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Abstract: Based on the analysis of three main factors involved in the relative radiometric calibration
for optical sensors, namely: the number of radiance level; the number of measurements at each
level; and the radiance level grouping method, an optimal strategy is presented in this paper for
relative radiometric calibration. First, the maximization to the possible extent of either the number
of the radiance level or the number of measurements at each level can improve the precision of the
calibration results, where the recommended number of measurements is no less than 20. Second,
when the number of the radiance level is divisible by four, dividing all the levels evenly into four
groups by intensity gradient order and conducting averages for each group could achieve calibration
results with the highest precision, which is higher than the result of no grouping or any other grouping
method with the mean square error being 2

√
2Mn/

√
IT (where Mn is the mean square error of noise

in the calibration data, I is the number of the radiance level, and T is the number of measurements
for each level. In this case, the first two factors had an equivalent effect and showed their strongest
effect on the precision. Third, when the calibration data were not evenly divided, the number of
measurements demonstrated a stronger effect than the number of the radiance level. These cognitions
are helping to achieve more precise relative radiometric calibration of optical sensors.
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1. Introduction

In recent years, with the development of the sensor, data storage and transmission technology, the
linear (or area) array imaging mode is widely used by optical Remote Sensing sensors, whose imaging
quality and efficiency have also been significantly improved [1–4]. Subsequently, the problem of image
radiation inconsistency caused by pixel response non-uniformity (PRNU) and noise interferences
has become the focus of attention, which consists of relative radiometric calibration and correction.
Relative radiometric calibration [5,6] aims to solve this problem by unifying the measurement results
from various pixels to one certain reference standard in order to improve the quality of result data
and minimize the impact of the PRNU on other applications using this data. The relative radiometric
correction [7] eliminates the radiation inconsistencies of images with the relative radiometric calibration
coefficients. The above-mentioned noise interferences include: stray light; the dark current; and
stochastic noise, and can all viewed as synthetic noise. Stray light [8] is the diffuse radiation caused by
the surroundings of the object and has positive correlation with incident radiance. The dark current [9]
is the recorded value of the sensor’s internal current caused by electronic thermal motion when there
is no incident radiation. The stochastic noise [10] is the unpredictable interference randomly generated
during imaging.
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The relationship between the energy received by the sensor and the measurement value (recorded
by the sensor) can be expressed as Equation (1).

B = u(R + S) + D + N (1)

where B is the DN (digital number) value recorded by the sensor; u is the photoelectric response
coefficient; R is the entrance pupil radiation; S is the stray light; D is the dark current; and N is the
stochastic noise.

The existence of all these interfering factors has made the relative radiometric calibration a
complex procedure where it has to measure multiple (more than three) objects (as the source of
radiation) to get the data from all pixels. It then uses the least square fitting to obtain the linear
transformation relationship between the reference standard and the data from each pixel, which is
considered as the relative radiometric calibration coefficient. The effective minimization of the noise in
the calibration data is the key to improving the precision of the relative radiometric calibration. If we
use the data from pixel 0 as the reference standard, the relative radiometric calibration calculation for
pixel k can be expressed as Equation (2). Bk1 1

...
...

BkI 1
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]
=
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...
B0I


(2)

where B is the measured value with the first subscript being the pixel number and the second subscript
being the radiation source number (for example, BkI represents the measured value for pixel k under
the radiation source I); ak is the relative radiometric calibration gain coefficient and bk the offset
coefficient for pixel k; and pinv is the function to compute the pseudo-inverse of a matrix.

When selecting a source of radiation, the standard source of radiation when calibration is
conducted in labs is a tungsten lamp [11,12] or the sun [13–17]; while for in-orbit calibration,
the artificial light source inside the sensor, or the sun, or the moon is selected as the source of
radiation [18–22].

In general, homogeneous flat ground objects with stable reflectivity and good lambertian
characteristics can be chosen as the target. For lab calibration, the integrating sphere or reference board
is used as the target [23–28], while for in-orbit calibration, the internal integrating sphere or field areas
such as White Sands in New Mexico; Rogers dry lake in California; Lunar Lake in Nevada; La Crau in
Southern France; DunHuang; or QingHai Lake in China as targets [29].

In optimizing radiometric calibration, the most commonly used methods include increasing the
number of radiance level for the target(s) (either the number of various radiation conditions for the
same target or the number of various targets under the same radiation condition) before averaging
the multiple measurements to reduce the noise interference; and to improve the precision of the
radiometric calibration. For example, when calibration is conducted in the lab, measurement data is
collected from the integrating sphere or reference board under various radiation conditions; for in-orbit
calibration, measurements are conducted on various heterogeneous ground objects (the flat gobi or still
water body) to obtain calibration data with different intensities; imagining patterns with a 90-degree
yaw angle or continuously changing solar radiation are also used to acquire better quality calibration
data [30,31].

To summarize, there are three important elements for the relative radiometric calibration process:
the number of radiance level; the number of measurements at each level; and when the above two
elements are fixed, the way of dividing the acquired measurement data into groups before merging
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them. The grouping method we discussed in this paper is that averaging the multiple measurements
of each level, and then dividing all the levels into groups by intensity gradient order and conducting
averages for each group. Grouping controls the number of point pairs and, consequently, the accuracy
of least square fits, as shown in Figure 1. A higher precision can be achieved through the adjustment
of these three elements. This paper first quantitatively analyzes the impact these three elements
have on the precision of the relative radiometric calibration from a theoretical perspective; second,
it illustrates the conclusions using computer simulations; and finally outlines the strategy in achieving
the optimized precision.
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Figure 1. The schematic of grouping and its effect on fitting results. (a) scatter plot of pixel data;
(b) data was divided into three groups; (c) data was divided into 6 groups. The horizontal axis and
vertical axis are the radiation level and digital number (DN), respectively. The ellipses, arrows and
oblique lines in (b,c) are grouping area, average results of each group and fitting results, respectively.

2. Materials and Methods

Supposing the sensor has K pixels, where the number of radiance level is I and the number of
measurements conducted at each radiation level is T, then Equation (1) can be rewritten as Equation (3).

Bki = uk(Ri + Ski) + Dk + Nki (3)

where Bki is the measurement result of pixel k at the radiation level i; uk is the photoelectric response
coefficient of pixel k; Ri is the absolute radiance at the entrance pupil of the pixel at the radiation
level i; Dk is the dark current of pixel k; Ski is the stray light of pixel k at the radiation level i; Nki is
the corresponding stochastic noise of pixel k at the radiation level i with its mean square error being .
Dk, Ski, Nki can be combined as synthetical noise of pixel k, which usually follows Gaussian distribution.
The following discussions are all based on the assumption of Gaussian noise.

The stray light received by pixel k is determined by the radiation intensity of the radiation source
Ri and the pixel’s position in the space at point (xk, yk, zk), where the space position can be defined as
the stray light response vk. With all this, Equation (3) can be transformed into Equation (4).
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Bki = uk(Ri + vkRi) + Dk + Nki
= uk(1 + vk)Ri + Dk + Nki

= u′kRi + Dk + Nki

(4)

where u′k is the synthesis of the photoelectric coefficient and the stray light response coefficient for
pixel k which is called the synthetical radiation response coefficient.

The average result for all the measurements of T times at each level of radiation intensity can be
expressed as Equation (5).

Bki =
1
T

T

∑
t=1

Bt
ki =

1
T

T

∑
t=1

(u′kRi + Dk + Nt
ki) = u′kRi + Dk + Nki (5)

where the superscript t represents the data number; Nki is the average value of the noises from all the

measurements of T times with a value of 1
T

T
∑

t=1
Nt

ki. If compared with Bki, the mean square error of Bki

is reduced to M′n = ( 1
T2

T
∑

t=1
M2

n)

1
2

= MnT−
1
2 .

It is supposed that all the measurement results obtained from all the I levels of radiation intensity

were divided into J groups, P1, P2, · · · , PJ (
J

∑
j=1

Pj = I and Pj ≥ 0), where each group had the data

from the corresponding radiance level and the data series in the groups were numbered as c1, · · · , e1,
c2, · · · , e2, . . . . . . , and cJ , · · · , eJ respectively. An average for each group, represented as A1, · · · , AJ
respectively, was conducted in order to further reduce the noise interference which can be expressed
as Equation (6). 

A1 = 1
P1

e1
∑
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(u′kRl + Dk + Nkl)

...

AJ =
1
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∑
l=cJ
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(6)

The mean square errors of A1, · · · , AJ were further reduced and can be expressed as Equation (7).
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(7)

According to the error propagation theory, when the error of each element for the data series
of reference pixel 0 is expressed as E = [Ek1, · · · , EkI ]

T (where the right superscript T represents the
matrix transposition operation), this error will be propagated to the radiometric calibration coefficients
ak and bk during the process of using the least square method. Their mean square errors have the same
value [32], which can be represented in Equation (8).

Mo = ±(
ETE
J − L

)

1
2

(8)
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where L = 2 represents that there are two coefficients for the linear fitting in the relative radiometric
calibration. Substituting the error turning Equation (7) into Equation (8), the mean square error M can
be expressed as Equation (9).

M = ±
(

M2
nT−1P−1

1 + · · ·+ M2
nT−1P−1

J

J − L

) 1
2

= Mn


T−1

J
∑

j=1
P−1

j

J − L


1
2

(9)

Given the parameters I and T, there are two cases to be discussed to minimize the error, M.

Case 1:

When J is fixed, getting the minimum value of M is equivalent to minimizing
J

∑
j=1

P−1
j . Based on

the am-gm inequality theorem [33], we have the following inequation in Equation (10).

P1 + · · ·+ PJ ≥ J(P1 · · · PJ)
1
J = J

1

( 1
P1···PJ

)
1
J
≥ J2 1

( 1
P1

+ · · ·+ 1
PJ
)

(10)

Based on Equation (10), the following inequation Equation (11) is derived.

1
P1

+ · · ·+ 1
PJ
≥ J2

P1 + · · ·+ PJ
(11)

Therefore, when P1 = · · · = PJ , the equality of Equation (11) holds, which produces the minimum
value for M. It indicates that the even group-division will achieve a higher precision than any other
grouping methods.

Case 2:

When J is not fixed, by substituting P1 = · · · = PJ =
I
J into Equation (9), we have Equation (12).

M = Mn


T−1

J
∑

j=1
P−1

j

J − L


1
2

= Mn

(
T−1 J2

I
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) 1
2

= Mn

(
J2

IT(J − L)

) 1
2

(12)

By calculating the derivative of Equation (12) against J, we have Equation (13).

∂M
∂J

=

∂

(
Mn

(
J2

IT(J−L)

) 1
2
)

∂J
=

1
2

Mn

(
J2

IT(J − L)

)− 1
2 J(J − 2L)

IT(J − L)2 (13)

From Equation (13), it can be concluded that when J = 2L, M gets its minimum value, which
indicates that it can achieve the highest precision when the data set is evenly divided into four groups
and the minimum value of the error is expressed in Equation (14).

M = 2Mn

√
L
IT

=
2
√

2Mn√
IT

(14)
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If no grouping is done, which means J = I and P1 = · · · = PJ = 1, the error has the following
value in Equation (15).

M = Mn

√
I

(I − L)T
(15)

As seen from Equations (14) and (15), whether using the grouping strategy or not, the higher the
number of the radiance level and the number of measurements at each level, the higher the precision
becomes, i.e., the results of the relative radiometric calibration are much closer to the theoretical values
without noise interference. When the radiance level I is fixed, precision will be improved if the number
of measurements, T at each level is increased; when T is fixed, the precision will be improved as I is
increased. Figure 2 illustrates the relationship between the precision and these two parameters, namely
the number of the radiance level and the number of measurements at each radiation level, in a 3D
surface manner where Figure 2a represents the case when the data is evenly divided into four groups
and Figure 2b without the grouping. The two horizontal axes represent the number of the radiance
level and the number of measurements at each level, respectively. The vertical axis represents the
mean square error of the relative radiometric calibration coefficients.
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Figure 2. The relationship between the precision and the two parameters, the number of the radiance
level and the number of measurements. The horizontal axes are the number of measurements and the
number of radiance level, respectively, and the vertical axis is the precision (mean standard deviation)
of the calibration result. (a) relationship surface with four evenly-divided groups; (b) relationship
surface without grouping.

As illustrated in Figure 2, in either case, the calibration precision was increased along with the
increase of the number of the radiance level or the increase of the number of measurements at each
level. When using the even-division grouping method to group the data from multiple radiance
levels, the number of the radiance level and the number of measurements had the equivalent effect
and showed their strongest effect when the grouping number was four (as shown in Equation (14)).
As expressed by Equation (15), when no grouping was done, the number of measurements had a
stronger impact than the number of the radiance level.

3. Results

To verify the theory and illustrate the conclusions, the simulation was conducted to cover three
cases with the parameters defined in Table 1.

Case 1: the number of pixels, the number of the radiance level and the grouping method were all
fixed; however, the number of measurements at each level was not fixed;

Case 2: the number of pixels, the grouping method and the number of measurements at each
level were all fixed; however, the number of the radiance level was not fixed;

Case 3: the number of pixels, the number of the radiance level and the number of measurements
at each level were all fixed, but the grouping method was not fixed.
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Table 1. The parameters used for simulations.

K I T J

Case 1 100 20 1–1000 J = I
Case 2 100 3–100 20 J = I
Case 3 100 3000 20 3–3000

The simulation data was quantified using two bytes with the valid value from 0–65,535.
The maximum value of the stochastic noise was less than 5% of the maximum quantified value
(3276). The multiplicative factor (synthetical radiation response coefficient) of each pixel was the
sinusoidal values from 0.25 π to 0.75 π with 0.005 π being the interval. The additive factor (synthesis
of dark current and stochastic noise) is random data with its maximum value less than 5% of the
maximum quantified value. The gain coefficient is the reciprocal of the multiplicative factor and the
offset coefficient is the quotient of the additive factor divided by the multiplicative factor. The radiation
level was evenly distributed using the same interval in the range of 10%–90% of the maximum
quantified value. Pixel 51 was selected as the reference standard.

Case 1: to understand the impact of the number of averaging measurements for each level on
the precision.

In Figure 3, it is clear that when the number of measurements increases, the image sharpens and
the radiation response difference among the pixels is more obvious.
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Figure 4c,d also showed that increasing the number of measurements can reduce noise effect and
make profiles more smooth.
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Figure 5. Simulated verification image (100 samples × 20 lines) with 20 times measurements.

As shown in Figure 6, the relative calibration result was much better with the calibration
coefficients from larger numbers of the averaged measurements.
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Figure 6. The relative calibration results of the verification image with the horizontal direction for the
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As seen in Figure 7, the calculated calibration coefficients became much closer to the simulated
calibration coefficients as the number of measurements increased, and the corresponding corrected
result was also improved.
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Figure 7. The profiles of the calibration coefficients and corrected results in various cases. (a) the gain
coefficient in various scenarios; (b) the offset coefficient in various scenarios; (c) the profile of line 10 in
the corrected result corresponding to Figure 4c; and (d) the profile of column 50 in the corrected result
corresponding to Figure 4d. The horizontal axes of (a–c) are the pixel number, and the vertical axes of
(a–c) are the gain coefficient, offset coefficient and DN, respectively. The horizontal axis and vertical
axis of (d) are the radiation level and DN, respectively.

As illustrated in Figure 8, the larger the number of averaging measurements, the smaller the
standard deviation of the corrected result. The error was reduced dramatically when the number of
averaging was increased from three to 20. When the number of averaging was larger than 20, the error
was reduced more slowly.
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Case 2: to understand the impact of the number of the radiance level on the precision.
As illustrated in Figures 9 and 10, the numerical ranges of the columns with the same column

number were duplicated, but the interval between levels was smaller as the number of levels increased.
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Figure 9. Simulated calibration data with different numbers of radiance level with the horizontal
direction for the pixels and the vertical direction for the radiance level. The below black portions in
(a,b) are filled with 0. (a) 3 radiance level; (b) 20 radiance level; and (c) 100 radiance level.
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As shown in Figure 11, the relative calibration result was better with the calibration coefficients
from larger numbers of the radiance level.
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Figure 11. The relative calibration results of the verification image with gain and offset coefficients
from a different number of radiance level, where the horizontal direction is the pixels and the vertical
direction is radiance level. (a) the result with the coefficient from Figure 9a (3 radiance level data);
(b) the result with coefficient from Figure 9b (20 radiance level data); and (c) the result with coefficient
from Figure 9c (100 radiance level data). Column 50 and line 10 are marked with red and blue
labels, respectively.
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As seen from Figure 12, the calculated gain coefficients became much closer to the simulated gain
coefficients and the calculated offset coefficients had little change as the number of levels increased,
so the corresponding corrected result was improved.
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Figure 12. The profiles of the calibration coefficients and corrected results in the various scenarios of
Case 2. (a) the gain coefficient in various scenarios; (b) the offset coefficient in various scenarios; (c) the
profile of line 10 in the corrected result corresponding to Figure 11; and (d) the profile of column 50 in
the corrected result corresponding to Figure 11. The horizontal axes of (a–c) are pixel number, and the
vertical axes of (a–c) are the gain coefficient, offset coefficient and DN, respectively. The horizontal axis
and vertical axis of (d) are radiation level and DN, respectively.

As illustrated in Figure 13, the bigger the number of radiance level, the smaller the standard
deviation of the corrected result. The error was reduced dramatically when the number of radiance
level was increased from three to 30. When the number of the radiance level was bigger than 30,
the error was reduced more slowly, along with the increase of the number of the radiance level.
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Case 3: to understand the impact of the grouping method on the precision.
Figure 14 is the simulated calibration data for grouping method analysis.
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still shown in Figure 16 that the calculated gain coefficients became much closer to the simulated gain 
coefficients and the calculated offset coefficients had little change as the number of groups decreased, 
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(a) (b)

Figure 14. The image of the transposition of the simulated calibration data with 100 samples × 3000
lines (horizontal direction and vertical direction are reversed to that of Figure 3).

We divided the 3000 radiance level evenly into 3, 4, . . . , 1500, 3000 groups, which was divisible to
3000, and conducted average calculation for each level and each group, followed by the calculation of
the relative radiometric calibration coefficients using pixel 51 as the standard reference. Correcting the
verification image by the calculated relative radiometric calibration coefficients of various grouping
cases, we obtained the results shown in Figure 15.
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Figure 15. The relative calibration results of the verification image with gain coefficient and offset
coefficient calculated from various grouping cases, where the horizontal direction is pixels and vertical
direction is radiance level. (a) the result with coefficient from three groups case; (b) the result with
coefficient from four groups case; (c) the result with coefficient from 500 groups case; and (d) the
result with coefficient from 3000 groups case. Column 50 and line 20 are marked with red and blue
labels, respectively.

Although the differences among the corrected result images in Figure 15 are not obvious, it is
still shown in Figure 16 that the calculated gain coefficients became much closer to the simulated gain
coefficients and the calculated offset coefficients had little change as the number of groups decreased,
and the corresponding corrected result was improved. The standard deviations of the profiles in
Figure 16c for 3, 4, 500, 3000 groups are 122.73, 120.32, 129.53 and 302.57, respectively.
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when conducting the traditional relative radiometric calibration (no matter which method, either lab 
calibration, or in-orbit internal, or in-orbit synchronization, was used). For example, it is feasible to 
increase the radiance level from five to 10, or even 20 in lab calibration. However, it is impractical to 
increase the radiance level to 100 or more as it requires a large number of radiation sources where (1) 
each source has spectral radiation stability and a distinct radiation difference from the others; (2) a 
combination of multiple radiation sources and many integral spheres (or reference boards) with 
different reflective properties; or (3) a radiation source which can fine tune the radiation energy. None 
of these can easily achieved. Even if the required radiance level is met, the workload of the 
measurements is huge because every time the radiation source is adjusted, the measurement and the 
record need to be done accordingly, and as a result the workload in processing the data is also 
increased. 

Figure 16. The profiles of the calibration coefficients and corrected results in the various scenarios of
Case 3. (a) the gain coefficient in various scenarios; (b) the offset coefficient in various scenarios; (c) the
profile of line 20 in the corrected result corresponding to Figure 15; and (d) the profile of column 50
in the corrected result corresponding to Figure 15. The horizontal axes of (a–c) are the pixel number,
and the vertical axes of (a–c) are gain coefficient, offset coefficient and DN, respectively. The horizontal
axis and vertical axis of (d) are radiation level and DN, respectively.

As illustrated by Figures 16 and 17, the calibration result produced by four groups even-division
was better than that of any other even-division. When the number of groups was increased,
the calibration result became worse, which coincides with the conclusion from Equation (13).
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4. Discussion

It was difficult to increase the radiance level for the targets during the course of the experiment
when conducting the traditional relative radiometric calibration (no matter which method, either lab
calibration, or in-orbit internal, or in-orbit synchronization, was used). For example, it is feasible to
increase the radiance level from five to 10, or even 20 in lab calibration. However, it is impractical to
increase the radiance level to 100 or more as it requires a large number of radiation sources where
(1) each source has spectral radiation stability and a distinct radiation difference from the others;
(2) a combination of multiple radiation sources and many integral spheres (or reference boards) with
different reflective properties; or (3) a radiation source which can fine tune the radiation energy.
None of these can easily achieved. Even if the required radiance level is met, the workload of the
measurements is huge because every time the radiation source is adjusted, the measurement and the
record need to be done accordingly, and as a result the workload in processing the data is also increased.
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However, utilizing Equations (14) and (15), the precision of the calibration coefficients can be
improved rapidly via the increase of the number of measurements at each radiation level. When
the number of grouping is four, the increase of the radiance level achieves the same effect as the
increase of the number of measurements. In other cases, the increase of the number of measurements
demonstrated a stronger effect than the increase of the radiance level. To increase the number of
measurements is relatively easier to implement and does not actually add any difficulty to the whole
calibration process, thus making the experiment as well as the data processing process simple and
efficient. It was also noticed that this method of improving the calibration precision by increasing
the number of measurements is based on the assumptions that the experimental environment and
the sensors' working status are stable and the characteristics of the stochastic noise are unchanging.
As the number of measurements cannot be infinitely increased, dozens of measurements should suffice.
Therefore, in order to improve the precision of the relative radiometric calibration, the strategy is to
increase the number of the radiance level and the number of measurements simultaneously and take
the latter as the main force.

5. Conclusions

Based on the theoretical analysis and the computer simulation, the optimal strategy in conducting
the relative radiometric calibration can be summarized as follows: (1) when the number of the radiance
level and the number of measurements are fixed, the highest precision can be achieved with the error
being 2

√
2Mn/

√
IT if the measurement data is evenly divided into four groups and the average is

done within each group; (2) the bigger the number of the radiance level, the bigger the number of
measurements at each level, therefore, the higher the precision of the calibration. When the grouping
is done at four, the number of the radiance level and the number of measurements take the same effect
on the precision and show a stronger impact than the other even-division ways. When no grouping is
done, the number of measurements demonstrates a stronger impact than the number of radiance level;
and (3) when trying to improve the calibration precision by increasing the number of measurements,
the suggested number is no less than 20 but not too large, with the key to ensure the stability of the
experiment environment. Therefore, the average measurement should be done within a few minutes
in the lab calibration or within a few seconds in the field measurements.
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