed k-t NCRPCA is
more sensitive to p than q. It means that non-convex low-rank constraint proposed in method (10) can
significantly affect the reconstructed image quality. According to the quantitative results, the resulting
optimal parameters were set as p = 0.9 and q = 0.8 for axial cardiac dataset. These manually-selected
parameters were also used for coronal cardiac imaging experiments. The reconstruction results under
current parameter settings were consistently promising in our numerical experiments. Further study
on automatically calculating the above-discussed parameters for k-t NCRPCA is our future work.
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values of (p, q) were determined using the quality metric SER.

The standard for the stopping criteria in Algorithm 2 is that the relative change of F is sufficiently
small, i.e.,

‖Fk+1 − Fk‖2/‖Fk‖2 ≤ ε or k > kmax (27)

where ε and kmax, respectively, denote the predefined tolerance parameter and maximum number
of iterations.

For all reconstruction experiments, ε = 10−4 and kmax = 300 were respectively set in Equation (27).
It is fair to compare the experimental results because the results of other competing methods are all
generated using the authors’ codes with the parameters manually optimized.

4.3. Comparisons on In Vivo Axial Cardiac Dataset

In order to evaluate the reconstruction performance, the proposed k-t NCRPCA will be compared
to other dynamic reconstruction techniques, i.e., zero-filled inverse Fourier transform (ZF-IDFT),
k-t FOCUSS [31,32], k-t SLR [38] and k-t RPCA [44]. The good performance of k-t FOCUSS benefits
from the sparse properties of dynamic MRI. k-t SLR took into account both sparsity and spectral
priors to accelerate dynamic imaging. k-t RPCA formulated dynamic reconstruction as a least-squares
optimization problem which was regularized by a low-rank plus sparse prior.

Figure 4 visually illustrate the time-frame magnitude images, local magnification views, temporal
profiles and 1D profiles for the in vivo axial cardiac dataset with 8 radial projections (correspond to
undersampling factor of ∼ 25). It can be observed that ZF-IDFT generates the worst perceptual results.
The loss of information details severely degrades the image quality. k-t FOCUSS and k-t SLR could
reconstruct the main geometrical structures but seemed to overcome some fine details. As shown by
the white ellipse in y-t temporal profiles, both k-t RPCA and k-t NCRPCA perform well in preserving
fine image details to guarantee high image quality. For the sake of comparison, the reconstruction
performance is further confirmed by the 1D profiles. It is easy to see that the intensity values of k-t
NCRPCA are more structurally similar to the fully sampled reference image. In contrast, k-t FOCUSS,
k-t SLR and k-t RPCA lead to accuracy loss in determining the temporal profiles due to reconstruction
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biases. The good performance of k-t NCRPCA over other methods can possibly be attributed to the fact
that non-convex minimization benefits for improving image reconstruction from fewer measurements.Sensors 2017, 17, 509  12 of 18 

 

 
Figure 4. Qualitative results for in vivo axial cardiac dataset with 8 radial projections. From top to 
bottom: time-frame magnitude images, local magnification views (corresponding to the white square 
on the reference image), x-t temporal profiles, y-t temporal profiles, and 1D profiles (according to the 
point A on the reference image). Left colormap refers to local magnification views. Right colormap 
refers to magnitude images and temporal profiles. (The images are best viewed in full-screen mode.) 

To further evaluate the reconstruction result, more 1D profiles for different number of radial 
projections are visually illustrated in Figure 5. Similar to our findings in Figure 4, we can find 
significant performance improvement of k-t NCRPCA in comparison to other competing methods. 
The quantitative results are given in Table 1. It can be concluded that our proposed k-t NCRPCA 
achieves the best reconstruction results in all cases. 

Table 1. SSIM/SER comparison of various reconstruction methods on in vivo axial cardiac MRI 
dataset for different number of radial projections. 

Projections ZF-IDFT k-t FOCUSS k-t SLR k-t RPCA k-t NCRPCA
8 0.2555/3.4603 0.7376/11.2002 0.8802/12.6634 0.9476/19.6096 0.9503/20.1538 
12 0.3088/4.4626 0.7969/12.9951 0.9257/15.6441 0.9760/22.0393 0.9784/22.9995 
16 0.3608/5.3026 0.8518/15.2740 0.9518/17.7428 0.9769/22.9016 0.9789/23.7973 
24 0.4408/6.7989 0.9004/17.0383 0.9671/20.3897 0.9828/24.0802 0.9942/24.9276 
32 0.4981/8.1953 0.9257/20.4791 0.9831/22.8358 0.9870/25.1264 0.9956/25.8280 

Figure 4. Qualitative results for in vivo axial cardiac dataset with 8 radial projections. From top to
bottom: time-frame magnitude images, local magnification views (corresponding to the white square
on the reference image), x-t temporal profiles, y-t temporal profiles, and 1D profiles (according to the
point A on the reference image). Left colormap refers to local magnification views. Right colormap
refers to magnitude images and temporal profiles. (The images are best viewed in full-screen mode.)

To further evaluate the reconstruction result, more 1D profiles for different number of radial
projections are visually illustrated in Figure 5. Similar to our findings in Figure 4, we can find
significant performance improvement of k-t NCRPCA in comparison to other competing methods.
The quantitative results are given in Table 1. It can be concluded that our proposed k-t NCRPCA
achieves the best reconstruction results in all cases.

Table 1. SSIM/SER comparison of various reconstruction methods on in vivo axial cardiac MRI dataset
for different number of radial projections.

Projections ZF-IDFT k-t FOCUSS k-t SLR k-t RPCA k-t NCRPCA

8 0.2555/3.4603 0.7376/11.2002 0.8802/12.6634 0.9476/19.6096 0.9503/20.1538
12 0.3088/4.4626 0.7969/12.9951 0.9257/15.6441 0.9760/22.0393 0.9784/22.9995
16 0.3608/5.3026 0.8518/15.2740 0.9518/17.7428 0.9769/22.9016 0.9789/23.7973
24 0.4408/6.7989 0.9004/17.0383 0.9671/20.3897 0.9828/24.0802 0.9942/24.9276
32 0.4981/8.1953 0.9257/20.4791 0.9831/22.8358 0.9870/25.1264 0.9956/25.8280
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Figure 5. 1D profiles respectively generated by ZF-IDFT, k-t FOCUSS, k-t SLR, k-t RPCA and k-t
NCRPCA for different number of radial projections (i.e., 12, 16, 24 and 32). (The images are best viewed
in full-screen mode.)

4.4. Comparisons on In Vivo Coronal Cardiac Dataset

In Figure 6, we compared our k-t NCRPCA with ZF-IDFT, k-t FOCUSS, k-t SLR and k-t RPCA on
an in vivo coronal cardiac dataset for 8 radial projections. It is impossible to satisfactorily reconstruct
the main geometical structures using ZF-IDFT. As shown by the arrows in x-t and y-t temporal profiles,
k-t FOCUSS, k-t SLR and k-t RPCA failed to achieve high quality temporal profiles due to over
smoothing. The loss of useful visual information could lead to visual quality degradation. In contrast,
k-t NCRPCA performs well in feature-preserving image reconstruction even for highly undersampled
(k, t)-space measurements.Sensors 2017, 17, 509  14 of 18 
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For 1D profiles, k-t NCRPCA is able to preserve more structural information. For the sake of
visual comparison, we generated the error images resulting from the absolute differences between
the fully sampled reference and reconstructed images shown in Figure 7. To achieve high quality
reconstruction, the error images should include as little geometrical information as possible. As can be
observed, the geometrical structures are noticeable in error images generated by ZF-IDFT. k-t FOCUSS,
k-t SLR and k-t RPCA tend to oversmooth some image details. In contrast, our k-t NCRPCA generates
error images with more random and smaller absolute differences, which result in benefit to image
quality improvement. The advantage of k-t NCRPCA is further confirmed by the SER comparison in
Table 2.
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Figure 7. Visual appearance of error images respectively generated by ZF-IDFT, k-t FOCUSS, k-t SLR,
k-t RPCA and k-t NCRPCA for different number of radial projections (i.e., 8, 12, 16, 24 and 32).
(The images are best viewed in full-screen mode.)

Table 2. SSIM/SER comparison of different reconstruction methods on in vivo coronal cardiac MRI
dataset for different number of radial projections.

Projections ZF-IDFT k-t FOCUSS k-t SLR k-t RPCA k-t NCRPCA

8 0.3281/7.3112 0.7041/16.1893 0.8328/16.9640 0.7948/17.5719 0.8268/17.8084
12 0.4306/8.7548 0.8099/17.9173 0.8894/18.8529 0.8682/20.2187 0.8937/20.6879
16 0.4974/9.9446 0.8618/19.6515 0.9300/20.8879 0.9134/21.9271 0.9384/22.6999
24 0.5929/11.9903 0.9064/21.9681 0.9546/23.1806 0.9383/23.5353 0.9768/25.1972
32 0.6753/13.9492 0.9489/24.2931 0.9757/25.7613 0.9674/25.4710 0.9887/27.2034

The main benefit of our proposed method is that it takes full advantage of non-convex low-rank
and sparsity constraints. Current studies have illustrated that non-convex minimization could provide
consistently better performance over convex minimization [32,39,40]. Thus, our method is able to
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effectively preserve fine details while suppressing undesirable artifacts for dynamic MRI reconstruction
from undersampled (k, t)-space measurements.

4.5. Algorithm Convergence and Robustness

The convergence of the proposed k-t NCRPCA was investigated on in vivo axial and coronal
cardiac datasets. The undersampled (k, t)-space measurements for these two datasets were generated
from 8, 16 and 32 radial projections. It is difficult to establish the theoretical convergence result
because of the non-convex and non-smooth objective Function (10). For the sake of simplicity, the
convergence property of the proposed algorithm was analyzed empirically. As shown in Figure 8,
the objective quality metric SER is visually displayed as a function of iteration number. It is
observed that with the increase of iteration number, SER values increase quickly at the first few
iterations and then become stable. These observations illustrate that the convergence property of
the proposed method, summarized in Algorithm 2, can be guaranteed for undersampled dynamic
MRI reconstruction. Furthermore, it is obvious that the proposed method is convergent even for
robust reconstruction from highly undersampled (k, t)-space measurements (i.e., 8 radial projection
in experiments). The experiments on in vivo axial and coronal cardiac datasets fully illustrate the
robustness of the proposed method.
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Figure 8. Convergence property of the proposed k-t NCRPCA. Progression of the objective quality
metric SER for in vivo axial (left) and coronal (right) cardiac datasets with respect to iteration number.
The undersampled (k, t)-space measurements were generated from 8, 16 and 32 radial projections.

5. Conclusions

In this study, a new constrained imaging method (termed k-t NCRPCA) was proposed to
accelerate dynamic MRI. It effectively integrated both non-convex low-rank and sparsity constraints
into a unified mathematical framework. The resulting non-convex and non-smooth optimization
problem was effectively solved using an ADMM-based optimization algorithm. Numerous
experiments have been conducted on two in vivo cardiac datasets to compare k-t NCRPCA with other
state-of-the-art reconstruction methods. The experimental results have demonstrated the superior
performance of k-t NCRPCA in terms of both quantitative and qualitative image quality evaluations.
Therefore, there is a strong incentive to extend k-t NCRPCA to effectively accelerate dynamic MRI in
clinical practice.
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