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Abstract: Ionospheric delay effect is a critical issue that limits the accuracy of precise Global
Navigation Satellite System (GNSS) positioning and navigation for single-frequency users, especially
in mid- and low-latitude regions where variations in the ionosphere are larger. Kriging spatial
interpolation techniques have been recently introduced to model the spatial correlation and variability
of ionosphere, which intrinsically assume that the ionosphere field is stochastically stationary but
does not take the random observational errors into account. In this paper, by treating the spatial
statistical information on ionosphere as prior knowledge and based on Total Electron Content (TEC)
semivariogram analysis, we use Kriging techniques to spatially interpolate TEC values. By assuming
that the stochastic models of both the ionospheric signals and measurement errors are only known
up to some unknown factors, we propose a new Kriging spatial interpolation method with unknown
variance components for both the signals of ionosphere and TEC measurements. Variance component
estimation has been integrated with Kriging to reconstruct regional ionospheric delays. The method
has been applied to data from the Crustal Movement Observation Network of China (CMONOC)
and compared with the ordinary Kriging and polynomial interpolations with spherical cap harmonic
functions, polynomial functions and low-degree spherical harmonic functions. The statistics of results
indicate that the daily ionospheric variations during the experimental period characterized by the
proposed approach have good agreement with the other methods, ranging from 10 to 80 TEC Unit
(TECU, 1 TECU = 1 × 1016 electrons/m2) with an overall mean of 28.2 TECU. The proposed method
can produce more appropriate estimations whose general TEC level is as smooth as the ordinary
Kriging but with a smaller standard deviation around 3 TECU than others. The residual results show
that the interpolation precision of the new proposed method is better than the ordinary Kriging and
polynomial interpolation by about 1.2 TECU and 0.7 TECU, respectively. The root mean squared
error of the proposed new Kriging with variance components is within 1.5 TECU and is smaller than
those from other methods under comparison by about 1 TECU. When compared with ionospheric
grid points, the mean squared error of the proposed method is within 6 TECU and smaller than
Kriging, indicating that the proposed method can produce more accurate ionospheric delays and
better estimation accuracy over China regional area.
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1. Introduction

The ionosphere is the upper part of atmosphere located between from 50 km to 1300 km above
the Earth’s surface. It has a high density of ions and free electrons that can affect the propagation
of electromagnetic radio frequency waves [1]. Ionospheric delay is an important source of errors in
Global Navigation Satellite System (GNSS) positioning and navigation, which can be determined from
Total Electron Content (TEC) measurements. Accurate ionospheric delay corrections can significantly
accelerate the convergence of real-time GNSS ambiguity resolution and thus essentially improve
precision and performance of positioning and navigation products for single-frequency users [2].

Ionospheric models can be generally classified into two categories: function-based and
grid-based [3]. The former represents regional ionospheric TEC by estimating the coefficients of the
employed mathematical functions, such as (generalized) trigonometric series functions [4,5], polynomial
functions, low-degree spherical harmonic functions and spherical cap harmonic functions [3].
Mathematical function-based models cannot effectively reflect high-frequency variations in local
ionosphere, unless the functions employed possess high frequency components. Grid-based ionosphere
models have often been adopted by single-frequency users in wide area augmentation systems such as
Wide Area Augmentation System (WAAS) and European Geostationary Navigation Overlay Service
(EGNOS). Chao (1997) proposed Inverse Distance Weighted (IDW) functions with the Klobuchar
model to compute ionospheric delays in WAAS [6]. Komjathy et al. suggested a planar fitting
method to interpolate regional ionospheric grid delays [7]. Then WAAS uses a spatial correlation
interpolation scheme of Kriging [8], while EGNOS employs a non-uniform partitioning scheme for
ionospheric grid [9]. Moreover, grid-based models can be more effective in detail description of local
ionosphere variations.

Ionosphere changes spatially and temporally [8]. Kriging (see e.g., [10]), though originating
in the field of mining, is developed to fully account for spatio-temporal information on data [10].
Since then, it has become a powerful tool in geostatistics and spatial statistics to handle spatially
and/or temporally correlated and irregularly distributed data and has been widely applied to other
fields such as hydrology [11], climatology [12], soil science [13], ecology [14], Geo-Information System
(GIS) [15], atmosphere science [16], geophysics [17] and geodesy [18]. Since 2002, it has been shown
to be efficient for ionospheric delay estimation as well. Blanch conducted extensive experiments to
validate the technique of Kriging for ionospheric estimation by using WAAS ionospheric measurements
collected during quiet and disturbed periods [8]. Blanch et al. further developed a hybrid algorithm by
combining Kriging and tomography for Satellite Based Augmentation Systems (SBAS) and applied it
to post-process ionospheric TEC measurements from the US and Brazil [19]. Wielgosz et al. compared
Kriging with multiquadratic models by using GPS observations from five Ohio CORS stations; the
results have shown that both methods are suitable for instantaneous regional ionosphere modeling [20].
As one of the Internal GNSS Service (IGS) ionosphere analysis centers, Technical University of Catalonia
(UPC) has adopted Kriging to re-process existing UPC Global Ionospheric Map (GIM) products.
The results have shown that the Root Mean Squared error (RMS) of the UPC Kriging GIM is about 16%
lower than the current UPC GIM and about 2% lower than IGS GIM, where the RMS is the root mean
square of the difference among the geometry free linear combination observations and the Slant TEC
(STEC) computed by each GIM at the same elevation in a continue arch at two different time steps.
Both the standard deviation and the RMS are reduced approximately by 0.3 TEC Unit (TECU) (6%)
and 0.1 TECU (3%) over the current UPC GIM products when compared with TOPEX/Poseidon and
JASON TEC data, respectively [21]. These studies have shown that the Kriging method is useful and
effective for ionospheric TEC estimation.

Sayin et al. compared the performance of the Ordinary Kriging (OK) with the Universal Kriging
(UK) using a synthetic data set with different variances and different types of sampling patterns.
They observed that for small sampling numbers and with higher variability, OK performs better.
However, UK gives better results in case of smaller variances in synthetic surfaces and increasing
sample number [22]. Although UK takes the random signals of TEC observations into account,
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it does not consider measurement errors. Li et al. demonstrated, with the Ground-based Regional
Integrity Monitoring System (GRIMS) reference stations in China, that UK can produce a more accurate
ionospheric delay correction than the distance-weighted method and a tight confidence bound in
the boundary areas [23]. The technique has also been well used to reconstruct the ionosphere critical
frequency (f oF2) instantaneous mapping [24–26]. Relevant studies can be found in Tierno et al. [27],
Deviren et al. [28] and Chen [29].

Trend and signal in delays reflect the variations in the ionosphere i.e., the TEC [8]. The accuracy
of measurements and the stochastic model of signals are two basic elements in Kriging. However, TEC
measurement noise has often been neglected in the estimation of ionospheric delay, as can be found in
the research works mentioned above. Additionally, in the real conditions, TEC measurements can be
of different accuracy. Nevertheless, Kriging cannot be able to handle the situation with a number of
different unknown variance components of spatial/temporal data. Therefore, as the first motivation
of this paper, we will consider the estimation of ionospheric delays with TEC measurements of
different (unknown) accuracy. On the other hand, even if measurement noise and the stochastic
model of the signal would be fully taken into account in the estimation of ionospheric delays, we
have to determine whether the level of measurement noise and the stochastic model of signals are
correctly given, since incorrect stochastic models can distort the estimation of trends. The second
motivation of this paper is to apply the new Kriging method to real data and to demonstrate how to
eliminate the distortion by calibrating stochastic models of measurements and signals. More specifically,
we will theoretically extend the basic Kriging principle to the case with measurements of different
(unknown) variance components and calibrate factors for signals to balance the stochastic models of
both measurements and signals.

This paper is organized as follows: in Section 2, we will briefly outline ordinary Kriging algorithms
and semivariogram for the construction of signal stochastics. In Section 3, we will theoretically extend
Kriging methods to the case in which the stochastic model of measurements contains a number of
unknown variance components. The general formulae to estimate trend parameters, signals and the
unknown stochastic models of measurements will be worked out in detail. The proposed new Kriging
method will then be adapted for use in ionospheric TEC estimation in Section 4 and its implementation
will be outlined as well. A brief overview of the common used ionospheric mapping models are given
in Section 5 in order to compare with our introduced method. In Section 6, we will apply the new
method developed in Sections 3 and 4 to analyze the data from CMONOC and to evaluate the quality
of China Regional Ionospheric Maps (CRIM). Finally, the conclusions derived are summed up in
Section 7.

2. Kriging Spatial Interpolation

2.1. The Principle of Kriging Spatial Interpolation

Kriging originates from the field of mining and was developed to deal with spatio-temporally
correlated data [30]. Since then, it has become a standard and powerful method in geostatistics and
spatial statistics [10] and has found a variety of applications in all the subjects of study where (regularly
and/or irregularly) spatially and/or temporally correlated data are routinely encountered. It is based
on the variability and spatial correlation of regionalized variables to determine the weights of sampling
points distributed around the point to be estimated, according to the principle of unbiased and optimal
estimation. Finally, the value of the estimated point is obtained by using the linear combination of
data samples. The spatial variability and correlation of data is described by using spatial covariance
function or semivariogram. Very often, we do not know the semivariogram in advance. Instead, it
must be practically estimated from the original data set. In the remainder of this section, we will
closely follow Cressie to briefly outline the basic principle of the ordinary Kriging.
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In geostatistics, we usually assume the stationarity for spatially distributed data. To be specific,
given a spatial random function Z(x), we assume (i) that its expectation is constant and does not
depend on the location x and (ii) that the correlation function between any two points depends solely
on their distance. These two assumptions can be mathematically described equivalently as follows:

E[Z(x)] = m, ∀x
E[Z(x + h)− Z(x)] = 0

(1)

Var[Z(x + h)− Z(x)] = E
{
{[Z(x + h)− Z(x)]− E[Z(x + h)− Z(x)]}2

}
= E

{
[Z(x + h)− Z(x)]2

}
= 2γ(h)

(2)

(see e.g., Cressie [23]), where the function γ(h) is called semivariogram, which characterizes the spatial
correlation of random function Z(x), and h = ‖h‖ is the distance between the two spatial points. If the
assumption of isotropy is removed, then h will not be a scalar of distance but should be replaced by
the vector between the two points. If we further remove the assumption of homogeneity, in this case,
the semivariogram should be written in its most general form as γ(x + h, x).

Based on the above assumptions and given a semivariogram function, the basic Kriging method
is to find the best linear unbiased estimator or interpolator with minimum variance. Given a set of
measurements Z(x1), Z(x2), ...,Z(xN), we can interpolate the value Ẑ(x0) of a given (non-measured)
point x0 by constructing a linear combination of the measurements as follows:

Ẑ(x0) =
N

∑
i=1

λiZ(xi) (3)

where λi are the unknown coefficients to be determined. In general, we also require that these
coefficients be non-negative.

The expectation of the difference between the linear interpolation Equation (3) and the signal at
the point x0 can be written as follows:

E
(
Ẑ(x0)− Z(x0)

)
= E

(
N

∑
i=1

λiZ(xi)− Z(x0)

)
=

N

∑
i=1

λiE(Z(xi))− E(Z(x0)) = m

(
N

∑
i=1

λi − 1

)
(4)

Since we require the linear interpolator Equation (3) be unbiased, and bearing the condition
Equation (1) in mind, we must have:

N

∑
i=1

λi = 1 (5)

Under condition Equation (5), we can further compute the error variance for Ẑ(x0)− Z(x0), which
is given below:

var
(
Ẑ(x0)− Z(x0)

)
= 2

N

∑
i=1

λiγ(xi, x0)−
N

∑
i=1

N

∑
j=1

λiλjγ
(
xi, xj

)
− γ(x0, x0) (6)

where γ
(
xi, xj

)
is the semivariogram between points xi and xj.

To construct the optimal interpolator Equation (3), we require minimum error variance Equation (6)
under the constraint Equation (5) of unbiasedness. Following Cressie [23], we construct the augmented
objective function:

L(λ, µ) = 2
N

∑
i=1

λiγ(xi, x0)−
N

∑
i=1

N

∑
j=1

λiλjγ
(
xi, xj

)
− γ(x0, x0)− 2µ

(
N

∑
i=0

λi − 1

)
(7)
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where µ is the Lagrange multiplier. By computing the partial derivatives of the objective function
Equation (7) with respect to λi and setting them to zero, we have the normal equations:

N

∑
i=1

λiγ
(
xi, xj

)
+ µ = γ

(
xj, x0

)
, j = 1, 2, · · · , N (8)

from which, together with the equality condition Equation (5) of unbiasedness, we can readily obtain
the following linear system of equations:

γ11 γ12 · · · γ1N 1
γ21 γ22 · · · γ2N 1

...
...

. . .
...

...
γN1 γN2 · · · γNN 1

1 1 · · · 1 0




λ1

λ2
...

λN
µ

 =


γ10

γ20
...

γN0

1

 (9)

By solving the Equation (9), we have the solution of λi and µ, and as a result, can use them
to construct the OK interpolator Equation (3) and to complete the estimation of Ẑ(x0). Here γij
(i, j = 1, 2 ,..., N) stands for γ

(
xi, xj

)
in Equation (8), and γi0 stands for the semivariogram between the

i-th measured point and the point to be interpolated, for the conciseness of notations. The estimated
error variance of the optimal OK interpolator can be derived by applying the error propagation law to
Equation (3) and is simply given as follows:

σ̂2
OK =

N

∑
i=1

λiγ(x0, xi)− γ(x0, x0) + µ (10)

Equations (9) and (10) can also be written alternatively in matrix form as follows:

Bλ = Γ (11)

σ̂2
OK = ΓTB−1Γ− Γ0 (12)

where:

B =


γ11 γ12 · · · γ1N 1
γ21 γ22 · · · γ2N 1

...
...

. . .
...

...
γN1 γN2 · · · γNN 1

1 1 · · · 1 0

 (13)

Γ = [γ10 γ20 · · · γN0 1]T , λ = [λ1 λ2 · · · λN µ]T , Γ0 = [γ00] (14)

Therefore, the weights λi and the Lagrange multiplier µ can be estimated by solving Equation (11).

2.2. Construction of Semivariogram

A semivariogram describes the spatial correlation of a random field and plays a key role in spatial
Kriging interpolation. In practice, a semivariogram is generally unknown but has to be estimated
from spatial measurements. To simplify the numerical representation of spatial correlations among
random points under the assumption of stationarity and isotropy, the semivariogram in this case is
often represented by using a few parameters [30].

By definition, a semivariogram is half of the variance of the difference between Z(x) and Z(x + h),
which is related to the covariance function through the following relationship [30]:

C(xk, xl) = σ2
∞ − γ(xk, xl) = C(0)− γ(xk, xl) (15)
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Given N(h) pairs of measurements separated at a distance h and under the assumption of
stationarity and isotropy, the semivariogram can then be numerically estimated as follows:

γ(h) =
1

2N(h)

N(h)

∑
[h−δ,h+δ]

(Z(xk)− Z(xl))
2 (16)

Practically, all the measurement points may not be regularly distributed in space. In this case,
we will have to allow a certain tolerance in order to have a sufficient number of data pairs to estimate
semivariogram. Nevertheless, a large number of semivariogram values, as given by Equation (16),
may not be convenient to use. Thus, one often selects some appropriate and simplified models to
fit and represent semivariogram. The most common used semivariogram models include spherical
functions, exponential functions and Gaussian functions [8,30].

3. Variance Component Estimation (VCE) Based on Collocation

Variance component estimation (VCE) has been one of the most important topics in geodesy [31–35].
To correctly determine the weights of different types of measurements and/or measurements of different
precisions, we have to simultaneously estimate both the model parameters and variance components.
A number of methods have been proposed both in geodesy and statistics to estimate the unknown
parameters along with the unknown stochastic model of measurements. The most widely used methods
include Helmert quadratic estimation [32], maximum likelihood [33], the Best Invariant Quadratic
Unbiased Estimation (BIQUE) [34], the Restricted Maximum Likelihood Method (REML) [36], and the
MInimum Norm Quadratic Unbiased Estimation (MINQUE) [37,38]. Extensions to ill-posed problems
can be found in Xu et al. [35], Xu [39] and Eshagh [40].

In this section, we focus on the following collocation model:

y = Aβ+ Bs + ε (17)

where y is an n × 1 observation vector. In the literature of ionospheric modeling, the notation
I(x) is often used instead of y, to denote observations of ionospheric delays. ε is the corresponding
measurement error vector; A is the (n × t) design matrix of the unknown parameters, β is a t × 1
vector that contains (deterministic) unknown trend parameters to be estimated; s is an m × 1 vector of
random signals with an associated (n × m) design matrix B.

In general, the least-squares collocation method usually assumes that the variance-covariance
matrices of the measurement errors and the signals are given and then uses the measurements y to
estimate the parameters β and the random signals s. Yang and Xu extended the collocation model to
the case that allows one unknown variance component for the measurements y and one unknown
variance component for the random signals s [41]. Yang et al. introduced an adaptive factor into a new
adaptive collocation procedure and used the maximum likelihood technique to determine the weights
of the signals and measurements [42].

In this paper, we will further extend the collocation model to a very general case with a number of
unknown variance components for the stochastic models of both the measurements ε and the random
signals s. For simplicity, we will focus on the following stochastic model:

E(s) = 0, E(ε) = 0

D

[
s
ε

]
= Σ =

[
Σs 0
0 Σε

]
=


kS
∑

i=1
Usiσ

2
si 0

0
kε
∑

i=1
Uεiσ

2
εi

 (18)

where the variance-covariance matrix Σ contains Σε and Σs that are the variance-covariance matrices
of the measurements and the random signals, respectively. Usi and Uεi are the given positive (semi-)
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definite matrices, and σ2
si (i = 1,2, . . . ,ks) and σ2

εi (i = 1,2, . . . ,kε) are the unknown variance components.
If the measurements and the random signals can be divided into a number of stochastically independent
sub-groups, and if the measurements and the random signals are stochastically independent as well,
then Σs and Σε become block-diagonal, which can be rewritten as follows:

Σs =


P−1

s1 σ2
s1 0 · · · 0

0 P−1
s2 σ2

s2 · · · 0
...

...
. . .

...
0 0 · · · P−1

sks
σ2

sks

, Σε =


P−1
ε1 σ2

ε1 0 · · · 0
0 P−1

ε2 σ2
ε2 · · · 0

...
...

. . .
...

0 0 · · · P−1
εkε

σ2
εkε

 (19)

where Psi and Pεi are the weight matrices, corresponding, respectively, to the i-th sub-group of the
random signals s and the measurement errors ε. In this case, the matrices Usi and Uεi become:

Usi =


0 0 · · · 0
0 P−1

si · · · 0
...

...
. . .

...
0 0 0 0

, i = 1, 2, . . . , ks (20)

and:

Uεi =


0 0 · · · 0
0 P−1

εi · · · 0
...

...
. . .

...
0 0 0 0

, i = 1, 2, . . . , kε (21)

If the signal vector s′ at unmeasured points is also included into the collocation model (16),
we then have:

y = Aβ+ [B 0]

[
s
s′

]
+ ε (22)

If the variance components in the stochastic models is known or given with some initial values,
we apply the least squares collocation principle (see e.g., Huang 1992) [43] to model (22) and obtain
the following solution:

β̂ =
(
ATPyA

)−1ATPyy

ŝ = ΣsBTPy

(
y−Aβ̂

)
ŝ′ = Σs′sBTPy

(
y−Aβ̂

) (23)

where Py =
(
BΣsBT + Σε

)−1, β̂ is the estimated trend parameter vector, ŝ is the estimated signal
vector at the known points, ŝ′ is the estimated signal vector at the unmeasured points.

Since the variance components are unknown, we now apply variance component estimation to
the collocation model (22) to estimate the variance components of the measurements and the random
signals. Specifically, we will use the MINQUE method in this section.

To estimate the variance components for the measurements and the random signals, and keeping
in mind that the variance component estimation has nothing to do with the unobserved signals,
we rewrite the stochastic signals as pseudo observations. Thus, the collocation model (17) can be
alternatively presented as follows:

y = Aβ+ Bs + ε, Σε =
kε
∑

i=1
Uεiσ

2
εi

ys = s + εs, Σs =
ks
∑

i=1
Usiσ

2
si

 (24)
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where ys and εs denotes the prior values and errors of the signals, respectively.

Given some initial values σ2
s0 =

[
σ2

s10 σ2
s20 · · · σ2

sks0

]T
and σ2

ε0 =
[
σ2
ε10 σ2

ε20 · · · σ2
εkε0

]T
for the

unknown variance components, the MINQUE estimate of the variance components can be computed
by using the following equations (see e.g., [35,37,43]):

Gσ̂ = q (25)

where:

G =

[
Gε Gεs

Gsε Gss

]
(26)

σ̂ =

[
σ̂2
ε

σ̂2
s

]
(27)

q =

[
qε
qs

]
(28)

and the elements of the coefficient matrix G and vector q are given by:

gij
ε = tr

(
CUi

εCUj
ε

)
, (i, j = 1, 2, . . . , kε)

gij
εs = tr

(
CUi

εCUj
s

)
, (i = 1, 2, . . . , kε; j = 1, 2, . . . , ks)

gij
sε = tr

(
CUi

sCUj
ε

)
, (i = 1, 2, . . . , ks; j = 1, 2, . . . , kε)

gij
s = tr

(
CUi

sCUj
s

)
, (i, j = 1, 2, . . . , ks)

(29)

qi
ε = VTCUi

εCV , (i = 1, 2, · · · , kε) (30)

qi
s = VTCUi

sCV , (i = 1, 2, · · · , ks) (31)

tr(·) denotes the trace of a square matrix, and:

F =

[
A B
0 I

]
(32)

C = Σ−1
0 − Σ−1

0 F
(

FTΣ−1
0 F

)−1
FTΣ−1

0 (33)

Ui
ε =

[
Uεi 0

0 0

]
, (i = 1, 2, · · · , kε), Ui

s =

[
0 0
0 Usi

]
, (i = 1, 2, · · · , ks) (34)

V =

[
Vε
Vs

]
, Vε = Aβ̂0 + Bŝ0 − y, Vs = ŝ0 (35)

Σ0 stands for Σ with initial sets of σ2
s0 and σ2

ε0. After obtaining the estimates of σ̂2
s0 and σ̂2

ε0, we can
re-estimate β̂, ŝ and ŝ′ in Equation (23) and further use these Equations (22)–(35) to iteratively estimate
the variance components. Then the estimations ŷ′ at unmeasured points can be get by the following
Equation (36):

ŷ′ = A′β̂+ B′ŝ′ (36)

and the corresponding variance-covariance matrix Σŷ′ is:

Σŷ′ =
[

A′ B′
][ Σβ̂ Σβ̂ŝ′

Σŝ′β̂ Σβ̂

][
A′

B′

]T

(37)
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where A′ and B′ are the design matrices, and the formulas of variance matrices in Equation (37) can
refer to Huang [43] in detail.

4. Implementation of VCE Integrating with Kriging in Ionospheric Delay Estimation

The observable of STEC can be generated by forming the geometry-free linear combination
of pseudorange and phase data. The Vertical TEC (VTEC) can then be derived from STEC at
the corresponding ionospheric Intersecting Pierce Point (IPP) by multiplying with the mapping
function [44]. In this paper, the Modified Single-Layer Model (MSLM) mapping function is
employed [44]. The variance of the TEC observations at different elevations is calculated using the
following formula:

Σεi =

{
2σ2

0 , e > 30
◦

σ2
0
/(

2 sin2(e)
)

, e ≤ 30
◦ (38)

where e is the elevation angle of the satellite (the cut-off elevation angle is set to 15◦, Σεi is the
corresponding variance of the ionospheric delay observation error; σ2

0 is the prior variance of the the
TEC estimation noise.

For ionospheric delay estimation, we set the trend in the Equation (17) to be constant. Moreover,
the matrix B is an identity matrix. The observation equation for the vertical ionospheric delay at the
IPP located at x with x ∈ φ, λ, denoted by I(x), becomes:

I(x) = β+ s + ε (39)

For the sake of simplicity in the ordinary Kriging interpolation, we directly use the VTEC observed
at IPPs within a certain limit around the Ionospheric Grid Points (IGPs) to interpolate the VTEC
according to the algorithm in Section 2.1.

In order to apply Kriging interpolation and VCE for ionospheric estimation, we need to choose
some appropriate semivariogram or variance function which can give exact veracious description for
ionosphere random behavior. Figure 1 presents the semivariograms of the ionosphere on day-of-year
(DOY) 305 in 2014 (2014.11.01) from UTC 00:00 to 22:00 with a 2-h interval which are computed by
using Equation (16) based upon CMONOC observational data sets. The dots and curves shown in
Figure 1 are the experimental semivariograms and fitting results respectively. According to the shape
and behavior of the experimental semivariogram, the Gaussian semivariogram function of the signals
is selected:

γ(h) = C0 + C
(

1− e−
h2

a2

)
(40)

(see e.g., [30]), where C0, C and a are the unknown parameters to be estimated. In geostatistics, C0 is
called “nugget” which is linked to the continuity and to the spatial regularity of the regionalized
variables. The physical explanations in ionosphere study, the discontinuity at the origin are expounded
due to the obliquity error, remaining bias in the measurements and the fast-changing ionosphere [8].
The semivariogram reaches a limiting value, C0 ± C, termed as “sill” on behalf of the structural variance
of spatial variation, and reflect the biggest variation extent of the variables. The two observations are
uncorrelated if the distance is beyond a limit. This distance is called the “range”. This value is equal
to
√

3a for Gaussian function model [30]. These parameters are estimated by using the data in the
corresponding interval of time to characterize the spatial correlation and variability. Therefore, for
each epoch map, a set of new semivariogram parameters (nugget, sill, range) is obtained which give
descriptions for the behavior of the ionospheric TEC. Figure 2 indicates how the semivariogram
changes during the campaign days.

The prior variance-covariance of the signals can be computed according to Equation (15) after
fitting the experimental semivariogram to the theoretical semivariogram model (40) by using the least
squares estimation. Once the semivariogram and variance are computed, with the known and typically
diagonal measurement noise matrix, the Kriging and VCE methods can be used to estimate the results
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and the estimation variance. Using the developed algorithms, the maps for regional TEC in China can
be obtained in real-time with the fitted semivariogram function automatically at any desired epoch.
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In order to estimate the VTEC at a given IGP at a given epoch, we must first select a set of VTEC
measurements whose IPPs are distributed within the restricted scope centered upon this IGP. We set
the maximum radius and minimum radius as Rmax = 2000 km and Rmin = 500 km respectively. It is
important to note that the appropriate radius R̃ for searching IPPs at a given IGP must be within
a half of the given searching limits and half of the range, as well as the Rmax. The minimum and
maximum number of IPP measurements is set as Nmin = 5 and Nmax = 25 based on our experiments.
If there are IPPs fewer than Nmin within R̃, no corresponding estimate is computed. If we find the
Nmax IPPs around the estimated IGP, then we stop searching. On the other hand, due to the variation
level of ionospheric activity which calls for a change for the degree of the ionosphere measurements
correlation, the experimental semivariograms have to be fitted in real-time with the IPPs located within
appropriate searching limits, with the distance interval to compute the semivariogram from data and
its tolerance set to 100 km and 50 km, respectively. The searching limits here refer to the maximum
distance between any two IPPs with correlation. From Figure 1, we can see that in the disturbed
ionospheric condition, the semivariograms have smaller range and larger sill than those in the quite
ionospheric condition. In the measured data tests, this value of searching limits is set as 3500 km
between 14:00 and 22:00 in China local time (=UTC + 8 h), and 4500 km at other moments, as shown in
blue vertical dashed lines in Figure 1.

5. Regional Ionospheric Models

For the purpose of numerical comparisons in this paper, we will briefly outline some ionospheric
interpolation methods used for ionospheric mapping, namely, polynomial interpolations and
interpolations with low-degree spherical harmonic functions and spherical cap harmonic analysis.

The polynomial ionospheric interpolation method uses a polynomial function of the latitude
differentials and the hour angles differentials of the Sun to interpolate ionospheric delays.
The mathematical model can be written as follows:

Iv(ϕ, λ) =
n

∑
i=0

m

∑
k=0

Eik(ϕ− ϕ0)
i(S− S0)

k (41)

(see e.g., [44,45]), where Iv stands for an VTEC measurement, (ϕ, λ) are the geographic latitude
and longitude of the IPP, Eik are the coefficients of the polynomial function, S0 is the hour
angle of the Sun observed at the central point of the central epoch t0 in the observation session,
e.g., S − S0 = (λ− λ0) + (t− t0), (ϕ0, λ0) are the central point coordinates of the IPPs, and t is the
observation epoch. In this study, the degrees (n, m) of the polynomial function (41) are set to n = m = 8
for regional modeling and n = m = 1 for local interpolation, respectively.

The functional method with low-degree spherical harmonic functions is to represent an
ionospheric delay measurement with the latitude-dependent associated Legendre functions and
the sum of the longitude-dependent sine and cosine terms. The mathematical expression of a VTEC
measurement Iv at an IPP with low-degree spherical harmonic functions is given by [3,44]:

Iv(ϕ, s) =
nmax

∑
n=0

n

∑
m=0

P̃nm(sin ϕ)
(

C̃nm cos(ms) + S̃nm sin(ms)
)

(42)

where ϕ is the geographic latitude of the IPP, s = λ− λ0 is the sun-fixed longitude of the IPP, λ is
the longitude of the IPP, λ0 is the longitude of the Sun, nmax is the maximum degree of the spherical
harmonic expansion, P̃nm is the normalized associated Legendre function of degree n and order m,
and C̃nm and S̃nm are the spherical harmonic coefficients to be estimated. The degree and order define
the resolution of the model, and should be coordinated with the scope of region and the number of
measurements [44]. In this paper, the maximum degree is set to 5 experimentally and the total number
of the unknown coefficients is (nmax + 1)2 = 36.
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The regional model on the basis on spherical cap harmonic analysis has also been routinely used
in ionospheric modeling [3]. The model with a spherical cap in interval [0, θ0] for regional mapping of
VTEC is expressed as:

Iv(ϕc, λc) =
Kmax

∑
k=0

min(k,M)

∑
m=0

P̃nk(m)(cos θc)

(∼
Ckm cos(mλc) +

∼
Skm sin(mλc)

)
(43)

where Iv(ϕc, λc) is the VTEC measurement at IPP (ϕc, λc) inside the spherical cap, Kmax , M and nk(m)
are the maximum degree, order of the series and the non-integral degrees, respectively. k is the index of
the non-integral degrees nk(m) (0 ≤ k ≤ Kmax) computed by an iterative bisection solution. P̃(cos θc) is
the normalized associated Legendre function, C̃km and S̃km are the unknown normalized spherical
cap harmonic coefficients. If the geographic coordinate of the pole of the spherical cap is (θN , λN),
a point with the geographic coordinates (ϕ, λ) can be transformed into the spherical cap coordinates
as follows (see e.g., [3]):{

θc = arccos[cos θN cos θ + sin θN sin θ cos(λN − λ)]

λc = arcsin
[

sin(λ−λN)
sin θc

sin θ
] (44)

where the co-latitudes θ = 90◦ − ϕ, and θc = 90◦ − ϕc. The modeling area ranges from 5◦ to 60◦

in latitude and from 70◦ to 140◦ in longitude, so the pole of the spherical cap (θN , λN) and the half
angle θ0 are determined as (35◦, 105◦) and 30◦, respectively. In the next section of applications,
Kmax and M are respectively set to 8 and 6 according to Equation (45) to reach the tradeoff between
the measurement resolution ωmin and computational load, and the total number of the unknown
coefficients is (Kmax + 1)2 − (Kmax −M) · (Kmax −M + 1) = 75. More mathematical information on
spherical cap harmonic function and the nk(m) solution can be found in Liu [3] and the references therein:

Kmax ≈
2θ0

π

(
2π

ωmin
+ 0.5

)
− 0.5 (45)

6. Applications to CMONOC Data and Result Analysis

We have applied Kriging with unknown variance components to reconstruct the ionospheric
maps over China, which will be abbreviated as KVCE. We will also compare different methods for
ionospheric reconstruction. The local POLYnomial Interpolation (named as IPOLY) approach is also
employed. The regional function-based models used include the low-degree SPHerical harmonic
function model (SPH), POLYnomial function model (POLY) and Sphere Cap Harmonic Analysis
model (SCHA).

The Crustal Movement Observation Network of China (CMONOC) consists of about 260 GPS
stations. To demonstrate the construction of a regional real-time ionospheric model over China,
80 stations with a reasonable level of a uniform distribution from CMONOC are selected with data
in November 2014 (from DOY 305 to 334). The processing interval is 60s with a cutoff angle of 15◦

due to high level of errors in low elevation angles. The regional range is (5◦–60◦ N, 70◦–140◦ E)
with resolution of 2.5◦ in latitude and 5◦ in longitude with a total of 345 grids. Figure 3 shows the
distributions of the selected reference stations (red pentagram points) and IPPs (green points). In the
processing, due to the lack of P1 observations at most stations, the CA code pseudoranges are used to
extract the ionospheric delays by carrier-to-code leveling process. The satellites differential code biases
(DCBs) are calibrated using the products processed by Wuhan University [45], and the receivers DCBs
are estimated using the GIM products and the known satellites DCBs.
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6.1. TEC maps

The ionospheric delay effect can be reflected by the values of TEC. Therefore, consecutive
VTEC maps may allow detecting the local temporal-spatial variations in ionosphere. Based on
the observations from CMONOC, China regional VTEC products are generated by applying the
ionospheric TEC models mentioned above. The ionospheric activities during the campaign days have
similar characteristics that the diurnal variations of the regional mean VTEC distribute in wave shapes
with different maximum and minimum. The mean VTEC ranges from 10 to 80 TECU during campaign
days. It reaches the maximum values of 55 to 80 TECU during the session from LT 12:00 to LT 14:00,
and approaches the minimum values around 10 to 15 TECU in the local evening and before dawn.

Figure 4 presents the examples of China regional instantaneous ionosphere VTEC maps by using
the adopted models at the representative epoch with a high solar activity, LT 14:00, when the maximum
ionospheric TEC appears commonly. The TEC value can reach nearly 100 TECU in low latitudes.
In general, the phenomena that intense ionosphere variations and high values of ionospheric TEC
occur frequently in low latitudes are attributed to the geomagnetic disturbances. While in middle
latitudes, the ionospheric TEC varies smoothly, ranging from 30 to 50 TECU. Due to the lack of enough
IPPs in the low latitude boundary areas, there are no interpolated estimations for KVCE, OK and
IPOLY models. That is why there are blank areas in the first three maps of Figure 4. This situation
restricts the correction effect of interpolation methods to some extent. Comparatively, as shown in
the latter three maps of Figure 4, the function-based models, namely, POLY, SPH and SCHA, can
provide the VTEC estimations for these areas, which are computed with their coefficients. But the map
obtained from KVCE is similar to that of OK and seems to be a bit smoother compared with the other
four approaches.
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Figure 5 shows the time series of China regional mean VTEC values obtained from different
models. In order to avoid overlapping of resultant curves, they are plotted into two groups to
conveniently distinguish the differences among them. The distributions show similar ionospheric
behaviors in spite of somewhat differences. The maximum VTEC, which can reach nearly 80 TECU,
occurs during LT 12:00 to LT 14:00 due to intense activities of ionosphere. Then the VTEC gradually
decreases to the minimum, ranging from 10 to 15 TECU. The overall mean and standard deviations
of VTEC values for KVCE, OK, IPOLY, POLY, SPH and SCHA during the selected campaign days
are equal to (28.2, 14.2) TECU, (27.8, 14.1) TECU, (33.0, 17.0) TECU, (33.7, 17.6) TECU, (34.1, 18.3)
TECU and (33.3, 17.7) TECU, respectively. Since the mean VTEC values are different within 6 TECU,
and the standard deviations are different by 4 TECU, we may conclude that all the methods under
study achieve good agreements of results. Moreover, the results of the lowest mean value of OK may
indicate that OK underestimates the ionospheric TEC a little more than KVCE, as compared to IPOLY,
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POLY, SPH and SCHA. Furthermore, the nearly same standard deviations of VTEC mean values
of 14.2 TECU for KVCE and 14.1 TECU for OK indicate almost equivalent stabilities for both methods.
The standard deviations of mean VTEC for other methods range from 17.0 to 18.3 TECU and are larger
than those of KVCE and OK by about 3 TECU. Owing to the fact that KVCE neither underestimates nor
overestimates the VTEC with high stability, this approach seems to be very promising for specifying
the TEC over the investigated area.
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6.2. Local Interpolation Residuals Analysis

The strategy of cross-validation is used to evaluate interpolation performances of different
methods of KVCE, OK and IPOLY. For each IPP, its interpolated value of TEC is calculated in the
same way as the procedure of IGP TEC estimation. This means that while polynomial is used for the
interpolation, only those IPPs around the target IPP are used to calculate the polynomial coefficients.
KVCE and OK are performed by following the same procedure. Taking Îinterp to denote the STEC by
interpolated VTEC conversion using the MSLM mapping function and I to denote the observed STEC
at the same IPP, we can then compute Interpolation Root Mean Squared error (IRMS):

IRMS =

√√√√√ N
∑

i=1

(
Îinterp − I

)2
i

N
(46)

Figures 6 and 7 present the IRMS results from KVCE, the ordinary Kriging and polynomial
interpolation for DOY 305 to 334. The IRMS from the KVCE ranges from 0.5 to 2.5 TECU, while the
IRMS values from the OK and IPOLY are from 1.5 to 3.5 TECU and 1.5 to 3.0 TECU, respectively.
As shown in Figure 6, the standard deviations of the IMRS for KVCE, OK and IPOLY are 0.29 TECU,
0.40 TECU and 0.22 TECU, respectively. The comprehensive comparisons about the mean and standard
deviation of IRMS indicate that KVCE is superior to OK and IPOLY. In addition, the overall statistical
IRMS information can be seen obviously in Figure 7. The IRMS daily mean values of the three
approaches are 1.37 TECU, 2.59 TECU and 2.06 TECU, respectively. The mean IRMS of KVCE is
smaller than those of OK and IPOLY by about 1.2 TECU and 0.7 TECU, respectively. Besides, the
standard deviation of the daily mean IRMS for KVCE is 0.08 TECU, achieving a better stability and/or
precision than OK (0.18 TECU) and IPOLY (0.11 TECU). The polynomial interpolation fits the trend
with the weights of the measurements, which is effective for estimating the deterministic part (trend)
of TEC distribution in local areas; nevertheless, it does not use the random signals in spatial variations
of TEC. Since OK uses a constant model as the trend, and since a trend model plays a dominating role
in TEC modeling, this explains why the results of local IPOLY with a more flexible trend model are
better than those of OK. On the other hand, KVCE not only gives full consideration to the balance
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between the weights of measurement noises and random signals but also the spatial relationships of
the scattered IPP measurements. This probably explains why KVCE performance is superior over OK
and IPOLY in local interpolation.
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6.3. Regional Modeling Residuals Analysis

POLY, SPH and SCHA can be used to make regional TEC maps. The IPPs’ STEC can be computed
with the fitted coefficients. Thus, we can also compute the residuals. To compare the performances of
POLY, SPH and SCHA, we will use the following measure:

MRMS =

√√√√√ N
∑

i=1

(
Îmodel − I

)2
i

N
(47)

where the Îmodel is the STEC computed from the models above.
For KVCE, only IGP VTEC is estimated locally and VTEC grid models will be constructed here.

With the estimates of the IGP VTEC, the IPPs with STEC surrounding IGP within a certain radius
can be obtained sequentially. Then the KVCE residuals are computed. For the VTEC grid models
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from KVCE, the differences between the estimated IPP STEC and the observed IPP STEC are used to
compute the modeling precision as follows:

MRMS =

√√√√√√√√√
NIGP
∑

i=1

(
Mi
∑

j=1

(
ÎKVCE − I

)2
j

)
i

N
∑

i=1
Mi

(48)

where the ÎKVCE is the j-th estimated IPP STEC, Mi is the number of IPPs surrounding the i-th IGP,
NIGP is the number of IGPs.

Figure 8 plots the mean Modeling RMS (MRMS) with the results from KVCE, POLY, SCHA
and SPH. The MRMS from KVCE ranges from 0.5 to 3 TECU, with the mean value of 1.49 TECU,
while the MRMS values from POLY, SPH and SCHA are about 2.57 TECU, 2.75 TECU and 2.47 TECU,
respectively. Obviously, the modeling fitting of KVCE is better than those of SCHA, POLY and SPH
methods. This is reasonable because KVCE grid models take local fitting around IGPs while POLY,
SCHA and SPH make regional fitting over China. Even if POLY is used both for local interpolation
for IGPs with local IPPs around it and for regional fitting over China area, the fitting residuals are at
a similar level of around from 2 to 4 TECU (compare Figures 6 and 8). SCHA and SPH have a similar
residual level as POLY in the regional fitting over China.
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6.4. TEC RMS Maps

After estimating the ionospheric delays at IGPs, we can further compute the estimation accuracy,
namely, RMS or grid sigma σ. The estimation accuracy of KVCE, POLY, SCHA and SPH can
be computed by applying the variance-covariance propagation law expressed by Equation (37).
The estimation accuracy of OK can be obtained by Equation (12). With the data from this CMONOC
network, the daily mean RMS values of the POLY, SCHA and SPH are equal to 10.5 TECU, 9.05 TECU
and 9.44 TECU, respectively. These numbers are significantly larger than those of KVCE and OK.
Therefore, we focus on the comparison of results between KVCE and OK in this section.

Figure 9 presents the nephograms of estimation accuracy over China at four different local time
epochs, morning (LT 08:00), noon (LT 14:00), afternoon (LT 18:00) and evening (LT 22:00) on DOY 305,
with the subplots in the left and right columns of Figure 9 showing the IGPs RMS results of OK
and KVCE, respectively. Due to the lack of IPPs at the boundary, the IGPs in low latitudes have no
interpolation values in the blank area shown in Figure 9, which will be called as invalid grids in
the following.
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The accuracy of the estimation results depends on the quantity of the measurements and the
degree of ionospheric activity. In general, the accuracy in the central region is higher than that along
the boundary. For the subplots in the left column of Figure 9, the OK RMS at LT 08:00 and LT 22:00 is
from 0 to 8 TECU, and the characteristics of IGPs RMS distribution are inconspicuous for the quiet
ionospheric activities, when compared with the IPPs distribution. At LT 14:00 and LT 18:00, the RMS is
within 2 to 20 TECU, and the magnitude of IGPs RMS depends on the density of the IPPs. The pattern
of these maps is apparently the same as that of the IPPs distributions. This result indicates that the
RMS at noon and in the afternoon is larger than that in the morning and evening, and has evident
variation along with the distribution of IPPs. The major reason for this phenomenon is the disturbed
ionosphere condition in the daytime, especially at noon and in the afternoon. The KVCE RMS results,
as shown in the right column of Figure 9, are within 6 TECU, which are better than those of OK
interpolation. The abnormal phenomena appear at LT 14:00 in the KVCE ionosphere map, which
shows that the central area has a larger RMS than the boundary areas. A possible reason is likely due to
the non-convergence of the VCE estimates. The accuracy obtained in the morning and at night is better
than that at noon and in the afternoon. In general, KVCE is better than OK, no matter whether the
points are in the boundary area. Moreover, occurrence of the boundary errors have a big impact on the
results which are presented in the Figure 9, as well as the following Figures 10 and 11. Certainly, if the
points in the boundary area are not taken into account, the differences between Kriging and KVCE will
be smaller. Nevertheless, we believe that to fairly compare both methods, it is more reasonable to count
on all the points. In other words, the advantage of KVCE becomes even clearer in the boundary area.Sensors 2017, 17, 468 20 of 24 
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Figures 10 and 11 plot the distribution of time series for the epoch mean RMS and daily mean
RMS of both methods. Although the patterns of the mean RMS of KVCE and OK are similar, KVCE
is clearly significantly better than OK, as can also be further confirmed from the standard deviation
statistics plotted in Figure 12. The daily mean RMS of KVCE is less than 1 TECU and that of OK is
about 4 TECU. The former is about four times better than the latter in terms of RMS. The abnormal
phenomena appear at LT 14:00 in the KVCE ionosphere map, which shows that the central area has
a larger RMS than the boundary areas. The possible reason is likely due to the non-convergence of
the VCE estimates. Furthermore, the accuracy estimated in the morning and at night is better than
that at noon and in the afternoon. Figure 13 also presents the Kp index and SunSpot Number (SSN)
showing that the daily sum Kp index and SSN are lower than 30 and 180, respectively. Generally, the
ionospheric activity is relatively stable for the campaign days. It is nice confirmation of the KVCE
method which gives much more reliable estimations as shown in Figure 12.Sensors 2017, 17, 468 21 of 24 
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7. Conclusions

We have proposed a Kriging method with unknown variance components to interpolate
ionospheric delays for use in real-time, which is an extension of the works by Xu et al. [35] and
Xu [39]. As a result, we are able to correctly determine the weighting factors of measurement noises
and random signals. The proposed new method has been applied to GPS data collected in 2014 from
the Crustal Movement Observation Network of China (CMONOC) and compared with other methods
such as ordinary Kriging, polynomial interpolation, low-degree spherical harmonic function models,
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polynomial function models and spherical cap harmonic analysis models in terms of TEC maps
comparisons, local interpolation, regional modeling and VTEC accuracy at ionospheric grid points.

The results show that the ionospheric vertical structures obtained by applying these methods
reach a good agreement, with the daily mean VTEC variations ranging from 10 to 80 TECU and the
overall mean values from 27.8 to 34.1 TECU during the campaign days. The mean VTEC value from
KVCE is close to that from OK, which is lower by about 6 TECU than IPOLY, POLY, SPH and SCHA but
with a better stability of around 3 TECU. The VTEC maps derived from KVCE and OK are smoother
than those of other four methods, but OK tends to underestimate VTEC a little more than KVCE.
This fact indicates that KVCE seems to be more promising for reconstructing the TEC over China
regional area. In addition, the local interpolation precision of our proposed method is 0.5–2.5 TECU
with a mean value of 1.37 TECU, which is smaller than that of the ordinary Kriging and polynomial
interpolation by about 1.2 TECU and 0.7 TECU, respectively. The regional modeling precision from
KVCE ranges from 0.5 to 3 TECU with an overall mean value of 1.5 TECU, which is smaller than
those from the function-based models by about 1 TECU. The estimation accuracy at ionospheric grid
points from our new method remains within 6 TECU, with a daily mean of 0.74 TECU and a standard
deviation of 0.4 TECU. The results are better than those from the ordinary Kriging, which can even
reach 20 TECU under intense solar activities. In addition, the advantage of KVCE becomes even
clearer than OK in the boundary area when all the points are counted. The comprehensive analysis
results in terms of TEC maps, interpolation, modelling and estimation accuracy with ionospheric grid
points have clearly shown that the proposed Kriging method with variance components has the best
performance and can produce more rational, and accurate ionospheric TEC than all the other methods
used for comparison in this paper.
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