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Abstract: For inverse synthetic aperture radar (ISAR) imaging of a ship target moving with ocean
waves, the image constructed with the standard range-Doppler (RD) technique is blurred and the
range-instantaneous-Doppler (RID) technique has to be used to improve the image quality. In this
paper, azimuth echoes in a range cell of the ship target are modeled as noisy multicomponent cubic
phase signals (CPSs) after the motion compensation and a RID ISAR imaging algorithm is proposed
based on the integrated cubic phase bilinear autocorrelation function (ICPBAF). The ICPBAF is
bilinear and based on the two-dimensionally coherent energy accumulation. Compared to five
other estimation algorithms, the ICPBAF can acquire higher cross term suppression and anti-noise
performance with a reasonable computational cost. Through simulations and analyses with the
synthetic model and real radar data, we verify the effectiveness of the ICPBAF and corresponding
RID ISAR imaging algorithm.

Keywords: inverse synthetic aperture radar imaging; cubic phase signal; range-instantaneous-
Doppler technique

1. Introduction

High-resolution inverse synthetic aperture radar (ISAR) imaging has attracted the attention
of radar researchers in the past three decades due to its importance in civil and military
applications [1–4]. Two challenges of the high-resolution ISAR imaging are the motion compensation
and scatterer-dependent Doppler spread compensation [3,5–7]. The motion compensation includes the
translational range migration compensation, migration through resolution cells compensation and
phase focusing [5–7]. The scatterer-dependent Doppler spread is corresponding to the coordinate of
the scatterer, and the range-instantaneous-Doppler (RID) technique, whose essence is the parameters
estimation, is developed to resolve it [3]. After three decades of research, there are mature
processing methods for the motion compensation, such as the standard range alignment method
for the translational range migration compensation, keystone transform for the migration through
resolution cells compensation and phase gradient autofocus method for the phase focusing [5–7],
while the scatterer-dependent Doppler spread compensation with the RID technique remains a great
challenge [8–10]. This is because, in each range cell, multicomponent scatterers exist, and the RID
technique (or the parameters estimation algorithm) needs overall consideration of the computational
cost, cross term suppression, anti-noise performance, etc. [3,10–16]. Most researchers currently focus
on the scatterer-dependent Doppler spread compensation with the RID technique [8–12], which is also
the focus of this paper.
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In general, after the motion compensation, azimuth echoes in a range cell of the ship target can be
modeled as noisy multicomponent linear frequency-modulated (LFM) signals [8–10]. Nevertheless,
in the harsh ocean environment, the LFM signal model is not suitable for ship targets. In
references [12,13], simulations and analyses with the real radar data demonstrate that, for the ship
targets in the harsh ocean environment, azimuth echoes in a range cell have to be modeled as noisy
multicomponent cubic phase signals (CPSs). For ISAR imaging with the CPS model, the chirp rate and
quadratic chirp rate induce the Doppler spread and defocus the ISAR image [14]. Therefore, now, the
task of the RID technique is to estimate these two parameters and compensate the Doppler spread.

Until now, many researchers have studied the CPS and proposed several successful estimation
algorithms. These estimation algorithms can be generally divided into three categories: linear
algorithms [14], multilinear algorithms [12,13,17–22] and bilinear algorithms [23–26]. The linear
algorithms, such as the modified discrete chirp Fourier transform for the CPS [14], employ
three-dimensional brute-force searching to obtain a high anti-noise performance without the cross
term, but this is at the cost of a high computational burden [10,12]. Multilinear algorithms employ
the fourth-order autocorrelation function to reduce the phase order of the CPS, and then complete the
two-dimensional energy accumulation with several operations, such as the fast Fourier transform (FFT),
non-uniform FFT (NUFFT) [15,16] and decoupling techniques. Compared with linear algorithms, the
multilinear algorithms have a lower computational cost [12]. This is the reason why many researchers
currently focus on them. Representative multilinear algorithms include the product high-order
ambiguity function [17], product generalized cubic phase function [18], integrated generalized cubic
phase function (IGCPF) [19], scaled Fourier transform (SCFT)-based algorithm [13], noise-resistant
parameter estimation algorithm [20], coherently IGCPF [21], generalized SCFT (GSCFT)-based
algorithm [12] and generalized decoupling technique (GDT)-based algorithm [22]. However, the
fourth-order autocorrelation function influences the cross term suppression and anti-noise performance
seriously. Drawing lessons from LFM signal research, we know that the bilinear algorithm, which
is based on the two-dimensionally coherent energy accumulation, can resolve the problems of the
linear and multilinear algorithms [8–10]. Several bilinear algorithms have been developed for the CPS,
such as the cubic phase function (CPF) [23,24], non-uniform sampled CPF [25] and local polynomial
Wigner distribution [26]. Nevertheless, due to the quadratic chirp rate, these bilinear algorithms can
only accumulate the energy along the delay axis and discard the energy along the slow time axis. Thus,
spurious peaks can be easily induced and the anti-noise performance is poor. Several researchers have
employed two-dimensional brute-force searching to improve these bilinear algorithms [27], although
the two-dimensional brute-force searching makes the bilinear algorithm lose its inherent advantages [8].
In [28], we used the parameter space switching method to speed up the accumulation of the auto term.
However, the accumulation is incoherent, and the resolution, cross term suppression and anti-noise
performance are still poor.

In this paper, by employing the cubic phase bilinear autocorrelation function (CPBAF), NUFFT,
operation of taking the complex modulus, inverse FFT (IFFT), GDT and FFT, a novel estimation
algorithm, known as the integrated CPBAF (ICPBAF) is proposed for the CPS. The ICPBAF is
bilinear and based on the two-dimensionally coherent energy accumulation. The bilinearity and
two-dimensionally coherent accumulation of the ICPBAF guarantee the high cross term suppression
and anti-noise performance. Compared to five other representative estimation algorithms including the
CPF, IGCPF, SCFT-based algorithm, GSCFT-based algorithm and GDT-based algorithm, the ICPBAF
can acquire higher cross term suppression and anti-noise performance with a moderate computational
cost. Thereafter, with the ICPBAF, we present a RID ISAR imaging algorithm for the ship target.
Through simulations and analyses with the synthetic model and the real radar data, we verify the
effectiveness of the ICPBAF and corresponding RID ISAR imaging algorithm.
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2. ISAR Imaging Geometry for the Ship Target

According to references [5–7,12,13], the ISAR imaging geometry described here is based on the
assumption that the motion compensation has been implemented and only the scatterer-dependent
Doppler spread is considered.

Figure 1 shows the geometry for ISAR imaging of the ship target. The X, Y and Z axes of the
Cartesian coordinate system overlap with the longitudinal, horizontal and vertical axes of the ship
target, respectively. R is the unit vector of the radar line of sight (parallel to the range cell). Ωroll,
Ωpitch and Ωyaw denote the angular rotational vectors of the ship target rotating around the X, Y and
Z axes, respectively. Ω is the synthetic vector of Ωroll, Ωpitch and Ωyaw, and can be decomposed into
Ωe and ΩR in the plane determined by R and Ω. ΩR does not cause the radial motion and thus has no
effect on the phase of echoes, while Ωe causes the change of the Doppler frequency and is called the
effective rotational vector.
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Figure 1. ISAR imaging geometry for the ship target.

Considering the generic scatterer p with the directional vector rp, we represent its Doppler
frequency as:

fD = − 2
λ

[(
rp ×Ωe

)
•R
]

(1)

where × and • represent the outer product and inner product, respectively. λ denotes the wavelength
of the transmitted signal.

The effective rotational vector Ωe is usually time-varying for the ship target. Based on
the Weierstrass approximation principle [29] and analyses in [12], Ωe of the ship target can be
approximated as:

Ωe(tm) = α+βtm +
1
2
γt2

m (2)

where tm is the slow time (or azimuth time). α, β and γ denote coefficients of the constant-,
first-, and second-term of Ωe, respectively (or the angular velocity, acceleration and acceleration
rate, respectively).

Substituting (2) into (1), we have:

fD = − 2
λ

{(
rp ×α

)
•R +

[(
rp ×β

)
•R
]
tm +

1
2
[(

rp × γ
)
•R
]
t2
m

}
(3)

With (3), after the motion compensation with the standard range alignment method, keystone
transform and phase gradient autofocus method, the azimuth echo of the generic scatterer p [18,19]
can be represented as:

sp(tm) = σp exp
[

j2π

(
φ1,ptm +

1
2

φ2,pt2
m +

1
6

φ3,pt3
m

)]
(4)
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where σp denotes the amplitude. φ1,p = −2
(
rp ×α

)
•R/λ, φ2,p = −2

(
rp ×β

)
•R/λ and

φ3,p = −2
(
rp × γ

)
•R/λ denote the centroid frequency, chirp rate and quadratic chirp rate, respectively.

The azimuth echo of the generic scatterer p takes the form of the CPS. In ISAR imaging,
multicomponent scatterers coexist each range cell. Assuming the number of scatterers in the i-th
(1 ≤ i ≤ I) range cell is P and taking the additive complex white Gaussian noise ni(tm) into account,
we can represent azimuth echoes in the i-th range cell as noisy multicomponent CPSs:

si(tm) =
P

∑
p=1

sp(tm) + ni(tm) =
P

∑
p=1

σp exp
[

j2π

(
φ1,ptm +

1
2

φ2,pt2
m +

1
6

φ3,pt3
m

)]
+ ni(tm) (5)

Obviously, scatterers at different coordinates correspond to different centroid frequencies in each
range cell and we can use this characteristic to construct ISAR image of the ship target [3]. Nevertheless,
the chirp rate and quadratic chirp rate also exist in (5) and will induce the Doppler spread (degrade
the cross-range resolution). Thus, now, the task is to estimate these two parameters and compensate
the corresponding Doppler spread.

3. ICPBAF for Multicomponent CPSs

In order to construct a well-focused ISAR image of the ship target, the ICPBAF is proposed for
the parameters estimation of the CPS. The principle of the ICPBAF and its cross term characteristic are
discussed in this section.

3.1. Principle of the ICPBAF

According to the reference [24], the CPBAF of (5) is presented as:

Ri(tm, τm) = si(tm − τm)si(tm + τm)

=
P

∑
p=1

σ2
p exp

[
j2π

(
2φ1,ptm + φ2,pt2

m +
1
3

φ3,pt3
m

)]
exp

[
j2π
(
φ2,p + φ3,ptm

)
τ2

m

]
︸ ︷︷ ︸

the auto tern

+ Ri,cros(tm, τm) + nR,i(tm, τm) (6)

where τm denotes the lag variable. Ri,cros(tm, τm) and nR,i(tm, τm) denote the cross term and
noise, respectively.

In the auto term (corresponding to the CPS) of the CPBAF, the slow time tm and lag τm nonlinearly
couple with each other. If the first exponent of the auto term does not exist, we can employ the
decoupling technique GDT to eliminate the coupling and then, accumulate the signal energy coherently
with the Fourier transform along the τm axis. That is, the first exponent of the auto term disables the
GDT and the following Fourier transform-based coherent accumulation. It is easily seen from (6) that,
due to the coupling, the Fourier transform along the τm axis can accumulate the signal energy into the
inclined line, which benefits the signal detection and parameters estimation [28]. Here, we employ this
characteristic and perform the Fourier transform along the τm axis. However, the τm axis corresponds
to the nonuniform τ2

m and the FFT is no longer applicable. Fortunately, we can adopt the NUFFT to
speed up the Fourier transform of the nonuniform data without the performance loss. Readers can
refer to references [15,16] for more details about the NUFFT:

Gi

(
tm, fτ2

m

)
= NUFFTτ2

m
[Ri(tm, τm)]

=
P

∑
p=1

σ2
p exp

[
j2π

(
2φ1,ptm + φ2,pt2

m +
1
3

φ3,pt3
m

)]
δ
(

fτ2
m
− φ2,p − φ3,ptm

)
︸ ︷︷ ︸

the auto tern

+ Gi,cros

(
tm, fτ2

m

)
+ nG,i

(
tm, fτ2

m

)
(7)

where fτ2
m

is the frequency domain with respect to τm. δ(•) is the Dirac delta function. Gi,cros

(
tm, fτ2

m

)
and nG,i

(
tm, fτ2

m

)
denote the cross tern and noise after the NUFFT, respectively.
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In (7), the energy of the auto term peaks along the inclined line fτ2
m
− φ2,p − φ3,ptm = 0. In general,

we can accumulate the signal energy along this line by employing the Radon transform or Hough
transform. However, this kind of processing methods is incoherent and the two-dimensionally
brute-force searching will influence the efficiency [8,10,12]. In order to accumulate the signal energy
coherently, we take the complex modulus of Gi

(
tm, fτ2

m

)
and perform the IFFT with respect to fτ2

m
:

Qi(tm, bm) = IFFT f
τ2
m

[∣∣∣Gi

(
tm, fτ2

m

)∣∣∣]
≈

P

∑
p=1

σ2
p exp

[
j2π
(
φ2,p + φ3,ptm

)
bm
]

︸ ︷︷ ︸
the auto term

+ Qi,cros(tm, bm) + nQ,i(tm, bm) (8)

where bm is the time domain with respect to fτ2
m

.|•| denotes the operation of taking the complex
modulus. Qi,cros(tm, bm) and nQ,i(tm, bm) denote the cross term and noise, respectively. In realistic
applications, the signal length is finite and the sinc function should be used instead of the Dirac
function. Under this condition, taking the modulus bends the negative side lobes to the positive and
taking the IFFT may induce a different equation than (8). However, the energy of the sinc function
concentrates in the main lobe and the effectiveness of negative side lobes is very small. Therefore, to be
exact, we use the approximation ≈ in (8).

In (8), the operation of taking the complex modulus eliminates the disturbance
exp

[
j2π
(
2φ1,ptm + φ2,pt2

m +
(
φ3,p/3

)
t3
m
)]

and the IFFT transforms
∣∣∣Gi

(
tm, fτ2

m

)∣∣∣ back into the form of
the exponent. Obviously, we can employ the GDT to eliminate the linear coupling between tm and bm

in the auto term of Qi(tm, bm). According to the reference [22], the GDT takes the form:

D
(

f[g(∆m)Υb
m ], ∆m

)
=
∫

Υm

{
u(∆m) exp

[
j2πφg(∆m)Υb

m

]}
× exp

[
−j2πξg(∆m)Υb

m f[g(∆m)Υb
m ]

]
d[Υm]

= u(∆m)δ
(

f[g(∆m)Υb
m ] −

φ
ξ

)
(9)

where g(∆m) and u(∆m) are both functions of the variable ∆m. f[g(∆m)Υb
m ] is the scaled frequency

domain with respect to Υm. b is a known constant. ξ denotes the zoom factor. φ is an unknown
parameter.

Based on the coupling in (8) and the GDT in (9), several substitutions are done as follows:{
g(∆m) = bm, Υm = tm, b = 1, ξ = 1

u(∆m) exp
[

j2πφg(∆m)Υb
m

]
= Qi(tm, bm)

(10)

With substitutions in (10), we apply the GDT to Qi(tm, bm):

Γi

(
f[bmtm ], bm

)
=
∫
tm

Qi(tm, bm) exp
[
−j2π f[bmtm ]bmtm

]
d(tm)

=
P

∑
p=1

σ2
p exp

(
j2πφ2,pbm

)
δ
(

f[bmtm ] − φ3,p

)
︸ ︷︷ ︸

the auto tern

+ Γi,cros

(
f[bmtm ], bm

)
+ nΓ,i

(
f[bmtm ], bm

) (11)

where f[bmtm ] is the scaled frequency domain with respect to tm. Γi,cros

(
f[bmtm ], bm

)
and nΓ,i

(
f[bmtm ], bm

)
denote the cross term and noise after the GDT, respectively.

The GDT in (11) can be implemented by using the IFFT-based CZT. More details about the fast
implementation of the GDT can be found in the reference [22]. After the GDT, the energy of the auto
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term is accumulated into the beeline f[bmtm ] − φ3,p = 0. Now, we perform the FFT along the bm axis
and obtain the ICPBAF:

Ψi

(
f[bmtm ], fbm

)
= FFTbm

[
Γi

(
f[bmtm ], bm

)]
=

P

∑
p=1

σ2
pδ
(

fbm − φ2,p
)
δ
(

f[bmtm ] − φ3,p

)
︸ ︷︷ ︸

the auto tern

+ Ψi,cros

(
f[bmtm ], fbm

)
+ nΨ,i

(
f[bmtm ], fbm

)
(12)

where fbm is the frequency domain with respect to bm. Ψi,cros

(
f[bmtm ], fbm

)
and nΨ,i

(
f[bmtm ], fbm

)
denote

the cross term and noise after the FFT, respectively.
For the ICPBAF, the auto term peaks at (φ2,p,φ3,p) on the chirp rate-quadratic chirp rate domain.

Parameters φ2,p and φ3,p can be estimated by constructing a cost function to (12) [23]. With these
two estimated parameters, other parameters (σp and φ1,p) can be obtained by the dechirping and FFT
operations [23].

According to (6)–(8), (11) and (12), we give the abbreviated expression of the ICPBAF:

Ψi

(
f[bmtm ], fbm

)
= FFTbm

{
GDTbmtm

{
IFFT f

τ2
m

{∣∣∣NUFFTτ2
m
[CPBAF[si(tm)]]

∣∣∣}}} (13)

Analyses above indicate that the ICPBAF is a coherent bilinear algorithm and can be implemented
by using the complex multiplication, FFT, IFFT and NUFFT. The two-dimensionally coherent
accumulation and bilinearity guarantee the low computational cost, high anti-noise performance
and cross term suppression of the ICPBAF, which will be demonstrated in Section 4. The cross term
characteristic analysis can demonstrate whether the cross term can accumulate as the auto term or
not [10,12]. Further, with the cross term characteristic analysis, we can also have a more in-depth
understanding of the cross term suppression. Therefore, we analyze the cross term characteristic of the
ICPBAF in the following section.

3.2. Cross Term Characteristic Analysis

In order to formulate the cross term problem arising from multicomponent CPSs, we consider the
noise-free signal with two components, l ∈ [1, P− 1] and q ∈ [l + 1, P], which is denoted as:

sl,q(tm) = σl exp
[

j2π
(

φ1,ltm + 1
2 φ2,lt2

m + 1
6 φ3,lt3

m

)]
+ σq exp

[
j2π
(

φ1,qtm + 1
2 φ2,qt2

m + 1
6 φ3,qt3

m

)]
(14)

The CPBAF of sl,q(tm) can be presented as:

Rl,q(tm, τm) = Rl,q,auto(tm, τm) + Rl,q,cros(tm, τm) (15)

where:

Rl,q,auto(tm, τm) = σ2
l exp

[
j2π
(

2φ1,ltm + φ2,lt2
m + 1

3 φ3,lt3
m

)]
exp

[
j2π(φ2,l + φ3,ltm)τ2

m
]

+σ2
q exp

[
j2π
(

2φ1,qtm + φ2,qt2
m + 1

3 φ3,qt3
m

)]
exp

[
j2π
(
φ2,q + φ3,qtm

)
τ2

m
] (15a)

Rl,q,cros(tm, τm) = 2σlσq exp
{

j2π
[(

φ1,l + φ1,q
)
tm + 1

2
(
φ2,l + φ2,q

)
t2
m + 1

6
(
φ3,l + φ3,q

)
t3
m

]}
cos
{

2π
[(

φ1,l − φ1,q +
(
φ2,l − φ2,q

)
tm

+ 1
2
(
φ3,l − φ3,q

)
t2
m

)
τm + 1

6
(
φ3,l − φ3,q

)
τ3

m

]}
exp

{
j2π
[

1
2
(
φ2,l + φ2,q

)
+ 1

2
(
φ3,l + φ3,q

)
tm

]
τ2

m

} (15b)

Performing the NUFFT, operation of taking the complex modulus, IFFT, GDT and FFT on
Rl,q(tm, τm), we have:

Ψl,q

(
f[bmtm ], fbm

)
= FFTbm

{
GDTbmtm

{
IFFT f

τ2
m

{∣∣∣NUFFTτ2
m

[
Rl,q,auto(tm, τm) + Rl,q,cros(tm, τm)

]∣∣∣}}} (16)

With careful analyses of Equations (15a) and (15b), we find that, compared to the auto term
Rl,q,auto(tm, τm), the cosine function of Rl,q,cros(tm, τm) will disturb the NUFFT, operation of taking the
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complex modulus, IFFT, GDT and FFT. According to the characteristic of the cosine function, when the
Equation (17) is satisfied for every tm and τm, the influence of the cosine function will be eliminated:

(
φ1,l − φ1,q +

(
φ2,l − φ2,q

)
tm + 1

2
(
φ3,l − φ3,q

)
t2
m

)
τm + 1

6
(
φ3,l − φ3,q

)
τ3

m = nπ, n = · · · − 2,−1, 0, 1, 2, · · · (17)

Obviously, only when φ1,l = φ1,q, φ2,l = φ2,q and φ3,l = φ3,q, Equation (17) equals to zero for every
tm and τm. That is, different from the auto term, the cross term of the ICPBAF cannot be accumulated.
Thus, when the signal length is infinite, compared to the auto term, the cross term can be ignored, i.e.,
the ICPBAF in (12) can be approximated as:

Ψi

(
f[bmtm ], fbm

)
=

P

∑
p=1

σ2
pδ
(

fbm − φ2,p
)
δ
(

f[bmtm ] − φ3,p

)
︸ ︷︷ ︸

the auto tern

+ nΨ,i

(
f[bmtm ], fbm

)
(18)

This section gives the basic analyses of the ICPBAF, including the principle of the ICPBAF and its
cross term characteristic analysis. In order to illustrate how the ICPBAF works under multicomponent
CPSs, we give a numerical example in the following. Considering realistic applications, this numerical
example includes two situations, multicomponent CPSs with the same amplitude and multicomponent
CPSs with the different amplitudes.

Example 1. We consider three noise-free CPSs denoted by Au1, Au2 and Au3. The sampling frequency Ftm

[same as the pulse repetition frequency (PRF)] is 256 Hz, and the signal length Ntm (same as the echo pulses) is
equal to 512. The signal parameters are set as follows: φ1,1 = 100 Hz, φ2,1 = 84 Hz/s, φ3,1 = 80 Hz/s2 for Au1;
φ1,2 = 20 Hz, φ2,2 = 12 Hz/s, φ3,2 = 10 Hz/s2 for Au2, and φ1,3 = −80 Hz, φ2,3 = −64 Hz/s, φ3,3 = −50 Hz/s2

for Au3. Results of Au1, Au2 and Au3 with the same amplitude (σ1 = σ2 = σ3 = 1) are provided in Figure 2a–c,
while Figure 2d shows the ICPBAF under Au1, Au2 and Au3 with the different amplitudes (σ1 = 1, σ2 = 0.8,
σ3 = 0.1). It is known that actual values of parameters are related with the position of the peak in the figure,
sampling frequency and signal length. Thus, values in figures are relative and units of measurements are
not added.

By performing the NUFFT along the τm axis of the CPBAF in (6), we obtain the slow time-chirp
rate distribution in Figure 2a. The bilinearity of the CPBAF causes the situation that the auto term and
cross term coexist. In Figure 2a, we can find that, due to the coupling between tm and τm, the auto
term takes the form of three inclined lines. In order to accumulate the auto term, we take the complex
modulus, and then, perform the IFFT, GDT and FFT sequentially. Figure 2b shows the contour of
the ICPBAF and its stereogram is shown in Figure 2c. Obviously, as analyzed above, the auto term
accumulates into the ideal spread function, while the cross term cannot accumulate and even can be
ignored. In Figure 2c, with the peak detection technique [22,23], (φ2,1, φ3,1), (φ2,2, φ3,2) and (φ2,3, φ3,3)
are estimated as (84 Hz/s, 80 Hz/s2), (12 Hz/s, 10 Hz/s2) and (−64 Hz/s, −50 Hz/s2), respectively.
Thereafter, compensating the phase term pertaining to the estimated parameters and performing the
FFT, we estimate (σ1, φ1,1), (σ2, φ1,2) and (σ3, φ1,3) as (1, 100 Hz), (1, 20 Hz) and (1, −80 Hz), respectively.

Figure 2a–c consider multicomponent CPSs with the same amplitude. However, the amplitudes
are always different in realistic applications. Figure 2d considers multicomponent CPSs with different
amplitudes. With the result shown in Figure 2d, we know that, when the differences between
amplitudes are large, the auto terms of weak CPSs may be submerged in the residual cross terms
generated by the strong CPSs and the Clean technique [10,12,13] should be employed to separate the
strong and weak CPSs.
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4. Performance Analysis of the ICPBAF

The computational cost, cross term suppression and anti-noise performance play important roles
in the parameters estimation algorithm [22–24]. In this section, we analyze the ICPBAF from these
three aspects, and some comparisons with other five representative algorithms including the CPF,
IGCPF, SCFT-based algorithm, GSCFT-based algorithm and GDT-based algorithm will be performed.

4.1. Computational Cost Analysis

Assume the length of slow time samples Ntm is equal to the length of lag samples Nτm . The ICPBAF
implementation needs the CPBAF [O

(
N2

tm

)
], NUFFT along τm[O

(
N2

tm
log2 Ntm

)
], operation of taking

the complex modulus [O
(

N2
tm

)
], IFFT along fτ2

m
[O
(

N2
tm

log2 Ntm

)
], GDT [O

(
N2

tm
log2 Ntm

)
] and FFT

along bm[O
(

N2
tm

log2 Ntm

)
]. Therefore, the overall computational cost of the ICPBAF is in the order of

O
(

N2
tm

log2 Ntm

)
and listed in Table 1, which also gives computational costs of five other representative

algorithms, the CPF, IGCPF, SCFT-based algorithm, GSCFT-based algorithm and GDT-based algorithm.

Table 1. Computational cost.

Algorithm CPF IGCPF SCFT-Based Algorithm

Computational cost O
(

N2
tm

)
O
(

N3
tm

)
O
(

N3
tm

)
Algorithm GSCFT-based algorithm GDT-based algorithm ICPBAF

Computational cost O
(

N2
tm

log2 Ntm

)
O
(

N2
tm

log2 Ntm

)
O
(

N2
tm

log2 Ntm

)

Referring to references [22,23], we know that the CPF only uses the discrete Fourier transform to
accumulate the CPBAF along τm and discards the energy along tm. Compared to the ICPBAF, its low
computational cost is at the cost of the low cross term suppression and anti-noise performance.
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The IGCPF and SCFT-based algorithm need higher computational costs than the GSCFT-based
algorithm, GDT-based algorithm and ICPBAF. This is because the Fourier transform along the
non-uniform τm axis of these two algorithms are not speed up [13,19]. The GSCFT-based algorithm,
GDT-based algorithm and ICPBAF need the similar computational cost. In the following two
sections, we will demonstrate that the ICPBAF has superiorities in the cross term suppression and
anti-noise performance. We can refer to references [12,13,19,22–24] for more details about these five
referenced algorithms.

4.2. Cross Term Suppression Analysis

Analyses in Section 3.2 demonstrate that the cross term cannot accumulate as the auto term.
In this section, we uses the numerical example below to demonstrate the high cross term suppression
of the ICPBAF.

Example 2. We consider three noise-free CPSs denoted by Bu1, Bu2 and Bu3. Ftm and Ntm are 128 Hz and 256,
respectively. The signal parameters are set as follows: σ1 = 1, φ1,1 = 10 Hz, φ2,1 = 2 Hz/s, φ3,1 = 2 Hz/s2 for Bu1;
σ2 = 1, φ1,2 = 6 Hz, φ2,2 = 0 Hz/s, φ3,2 = −2 Hz/s2 for Bu2, and σ3 = 1, φ1,3 = 2 Hz, φ2,3 = −2 Hz/s,
φ3,3 = −6 Hz/s2 for Bu3. Figure 3 gives simulation results of the CPF, IGCPF, SCFT-based algorithm,
GSCFT-based algorithm, GDT-based algorithm and ICPBAF.
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Figure 3. Simulation results of Example 2. (a) Simulation result of the CPF; (b) Simulation result of the
IGCPF; (c) Simulation result of the SCFT-based algorithm; (d) Simulation result of the GSCFT-based
algorithm; (e) Simulation result of the GDT-based algorithm; (f) Simulation result of the ICPBAF.

Obviously, in Figure 3, only the ICPBAF can obtain correct positions of Bu1, Bu2 and Bu3.
The CPF is bilinear, while it discards the energy along tm. Although the IGCPF, SCFT-based algorithm,
GSCFT-based algorithm and GDT-based algorithm employ the two-dimensional energy accumulation
to suppress the cross term, their fourth-order autocorrelation functions influence the cross term
suppression seriously. In this example, their fourth-order autocorrelation functions induce the cross
term with 78 components. Note that, under some special situations, the cross terms of the CPF
and IGCPF can accumulate as their auto terms [19,30]. Compared to the CPF, IGCPF, SCFT-based
algorithm, GSCFT-based algorithm and GDT-based algorithm, the ICPBAF is bilinear and employs
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the two-dimensionally coherent energy accumulation. Therefore, as shown in Figure 3, the ICPBAF
acquires the highest cross term suppression.

4.3. Anti-Noise Performance Analysis

The ICPBAF inevitably suffers from the estimation error under the presence of the noise. In this
section, combing with a numerical example, we will demonstrate the high anti-noise performance
of the ICPBAF. The input-output signal-to-noise ratio (SNR) (SNRout is listed in (19)) [31] and mean
square error (MSE) [32,33] are utilized as measures of the noise resistance:

SNRout = 10 log10

σ2
p

Ntm σ2


∣∣∣∣∣∣∣

Ntm
2 −1

∑
m=− Ntm

2

si(m) exp

[
−jπa′2.p

(
m

Ftm

)2
− jπ

a′3,p

3

(
m

Ftm

)3
]∣∣∣∣∣∣∣

max


2

(19)

where σ2 is the power of the complex white Gaussian noise. a′2.p and a′3,p are estimations.

Example 3. We consider a CPS denoted by Cu. Ftm and Ntm are 256 Hz and 256, respectively. The signal
parameters are set as follows: φ1,1 = 106 Hz, φ2,1 = 100 Hz/s, φ3,1 = 80 Hz/s2 for Cu. The tested input SNRs
are SNRin = [−11:1:0] and 200 trials have been performed for each SNRin under the ten-time interpolation.
Figures 4 and 5 gives the input-output SNR and MSE, respectively.
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Figure 4. Input-output SNR comparison.

In Figure 4, threshold SNRs of the ICPBAF, GDT-based algorithm, GSCFT-based algorithm,
SCFT-based algorithm, IGCPF and CPF are−8 dB,−5 dB,−3 dB,−3 dB,−2 dB and−2 dB, respectively.
The bilinear CPF discards the energy accumulation along tm and references [23,24] has simulated its
threshold SNR. The IGCPF employs the two-dimensional energy accumulation, while the accumulation
is incoherent and its autocorrelation function is fourth-order [19]. Thus, its threshold SNR is also
−2 dB and no better than that of the CPF. Note that, the CPF and IGCPF estimate the chirp rate and
quadratic chirp rate separately, and thus the propagation of the estimation error exists in these two
algorithms. Although the GSCFT-based algorithm, SCFT-based algorithm and GDT-based algorithm
employ the two-dimensionally coherent energy accumulation and do not encounter the estimation
error propagation, their fourth-order autocorrelation functions influence the anti-noise performance
seriously. In Figure 4, the superiority of the ICPBAF in the anti-noise performance is obvious. This is
because (1) the ICPBAF is bilinear; (2) the estimation error propagation does not exist, and (3) the
two-dimensional energy accumulation is coherent. Above analyses also apply to noisy multicomponent
CPSs. We consider noisy CPSs with two components. The GDT-based algorithm, GSCFT-based
algorithm, SCFT-based algorithm and IGCPF are based on fourth-order autocorrelation functions, and
the number of noise items is 65. However, the ICPBAF is bilinear and the number of noise items is 5.
Although the CPF is bilinear and the number of noise items is 5, CPF is based on one-dimensional
energy accumulation.
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As functions of the input SNR, the observed MSEs for the chirp rate and quadratic chirp rate
estimations are plotted in Figure 5a,b, respectively. The corresponding Cramer-Rao bounds (CRBs) are
also shown in solid lines and their expressions can be found in [24,31,32].

As expected, the observed MSEs of the chirp rate and quadratic chirp rate estimations are
inversely proportional to the input SNRs in Figure 5. MSEs of the chirp rate and the quadratic chirp
rate estimations are close to CRB when SNR ≥ −8 dB. Results shown in Figure 5 verify the high
anti-noise performance of the ICPBAF and also validate the result shown in Figure 4.
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5. RID ISAR Imaging Algorithm Based on the ICPBAF

Analyses and simulations in Section 4 demonstrate that, compared to the CPF, IGCPF, SCFT-based
algorithm, GSCFT-based algorithm and GDT-based algorithm, the ICPBAF is more suitable for the
parameters estimation of noisy multicomponent CPSs. In this section, based on the ICPBAF, a RID
ISAR imaging algorithm is presented for the ship target. Detailed implementation procedures are
given as follows.

Step 1: Complete the range compression for radar echoes with the matched filter
H
(
t̂
)
= rect

(
t̂/Ts

)
exp

(
jπγt̂2) (where t̂, Ts and γ denote the fast time, pulse width and

frequency modulation rate, respectively).
Step 2: Employ the standard range alignment method [5], keystone transform [6] and phase gradient

autofocus method [7] to complete the motion compensation.
Step 3: Extract the data si(tm) in the i-th range cell.
Step 4: Calculate the energy of the extracted data si(tm). If the energy is smaller than the set threshold

Es [8,12], set i = i + 1 and repeat Step 3 until i = I.
Step 5: Apply the ICPBAF to si(tm) and estimate φ2,p and φ3,p with the peak detection

technique [23,24].

Step 6: Dechirp si(tm) with exp
[
−j2π

(
φ′2,p

2 t2
m +

φ′3,p
6 t3

m

)]
, and then estimate φ1,p and σp via the FFT

and peak detection technique.(
σ′p =

A′

Ntm

, φ′1,p = f ′tm

)
=

argmax
(A, ftm)

∣∣∣∣∣FFTtm

(
si(tm) exp

[
j2π

(
−

φ′2,p

2
t2
m −

φ′3,p

6
t3
m

)])∣∣∣∣∣ (20)

where σ′p and φ′1,p denote estimations of the centroid frequency and amplitude for the pth CPS,
respectively. A′ denotes the peak value after the FFT.

Step 7: Eliminate the estimated p-th CPS from the original signal si(tm)
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si(tm) = FFTtm

(
si(tm) exp

[
j2π

(
−

φ′2,p
2 t2

m −
φ′3,p

6 t3
m

)])
winp( ftm) exp

[
j2π

(
φ′2,p

2 t2
m +

φ′3,p
6 t3

m

)]
(21)

where winp( ftm) =

{
0, φ′1,p − d ≤ ftm ≤ φ′1,p + d

1, else
denotes the narrowband filter with the

bandwidth 2d (can be determined based on the resolution).
Step 8: Repeat Steps 5–7 until the residual signal energy E of the i-th range cell is less than EH (saying

5% of the original signal [18,19]), which is an energy threshold.
Step 9: If i < I, set i = i +1 and repeat Steps 3–8 until i = I.

Above is the proposed RID ISAR imaging algorithm for the ship target based on the ICPBAF.
With this algorithm, we can construct a well-focused ISAR image for the ship target. In order to
provide insight into the working of the RID ISAR imaging algorithm, the flow chart of the proposed
RID ISAR imaging algorithm is shown in Figure 6.
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6. Verification of the ICPBAF-Based RID ISAR Imaging Algorithm

Section 4 verifies high performances of the ICPBAF and Section 5 presents a RID ISAR imaging
algorithm based on the ICPBAF. In this section, we employ the synthetic model (Section 6.1) and real
radar data (Section 6.2) to verify the superiority and practicability of the ICPBAF-based RID ISAR
imaging algorithm.

6.1. Verification with the Synthetic Model

In this section, referring to [3,8,9,17–22], we model the ship target shown in Figure 7a as a set
of ideal scatterers. Table 2 gives radar and motion parameters. After the motion compensation,
Figure 7b shows the image constructed with the standard RD technique under the absence of the
scatterer-dependent Doppler spread, and Figure 7c shows the image constructed with the standard
RD technique under the existence of the scatterer-dependent Doppler spread. Obviously, due to the
scatterer-dependent Doppler spread, the image quality is degraded in Figure 7c. Note that, as described
in Section 1, this paper focuses on the scatterer-dependent Doppler spread compensation and we can
refer to [5–7] for more details about the motion compensation.
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Table 2. Radar and motion parameters.

Carrier Frequency 15 GHz Wave Length 0.02 m

Bandwidth 100 MHz Fast time sampling frequency 200 MHz
PRF 125 Hz Echo pulses 250

Translational motions
Velocity Acceleration Acceleration rate
24 m/s 2 m/s2 1 m/s3

Effective rotational motions
Angular velocity acceleration acceleration rate

0.01 rad/s 0.005 rad/s2 0.01 rad/s3

We contaminate echoes of the ship target with the additive complex white Gaussian noise and the
SNRin equals to −5 dB after the motion compensation. Here, RID ISAR imaging algorithms, which use
the CPF, IGCPF, SCFT-based algorithm, GSCFT-based algorithm and GDT-based algorithm, are adopted
to compare with the ICPBAF-based RID ISAR imaging algorithm. Below, images constructed with
these six RID ISAR imaging algorithms are normalized and shown in Figure 8. The entropy of (22) is
used as a criterion to measure the quality of the image X(i, n) in Table 3 [12]:

ENT = −
I

∑
i=1

Ntm

∑
n=1
|X(i, n)|2 ln|X(i, n)|2 (22)

Sensors 2017, 17, 498 13 of 19 

 

 
(a) (b) (c) 

Figure 7. Ship target model and results of the standard RD technique. (a) Ship target model; (b) Result 
of the standard RD technique under the absence of the scatterer-dependent Doppler spread; (c) Result 
of the standard RD technique under the existence of the scatterer-dependent Doppler spread. 

Table 2. Radar and motion parameters. 

Carrier Frequency 15 GHz Wave Length 0.02 m 
Bandwidth 100 MHz Fast time sampling frequency 200 MHz 

PRF 125 Hz Echo pulses 250 

Translational motions 
Velocity Acceleration Acceleration rate 
24 m/s 2 m/s2 1 m/s3 

Effective rotational motions 
Angular velocity acceleration acceleration rate 

0.01 rad/s 0.005 rad/s2 0.01 rad/s3 

We contaminate echoes of the ship target with the additive complex white Gaussian noise and 
the SNRin equals to −5 dB after the motion compensation. Here, RID ISAR imaging algorithms, which 
use the CPF, IGCPF, SCFT-based algorithm, GSCFT-based algorithm and GDT-based algorithm, are 
adopted to compare with the ICPBAF-based RID ISAR imaging algorithm. Below, images 
constructed with these six RID ISAR imaging algorithms are normalized and shown in Figure 8. The 
entropy of (22) is used as a criterion to measure the quality of the image  ,X i n  in Table 3 [12]: 

   
I

2 2

1 1

, ln ,
tm
N

i n

ENT X i n X i n
 

   (22) 

 

 
(a) (b) (c) 

  Figure 8. Cont.



Sensors 2017, 17, 498 14 of 19
Sensors 2017, 17, 498 14 of 19 

 

 
(d) (e) (f) 

Figure 8. ISAR imaging results of the synthetic model. (a) RID ISAR imaging algorithm using the CPF; 
(b) RID ISAR imaging algorithm using the IGCPF; (c) RID ISAR imaging algorithm using the SCFT-
based algorithm; (d) RID ISAR imaging algorithm using the GSCFT-based algorithm; (e) RID ISAR 
imaging algorithm using the GDT-based algorithm; (f) RID ISAR imaging algorithm using the 
ICPBAF. 

Table 3. Entropies of ISAR images in Figure 8. 

 Figure 8a (CPF) Figure 8b (IGCPF) Figure 8c (SCFT) 
Entropies 7.262 10.1713 5.2378 

 Figure 8d (GSCFT) Figure 8e (GDT) Figure 8f (ICPBAF) 
Entropies 5.2378 4.9776 4.5383 

The superiority of the ICPBAF-based RID ISAR imaging algorithm is obvious in Figure 8. All 
scatterers are reconstructed correctly and very few spurious scatterers appear. This is because the 
ICPBAF has the highest cross term suppression and anti-noise performance, which has been analyzed 
and demonstrated in Section 4. The better focused ISAR image results in the smaller entropy 
[12,13,18–22]. Results in Table 3 demonstrate the high quality of Figure 8f and validate the superiority 
of the ICPBAF-based RID ISAR imaging algorithm also. 

Actually, the additive complex white Gaussian noise is random. Thus, only with the experiment 
above, it may not be persuasive to determine the superiority of the ICPBAF-based RID ISAR imaging 
algorithm. It is known that the result of the Monte Carlo experiment has the generality and 
representability. Thus, here, a Monte Carlo experiment is used to determine the superiority of the 
ICPBAF-based RID ISAR imaging algorithm. The data in the 15th range cell, which exists six 
scatterers and is marked with the red ellipse in Figure 7a, is extracted. We contaminate the extracted 
data with the additive complex white Gaussian noise. The tested input SNRs are SNRin = [−11:1:0] 
and 100 trials are performed for each SNRin. Aforementioned six RID ISAR imaging algorithms are 
adopted to perform on the extracted data. In a well-focused ISAR image, most scatterers can be 
reconstructed correctly and fewest artifacts appear. Thus, the ratio between the number of the 
correctly reconstructed scatterers and the number of all reconstructed scatterers is used as a measure. 
Figure 9 shows the simulation result. 

The high cross term suppression and anti-noise performance of the ICPBAF guarantee the 
superiority of the ICPBAF-based RID ISAR imaging algorithm. In Figure 9, even under lower SNRs, 
the ICPBAF-based RID ISAR imaging algorithm can reconstruct most scatterers correctly and fewest 
artifacts appear. For example, when SNRin = [−7 dB, −6 dB, −5 dB], the ratio equals to [0.7747, 0.8739, 
0.944], which means that the average number of the artifacts is smaller than [1.7449, 0.8658, 0.3559]. 
This experiment further demonstrates that, compared to RID ISAR imaging algorithms using the 
CPF, IGCPF, SCFT-based algorithm, GSCFT-based algorithm and GDT-based algorithm, the 
ICPBAF-based RID ISAR imaging algorithm is more suitable for realistic applications. 

Figure 8. ISAR imaging results of the synthetic model. (a) RID ISAR imaging algorithm using the
CPF; (b) RID ISAR imaging algorithm using the IGCPF; (c) RID ISAR imaging algorithm using the
SCFT-based algorithm; (d) RID ISAR imaging algorithm using the GSCFT-based algorithm; (e) RID
ISAR imaging algorithm using the GDT-based algorithm; (f) RID ISAR imaging algorithm using
the ICPBAF.

Table 3. Entropies of ISAR images in Figure 8.

Figure 8a (CPF) Figure 8b (IGCPF) Figure 8c (SCFT)

Entropies 7.262 10.1713 5.2378

Figure 8d (GSCFT) Figure 8e (GDT) Figure 8f (ICPBAF)

Entropies 5.2378 4.9776 4.5383

The superiority of the ICPBAF-based RID ISAR imaging algorithm is obvious in Figure 8.
All scatterers are reconstructed correctly and very few spurious scatterers appear. This is because
the ICPBAF has the highest cross term suppression and anti-noise performance, which has been
analyzed and demonstrated in Section 4. The better focused ISAR image results in the smaller
entropy [12,13,18–22]. Results in Table 3 demonstrate the high quality of Figure 8f and validate the
superiority of the ICPBAF-based RID ISAR imaging algorithm also.

Actually, the additive complex white Gaussian noise is random. Thus, only with the experiment
above, it may not be persuasive to determine the superiority of the ICPBAF-based RID ISAR
imaging algorithm. It is known that the result of the Monte Carlo experiment has the generality
and representability. Thus, here, a Monte Carlo experiment is used to determine the superiority of the
ICPBAF-based RID ISAR imaging algorithm. The data in the 15th range cell, which exists six scatterers
and is marked with the red ellipse in Figure 7a, is extracted. We contaminate the extracted data with
the additive complex white Gaussian noise. The tested input SNRs are SNRin = [−11:1:0] and 100 trials
are performed for each SNRin. Aforementioned six RID ISAR imaging algorithms are adopted to
perform on the extracted data. In a well-focused ISAR image, most scatterers can be reconstructed
correctly and fewest artifacts appear. Thus, the ratio between the number of the correctly reconstructed
scatterers and the number of all reconstructed scatterers is used as a measure. Figure 9 shows the
simulation result.

The high cross term suppression and anti-noise performance of the ICPBAF guarantee the
superiority of the ICPBAF-based RID ISAR imaging algorithm. In Figure 9, even under lower SNRs,
the ICPBAF-based RID ISAR imaging algorithm can reconstruct most scatterers correctly and fewest
artifacts appear. For example, when SNRin = [−7 dB, −6 dB, −5 dB], the ratio equals to [0.7747, 0.8739,
0.944], which means that the average number of the artifacts is smaller than [1.7449, 0.8658, 0.3559].
This experiment further demonstrates that, compared to RID ISAR imaging algorithms using the CPF,
IGCPF, SCFT-based algorithm, GSCFT-based algorithm and GDT-based algorithm, the ICPBAF-based
RID ISAR imaging algorithm is more suitable for realistic applications.
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6.2. Verification with Real Radar Data

The real radar data used here is received by a shore-based radar, which works in Ku band with
a bandwidth of 240 MHz and a PRF of 125 Hz. The imaged ship target is moving away from the
shore-based radar with a velocity of about 10 m/s in the harsh ocean environment. In the real radar
data, the number of echo pulses Ntm is 250 and the number of the slant range cells is 400. Figure 10a
gives the result after the motion compensation with the standard range alignment method, keystone
transform and phase gradient autofocus method. The Wigner-Ville distribution of the 191th range cell
is given in Figure 10b. According to analyses and simulations in [12,13,21,22], the curve in Figure 10b
demonstrates that azimuth echoes of the ship target should be modeled as noisy multicomponent CPSs.
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In order to give an unequivocal evidence that the ICPBAF-based RID ISAR imaging algorithm
benefits the imaging quality, we use it to process the extracted data in the 191th range cell. Figure 11
gives the simulation results. The signal energy is accumulated in Figure 11a. With the peak detection
technique, the chirp rate and quadratic chirp rate are estimated as−1 Hz/s and−8 Hz/s2, respectively.
By compensating the Doppler spread pertaining to the estimated parameters and performing an FFT,
we complete the energy accumulation in Figure 11b, where the result of the standard RD technique is
also shown. Obviously, due to the Doppler spread, the standard RD technique cannot focus the signal
energy into the correct Doppler cell. Actually, several scatterers may exist in this range cell. Thus,
combing with the Clean technique, we still need to relocate other potential scatterers of this range cell.
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Figure 12. ISAR imaging results of the real radar data. (a) Standard RD technique; (b) RID ISAR imaging
algorithm using the CPF; (c) RID ISAR imaging algorithm using the IGCPF; (d) RID ISAR imaging
algorithm using the SCFT-based algorithm; (e) RID ISAR imaging algorithm using the GSCFT-based
algorithm; (f) RID ISAR imaging algorithm using the GDT-based algorithm; (g) RID ISAR imaging
algorithm using the ICPBAF.
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In Figure 12, RID ISAR imaging algorithms, which use the CPF, IGCPF, SCFT-based algorithm,
GSCFT-based algorithm and GDT-based algorithm, are adopted to compare with the ICPBAF-based
RID ISAR imaging algorithm. The result of the standard RD technique is also shown. These images
are normalized and corresponding entropies are given in Table 4.

Table 4. Entropies OF ISAR images in Figure 12.

Figure 12a (Standard RD) Figure 12b (CPF) Figure 12c (IGCPF) Figure 12d (SCFT)

Entropies 195.5657 72.0199 72.1156 61.9358

Figure 12e (GSCFT) Figure 12f (GDT) Figure 12g (ICPBAF)

Entropies 61.9358 60.3322 57.4393

Figure 12a is the result of the standard RD technique. Obviously, due to the Doppler spread
induced by the chirp rate and quadratic chirp rate, it cannot construct a well-focused image for the ship
target. The CPF, IGCPF, SCFT-based algorithm, GSCFT-based algorithm, GDT-based algorithm and
ICPBAF can estimate parameters of noisy multicomponent CPSs. Thus, images shown in Figure 12b–g
are better than the image shown in Figure 12a, which can also be demonstrated with the entropies listed
in Table 4. In Figure 12d–g, it is easy to find that, compared to the SCFT-based algorithm, GSCFT-based
algorithm and GDT-based algorithm, the advantage of the ICPBAF-based algorithm is not so obvious.
This is because the realistic environment is unknown and we cannot control characteristics of the real
radar data, such as the SNR and the number of scatterers in each range cell. Actually, with simulations
and analyses in Sections 4 and 6.1, we know that, if a harsher realistic environment is considered, the
advantage of the ICPBAF-based algorithm will be much more obvious. Images shown in Figure 12 and
entropies listed in Table 4 verify the practicability of the ICPBAF-based RID ISAR imaging algorithm.

7. Conclusions

In this paper, a bilinear coherent estimation algorithm, known as the ICPBAF, is proposed for
the CPS. The bilinear ICPBAF can complete the two-dimensionally coherent energy accumulation.
The principle, cross term characteristic, computational cost, cross term suppression and anti-noise
performance are analyzed for the ICPBAF. Comparisons with five other representative estimation
algorithms demonstrate that the ICPBAF can acquire the higher cross term suppression and anti-noise
performance with a moderate computational cost. It is worthwhile noting that, for the CPS, the ICPBAF
can be seen as the first bilinear coherent algorithm, which has a high practicability. Thereafter, the
ICPBAF-based RID ISAR imaging algorithm is presented for ship targets, and we use the synthetic
model and real radar data to verify its effectiveness.
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