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Abstract: The relationship between two reflectances of different bands is often encountered in cross
calibration and parameter retrievals from remotely-sensed data. The asymmetric-order vegetation
isoline is one such relationship, derived previously, where truncation error was reduced from the
first-order approximated isoline by including a second-order term. This study introduces a technique
for optimizing the magnitude of the second-order term and further improving the isoline equation’s
accuracy while maintaining the simplicity of the derived formulation. A single constant factor
was introduced into the formulation to adjust the second-order term. This factor was optimized
by simulating canopy radiative transfer. Numerical experiments revealed that the errors in the
optimized asymmetric isoline were reduced in magnitude to nearly 1/25 of the errors obtained
from the first-order vegetation isoline equation, and to nearly one-fifth of the error obtained from
the non-optimized asymmetric isoline equation. The errors in the optimized asymmetric isoline
were compared with the magnitudes of the signal-to-noise ratio (SNR) estimates reported for four
specific sensors aboard four Earth observation satellites. These results indicated that the error in the
asymmetric isoline could be reduced to the level of the SNR by adjusting a single factor.

Keywords: inter-band relationship; vegetation isoline; cross calibration; asymmetric; leaf area index
(LAI); canopy RT model; inversion

1. Introduction

Estimation of biophysical parameters from remotely sensed reflectance requires calibration [1],
inter-comparison of reflectance spectra [2] and derived data products [3]. Parameter retrieval based on
those calibration efforts has been a major goal of land analysis disciplines [4]. The outcomes of such
efforts provide crucial information about local and global areal coverage, information that is used in a
wide range of applications [5]. Although numerous investigations have reported the development and
improvement of biophysical parameter retrieval algorithms, many of these algorithms involve simple
algebraic band manipulations known as spectral vegetation indices (VIs) [6,7]. A variety of VI models
have been investigated for their robustness against both internal and external influences [8–15].

A key component of VI model development is the relationship between two reflectances of
different bands obtained under fixed biophysical parameter conditions. This relationship produces a
reflectance spectrum trajectory in a reflectance subspace attributed to a fixed biophysical parameter
value; therefore, this relationship is known as a vegetation isoline. The concept of a vegetation isoline
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has been used repeatedly to develop optimal VI models [8,9,12,16] and to investigate their robustness
against external factors [17,18]. The isoline concept has been directly used to retrieve leaf area index
and the fraction of vegetation cover [19,20]. In recent years, the concept has been applied to the
inter-sensor calibration of VIs [21,22].

From the application point of view, understanding of band-to-band relationship would provide
information about land cover dependency of calibration coefficients. In retrievals of biophysical
parameter, an isoline equation with higher accuracy would lead to better results in retrieved parameters.
Moreover, biophysical parameters vary along with the evolution of phenology, which eventually
influence on reflectance spectra. Since the derived coefficients of the vegetation isoline depend on the
biophysical parameters, the phenology is also related to the variation of the vegetation isoline.

Significant efforts have been devoted toward deriving useful analytical formulas based on a
model of radiative energy transfer. These derivations used a representation of the top-of-canopy
(TOC) reflectance spectrum consisting of photons that were directly reflected by the canopy layer.
Because this portion of the reflectance spectrum does not reach the soil surface beneath the canopy,
it is called the zero-th order interaction term. Photons that reached the soil surface and were reflected
back to the canopy layer by the soil surface only once contributed to the measured reflectance.
The ‘one-time reflected’ contributions comprised the first-order interaction term. Analogously, the
reflectance spectrum consisting of photons reflected by the soil surface n times was defined as the
n-th-order interaction term. The vegetation isoline equations were derived by truncating the second-
and higher-order interaction terms. For this reason, the derived isolines are a first-order approximation
of the vegetation isoline.

The approximation order determines the accuracy of the derived isoline equations. The accuracy
of the isoline has been improved by deriving several approximations that considered the second-order
terms. The accuracy has been improved by including higher-order terms. The drawback of this
inclusion is that the analytical representation is complex. Complex representations hinder the
employment of isoline formulations in applications of various types. It would be beneficial to identify
ways of improving the isoline approximation accuracy while maintaining the simplicity of the derived
formulation.

In a previous study, we proposed a derivation technique for satisfying these requirements
simultaneously [23]. During the derivation, we included the second-order interaction term only
in the near-infrared band instead of retaining the second-order term in the red band. This asymmetric
approximation form dramatically improved the accuracy of the derived isoline equation.

This study advanced the investigation one step further. The objective was to introduce a technique
for improving the accuracy of the asymmetric isoline equations by optimizing a single factor. The goal
of this improvement was to reduce the errors in the vegetation isoline equivalent to a value equal to
or smaller than the error induced by the inherent signal-to-noise ratio (SNR) of the existing sensors.
The accuracy improvements obtained in this study were validated using a radiative transfer model of
a system of vegetation and soil layers, the PROSAIL model [24,25]. After optimizing a single factor
in the asymmetric approximation of the vegetation isoline equation, the error levels of the improved
isoline equations are discussed by comparing the resulting errors with those computed directly from
the signal-to-noise ratios of four existing sensors.

2. Background

In this section, two forms of the vegetation isoline equation are introduced. The magnitudes
of the errors in the isoline equations differed between the two equations and were characterized numerically.

2.1. Two Approximations of the Vegetation Isoline Equations

The simplest form of the vegetation isoline equation was derived by truncating the soil–canopy
interaction terms at the first-order (single interaction) [26]. The resulting equation was simple, which
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is advantageous for various applications [17–19,21,22,27–31]. The first-order isoline equation may be
written (with the truncation term ε1) as:

ρN = aγ1ρR + D1 + ε1, (1)

where γ1 and D1 are defined by:

γ1 =
T2

N

T2
R

, (2)

D1 = bT2
N + ω (ρvN − aγ1ρvR) . (3)

The fraction of vegetation cover (FVC) is represented by ω, and the variables ρR and ρN represent
the TOC reflectance in the red and NIR bands, respectively. The variables ρvR and ρvN represent the
’pure’ canopy reflectances independent of the soil surface beneath the canopy layer. Finally, T2

R and T2
N

represent the area-averaged two-way transmittances (T2
R and T2

N), defined by:

T2
R = ωT2

R + 1−ω, (4)

T2
N = ωT2

N + 1−ω. (5)

These variables are explained in additional detail elsewhere [17,21,23].
The second form of the vegetation isoline was derived by only including the interaction terms

up to the second-order in the NIR band. The interaction terms in the red band could be expressed
using the first-order terms. The asymmetric-order of the approximation in the two bands significantly
reduced the error in the isoline relative to the first-order form. The asymmetric form of the vegetation
isoline may be written (with the truncation term ε2) as

ρN = a2ζρ2
R + aγ2ρR + D2 + ε2, (6)

using the definitions:

ζ = ωT2
N RvN/(T2

R)
2, (7)

γ2 = γ1 + δ1, (8)

D2 = D1 + δ0, (9)

δ0 = ζ
(

bT2
R −ωaρvR

)2
, (10)

δ1 = 2ζ
(

bT2
R −ωaρvR

)
. (11)

The variable RvN represents the bi-hemispherical reflectance of the canopy layers at the bottom
surface, which appears only in the NIR band.

2.2. Errors in the Vegetation Isoline Equations

The asymmetric approximation of the vegetation isoline achieved greater accuracy than the
first-order approximation. This fact could be confirmed by conducting a set of numerical simulations
and plotting the errors of the two approximated forms. The errors of the two approximated isolines
(the first-order and asymmetric-order approximations) were computed assuming a fully covered
vegetation canopy, where the value of FVC was set to unity. The PROSAIL model was used to simulate
the TOC reflectance by varying the leaf area index (LAI) and soil reflectance spectra (from dark to
bright soil). Figure 1a,b shows plots of the error in the first-order isoline and the asymmetric isoline,
respectively, as a function of the LAI and soil reflectance. The error in the first-order isoline reached
0.01 in reflectance units as the soil reflectance increased. By contrast, the error in the asymmetric-order
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isoline was much smaller than that in the first-order approximation, nearly one order of magnitude
smaller, as summarized in our previous study [23].

Figure 1. (a) Error in the first-order isoline; and (b) error in the asymmetric-order isoline. LAI: leaf
area index.

We next focused on testing whether the accuracy of the asymmetric approximation was satisfactory
from a parameter retrieval point of view. This point was examined by comparing the isoline errors
with an error equivalent to the noise level in the reflectance measurements. The comparison was
implemented by assuming a simple scenario such that the value of the SNR in the NIR reflectance was
200 and the average value of the NIR reflectance was 0.1 over the entire parameter range. Although
this assumption was made for the sake of simplicity, it was a rather conservative assumption because
the averaged NIR reflectance is expected to exceed 0.1 in most cases. Under these assumptions, the
noise equivalent error could be obtained as 0.0005 in reflectance units over the entire parameter range.
With this quick estimate of the noise equivalent error, Figure 2 shows the contour plots of the errors in
the first-order approximation (left) and in the asymmetric-order approximation (right). The contour
lines that corresponded to the value of 0.0005 are emphasized by thicker black lines in the figures.
These results indicated that the error in the first-order approximated isoline mostly exceeded the noise
equivalent error for the majority of the cases (represented by the combinations of the LAI and the
soil reflectance). Although the error in the asymmetric-order approximation became much smaller
than that of the first-order approximation, the errors still exceeded 0.0005, especially at higher soil
reflectances. These results suggested that if the asymmetric-order approximated isoline was used for
parameter retrieval, the errors in the retrieved results would be larger than the error introduced by
the sensor noise. These results indicated that the accuracy of the asymmetric-order approximation
required further improvement.
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Figure 2. Comparison of the errors in the vegetation isolines with the error (0.0005) computed from the
noise corresponding to a signal-to-noise ration (SNR) of 200 at the NIR reflectance of 0.1. (a) The error
in the first-order isoline; and (b) the error in the asymmetric-order isoline. The thick solid lines indicate
the contour lines corresponding to 0.0005.

3. Approaches

Improved accuracy was achieved by including the second-order interaction term only in the
NIR band. This modification shifted the first-order approximated isoline upward in the reflectance
subspace. Figure 3 illustrates this shifting process and the mechanism by which the accuracy was
improved via the asymmetric-order approximation. The degree of shifting from the first-order isoline is
illustrated as the difference, along the NIR axis, between the blue line and the red line in the figure. This
difference remained smaller than the difference between the first-order isoline and the true vegetation
isoline (illustrated as the difference between the blue line and the black line). The gap between the
asymmetric-order isoline (red line) and the true isoline (black line) must be minimized to achieve the
highest accuracy, which this study attempts to address.

Figure 3. Illustration of the truncation error in the vegetation isoline equations and its improvement by
this and previous studies.

This gap could be analytically evaluated by clarifying the difference between the first-order
and the asymmetric-order isoline equations. The asymmetric-order approximation form of the
vegetation isoline was obtained by neglecting the higher-order interaction term ε2 from Equation (6).
The definition of γ2, Equation (8), was used to express the isoline equation as:

ρN ≈ a2ζρ2
R + aγ1ρR + aδ1ρR + D1 + δ0. (12)
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After rearranging Equation (12) by noting the form of the first-order isoline Equation (1), the above
equation could be transformed to

ρN ≈ aγ1ρR + D1 +
(

a2ζρ2
R + aδ1ρR + δ0

)
. (13)

The term in the parentheses on the right-hand-side represents the contribution of the asymmetric
second-order term, illustrated as the distance between the blue line and the red line in Figure 3.
Equation (13) suggests that an adjustment to this distance (overcorrection term) could fill the gap
between the red line and the black line, further improving its accuracy.

One way to adjust the overcorrection term is to introduce a factor into the last term of Equation (13).
The factor (represented by k) introduced into the last term of Equation (13) could be explicitly
introduced in the equation,

ρN ≈ aγ1ρR + D1 + k
(

a2ζρ2
R + aδ1ρR + δ0

)
. (14)

Solving Equation (14) for k, we have:

k =
ρN − (aγ1ρR + D1)

a2ζρ2
R + aδ1ρR + δ0

. (15)

The value of k could be computed from Equation (15) for each combination of the model input
parameter used for the reflectance simulation. For example, selecting LAI, FVC, and the soil reflectance
of the red band RsR as the set of parameters to be varied during the simulation, with the number of
grids for each parameter set to 21, a total of 9261 distinctive values of k will be obtained. Because k
depends on a set of parameters, the most accurate way to adjust this scenario is to model the variations
in k as a function of all parameters. Such an algorithm, however, is not practical to implement at
this stage of investigation because one must estimate all input parameters prior to determining k.
Specifically, LAI, FVC, and the soil reflectance must be estimated to determine k. The adjustment
approach may be made more practical by determining the optimum constant for k according to the
following approach, finding a constant value for k that minimizes the error of the adjusted isoline,
Equation (14), over the entire range of the input parameters. This constant is considered to be the
optimum value of k, denoted by kopt in this study.

4. Results of the Numerical Simulations

4.1. Parameter Settings for the Numerical Experiments

The variables used in a series of numerical simulations were computed using the canopy radiative
transfer code, PROSAIL [25], which consists of the leaf optical properties model (PROSPECT) [32] and
the canopy reflectance model (SAIL) [33]. The parameter settings in the simulations are summarized
in Table 1. LAI, FVC, and the soil brightness (soil factor) were varied in this study. LAI was varied
from 0.0 to 4.0 in 0.2 increments (21 intervals). The soil factor was varied from 0.0 to 1.0 in 0.05
increments (21 variations), which were used to change the mixture ratio of the reflectance spectra of
the wet and dry soil provided with the code. The canopy reflectance spectra obtained using PROSAIL
were linearly mixed with the soil spectra using the fraction of vegetation cover (FVC), ω, as the
weight that was varied from 0.0 to 1.0 in 0.05 increments (21 intervals). The results section focuses
on the use of a Spherical model to represent the leaf angle distribution (LAD), with the exception of
the simulations presented in Section 4.6, which employs five LAD models (planophile, erectophile,
plagiophile, extremophile, and uniform) to examine the effects of the LAD on our simulations. The
input parameters in PROSAIL, including the other parameters fixed in this study, are listed in Table 1.
The total number of spectra was 9261 (21 × 21 × 21) for a single LAD. (The parameter grids are finer
than in our previous study [23].) We employed 655 nm and 865 nm reflectance spectra for the red and
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NIR wavelength regions, which corresponded to the center of the red and NIR bands in the Landsat 8
Operational Land Imager (OLI).

Table 1. Input parameters used in the numerical simulations.

Geometry

Solar zenith angle 30◦

Observation zenith angle 10◦

Relative azimuth angle 0◦

Pixel Heterogeneous Property

Fraction of vegetation cover (FVC) 0.0–1.0

Canopy Properties

Leaf area index (LAI) 0.0–4.0
Hotspot size parameter 0.01

Leaf Structural and Chemical Properties

Leaf angle distribution (LAD) Spherical, Planophile, Erectophile
Plagiophile, Extremophile, Uniform

Leaf mesophyll structure 1.5
Chlorophyll-a and -b 40 µg/cm2

Carotenoid content 8 µg/cm2

Leaf mass per area 0.009 g/cm2

Equivalent water thickness 0.01 cm
Brown pigment content 0

Soil Properties

Wet soil reflectances at 655 and 865 nm 0.037 and 0.071
Dry soil reflectances at 655 and 865 nm 0.311 and 0.412
Soil factor (mixture ratio of wet and dry soils) 0.0–1.0 [0.0: wet soil; 1.0: dry soil]

4.2. Numerical Procedure Used for the Isoline Parameter Retrieval

The parameters in the isoline equations were computed according to the procedures reported
previously [23,26]. T2

vλ and ρvλ were determined based on two hypothetical simulations. First,
ρvλ was computed using spectrally flat zero reflectances of the soil surface. Subsequently, Tvλ was
approximated using simulated reflectances and a median reflectance of the soil surface, and ρvλ was
computed in previous step [26]. The parameter RvN , which was required for the computation of ξ,
was obtained by conducting an additional simulation in which the soil spectrum was even brighter
than was assumed in the simulation used to compute Tvλ. The soil spectrum was also spectrally flat in
this case [23]. In the simulation, the TOC canopy reflectances in the NIR were approximated using
first- and second-order interaction terms between the canopy layer and the soil surface,

ρN ≈ ωρvN + T2
N RsN + ωT2

N RvN R2
sN . (16)

where RsN represents the bi-hemispherical reflectance of the soil surface for the NIR band. RvN was
then derived by solving Equation (16) for RvN . The isoline parameters for the canopy layer were
obtained using these variables. The slope and offset of the soil line equation over the red and
NIR reflectance spaces used in the isoline parameters were obtained from a linear regression of the
reflectance spectra for the wet and dry soils, shown in Table 1 (a = 1.24 and b = 0.026).

4.3. Variations in k

The dependences of LAI, FVC, and RsR on k were analyzed based on numerical experiments
in which the k-value was computed in the previous step using Equation (15). Three experimental
conditions were applied to compute k: (1) FVC was varied using three pairs of fixed LAI and RsR values;
(2) LAI was varied using three pairs of fixed FVC and RsR values; and (3) RsR was varied using three
pairs of fixed FVC and LAI values. The results of the first case are shown in Figure 4a. The k-values
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are plotted against FVC for “LAI = 1.0 and RsR = 0.1”, “LAI = 2.0 and RsR = 0.1”, and “LAI = 2.0 and
RsR = 0.2”, denoted by the solid, dashed, and dotted lines, respectively. The k-values were relatively
insensitive to the changes in FVC. The differences between the k values for FVC = 0.0 and FVC = 0.9
were less than 1%, and the differences for FVC = 0.0 and FVC = 1.0 were less than 3% for each pair of
LAI and RsR. The strong dependence of RsR on k was identified from the large differences between the
k-value curves obtained at RsR = 0.1 and = 0.2.

Figure 4. (a) Plot of the k-values along with the FVC over three pairs of fixed LAI and RsR (LAI = 1.0
and RsR = 0.1, LAI = 2.0 and RsR = 0.1, and LAI = 2.0 and RsR = 0.2); (b) Plot of the k-values along with
LAI over three pairs of fixed FVC and RsR (FVC = 0.3 and RsR = 0.1, FVC = 1.0 and RsR = 0.1, and
FVC = 1.0 and RsR = 0.2); (c) Plot of the k-values along with RsR over three pairs of fixed FVC and LAI
(FVC = 0.3 and LAI = 1.0, FVC = 0.3 and LAI = 2.0, and FVC = 1.0 and LAI = 2.0).
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Similarly, the k-values were relatively insensitive to LAI, as shown in Figure 4b (results are shown
for the second experimental case). These k-values are plotted against LAI for “FVC = 0.3 and RsR = 0.1”,
“FVC = 1.0 and RsR = 0.1”, and “FVC = 1.0 and RsR = 0.2”, respectively. The differences between the
k-values for LAI = 0.0 and LAI = 4.0 were less than 5%. The differences between the results obtained
for RsR = 0.1 and = 0.2 were similarly large, as shown in Figure 4a.

Figure 4c presents the results obtained from the third case, which described the k-values along
RsR for “FVC = 0.3 and LAI = 1.0”, “FVC = 0.3 and LAI = 2.0”, and “FVC = 1.0 and LAI = 2.0”,
respectively. The k-values showed an approximately 50% increase (from 0.9 to 1.35) with increasing
RsR. The differences among the three pairs of LAI and FVC affected the k-value to a much smaller
degree than did the differences between the maximum and minimum RsR values. These results
indicated that the k-values depended heavily on RsR but were nearly independent of FVC and LAI
(greenness level of the vegetation canopy).

4.4. Optimum k-Values (kopt)

The k-values were computed using all possible pairs of the input parameters (FVC, LAI, and
RsR were changed; LAD was fixed to a spherical model; and all other input parameters were fixed,
as shown in Table 1). The optimum value of k was then determined by computing the distances (ε) as
the errors between the true spectra ρρρ (including all the higher-order terms) and the vegetation isolines
(the adjusted asymmetric isolines by Equation (14)),

ε(k) = min(‖ρρρ− ρ̂ρρ(k)‖2), (17)

where ρ̂ρρ(k) denotes the spectra on the vegetation isolines for the k-value as the input. Note that ε(k) for
k = 0 and k = 1 corresponds to the error of the first-order vegetation isoline and the asymmetric-order
vegetation isoline without optimization, respectively. More than 9261 values of k were obtained
using Equation (15), and each k was used to compute ε for 9261 patterns of the reflectance spectra.
A two-dimensional array of ε values with a size of 9261 (spectral dimension)× 9261 (k-value dimension)
was obtained. Figure 5 plots the values of ε averaged along the spectral dimensions as a function of
the k-values. The error ε decreased until the k-value reached 1.25–1.30 and changed to an increasing
function upon further increases in the k-value.

k value
0.8 0.9 1 1.1 1.2 1.3 1.4

M
e

a
n

 ǫ
(k

)

×10
-4

0
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2

3
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Figure 5. Plot of the mean value of ε versus the k-value.

The optimum values of k, kopt were identified as follows: Six variations in the k-value were
assumed: 1.25, 1.26, 1.27, 1.28, 1.29, and 1.30; the errors were approximated using the 9261 spectral
patterns, that is, ε were computed for each k-value. The mean, standard deviation (STD), and maximum
of ε for each k-value were computed and are summarized in Table 2. The minimum values of the mean
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ε were 8.35 × 10−5 for k = 1.28. The values of the STD for k = 1.29 were, however, smaller than those
obtained for k = 1.28. The same applied to the maximum. Accordingly, the optimum k-value, kopt, was
determined to be 1.29 for the Spherical LAD in this study.

Table 2. Statistics of ε(k) for k = 1.25, 1.26, 1.27, 1.28, 1.29, and 1.30. STD: standard deviation.

LAD: Spherical

1.25 1.26 1.27 1.28 1.29 1.30

Mean 9.06× 10−5 8.68× 10−5 8.44× 10−5 8.35× 10−5 8.43× 10−5 8.71× 10−5

STD 1.08× 10−4 9.54× 10−5 8.44× 10−5 7.58× 10−5 7.05× 10−5 6.89× 10−5

MAX 7.05× 10−4 6.36× 10−4 5.66× 10−4 4.97× 10−4 4.31× 10−4 3.66× 10−4

4.5. Evaluation of kopt = 1.29

The validity of using kopt = 1.29 was then evaluated using contour plots of ε over LAI and RsR
space, holding FVC fixed at unity. Four variations of k (1.0, 1.25, 1.29, and 1.30) were considered.
In Figure 6a, the minimum value of ε for k = 1.0 was 0.0002, and the errors were greater than those
obtained under other conditions, as shown in Figure 6. Figure 6b presents results obtained for k = 1.25
and reveals that ε was less than 0.00015 for RsR <0.26. ε, however, it increased with increasing RsR,
especially for RsR > 0.26 and for LAI approaching 1.0. Figure 6c shows that for k = 1.29, the maximum
of ε was approximately 0.00025. Overall, ε was small across the entire parameter space. The results of
ε obtained for k = 1.30 were slightly larger than the values obtained for k = 1.29 although ε was small
for RsR > 0.26.

Figure 6. (a) Contour plot of ε over LAI and RsR space for k = 1.00; (b) Contour plot of ε for k = 1.25;
(c) Contour plot of ε for k = 1.29; (d) Contour plot of ε for k = 1.30.



Sensors 2017, 17, 450 11 of 17

The error across the entire parameter space (e.g., the mean value of ε) was smallest for k = 1.29
(Figure 6c and Table 2), although ε for k = 1.25 was less than the value obtained for other k-values for
RsR < 0.26 (Figure 6b), and ε was smallest for k = 1.30 for RsR > 0.26 (Figure 6d). This experiment,
therefore, validated the use of the optimum k-value, kopt (=1.29) for minimizing the overall error in the
predicted NIR reflectances based on the adjusted asymmetric isoline equation. Furthermore, the value
of ε for kopt = 1.29, as shown in Figure 6c, was small relative to the noise equivalent error (0.0005).

We next computed the statistical profile of the errors in the first-order, the asymmetric-order,
and the adjusted asymmetric-order (kopt = 1.29) isoline equations. Table 3 lists the mean, STD, and
maximum approximation error in the isoline equations. The mean values of the errors for the adjusted
asymmetric-order isoline equations were reduced to 4% and 22% of the value obtained from the
first-order and the asymmetric-order isoline equations. Likewise, the STD and maximum of the errors
in the adjusted asymmetric-order isoline equations were much smaller than those obtained from other
isoline equations. The statistical distribution of the errors in the adjusted asymmetric isoline equations
did not exceed the noise equivalent errors (0.0005), even in the case of the maximum error.

Table 3. Statistics of the errors in first-order, asymmetric-order, and adjusted asymmetric-order
(kopt = 1.29) isoline equations.

LAD: Spherical

First-Order Asymmetric Adjusted Asymmetric adj./first adj./asym.

Mean 2.10× 10−3 3.81× 10−4 8.43× 10−5 4.0% 22.1%
STD 2.43× 10−3 5.06× 10−4 7.05× 10−5 2.9% 13.9%
MAX 1.35× 10−2 2.67× 10−3 4.31× 10−4 3.2% 16.1%

4.6. Evaluation of kopt = 1.29 for Various LADs and Variations in the Optimum k-Value

The performances of the derived isoline equations for kopt = 1.29 were evaluated over various
LADs in PROSAIL, including planophile, erectophile, plagiophile, extremophile, and uniform
distributions, respectively. Table 4 lists the statistical analysis associated with approximating errors
in the isoline equations (mean, STD, and maximum). The statistical distribution of the planophile
was nearly identical to that of the Spherical model, as shown in Table 3. In other LADs, the statistical
distributions of the derived equations were nearly equal to or more than half of the corresponding
distributions of the other isoline equations. Also, although the maximum errors could exceed the noise
equivalent error (0.0005), the mean values of the errors were less than 0.0004 for all LADs. This fact
indicated that the adjusted asymmetric isoline equations with kopt = 1.29 provided acceptable results,
regardless of the choice of LAD.

The optimum values of k for the various LADs were explored using the algorithm presented
in Section 4.4. The approximation errors ε with size of 9261 (spectral dimension) × 9261 (k-value
dimension) were computed for each LAD, and the values of ε averaged along the spectral dimensions
were computed and plotted as a function of the k-value for each LAD. Figure 7 plots the mean ε versus
k-value for the various LADs. The k-values that provided the minimum value of the mean ε were
approximately 1.2–1.3, except for the erectophile model, indicating that the minimum value of the
mean ε occurred for k >1.5.

Table 5 lists the optimum k-value and mean, STD, and maximum ε, where ρ̂N was computed
using the optimum k-value for each LAD obtained in our simulations. The mean values of the errors
were approximately equal to or smaller than 0.0001. The magnitude of the STD of the errors was
similar to that of mean. The maximum value of the errors was less than the noise equivalent error
(0.0005), except for the erectophile model. The appropriate selection of the optimum k-value thus led
to an accurate prediction of the NIR reflectances, but the use of kopt = 1.29 provided an acceptable
accuracy in terms of the SNR, even though this accuracy was not optimal for each LAD.
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Table 4. Statistical distributions of the errors in the first-order, asymmetric-order, and adjusted
aymmetric-order (kopt = 1.29) isoline equations for the five LADs, including planophile, erectophile,
plagiophile, extremophile, and uniform distributions.

LAD: Planophile

first-order isoline asymmetric isoline adjusted isoline adj./1st adj./asym.

Mean 2.07× 10−3 3.69× 10−4 8.39× 10−5 4.1% 22.7%
STD 2.40× 10−3 4.91× 10−4 6.76× 10−5 2.8% 13.8%
MAX 1.34× 10−2 2.59× 10−3 3.79× 10−4 2.8% 14.6%

LAD: Erectophile

first-order isoline asymmetric isoline adjusted isoline adj./1st adj./asym.

Mean 3.08× 10−3 8.83× 10−4 3.89× 10−4 12.6% 44.1%
STD 3.54× 10−3 1.12× 10−3 5.53× 10−4 15.6% 49.4%
MAX 1.87× 10−2 5.79× 10−3 2.95× 10−3 15.8% 50.9%

LAD: Plagiophile

first-order isoline asymmetric isoline adjusted isoline adj./1st adj./asym.

Mean 1.71× 10−3 2.31× 10−4 1.35× 10−4 7.9% 58.4%
STD 2.00× 10−3 3.15× 10−4 1.24× 10−4 6.2% 39.4%
MAX 1.13× 10−2 1.62× 10−3 7.78× 10−4 6.9% 48.0%

LAD: Extremophile

first-order isoline asymmetric isoline adjusted isoline adj./1st adj./asym.

Mean 1.89× 10−3 2.64× 10−4 1.37× 10−4 7.2% 51.9%
STD 2.19× 10−3 3.57× 10−4 1.20× 10−4 5.5% 33.6%
MAX 1.23× 10−2 1.84× 10−3 7.04× 10−4 5.7% 38.3%

LAD: Uniform

first-order isoline asymmetric isoline adjusted isoline adj./1st adj./asym.

Mean 1.79× 10−3 2.44× 10−4 1.38× 10−4 7.7% 56.6%
STD 2.09× 10−3 3.32× 10−4 1.24× 10−4 5.9% 37.3%
MAX 1.17× 10−2 1.71× 10−3 7.60× 10−4 6.5% 44.4%

k value
0.6 0.8 1 1.2 1.4 1.6 1.8

M
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Figure 7. Plot of the mean ε as a function of the k-value for the planophile, erectophile, plagiophile,
extremophile, and uniform LADs, respectively.
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Table 5. Optimum k-value and statistical distributions of the errors in the adjusted asymmetric isoline
equations, with the optimal k-values for each of the five LADs, including the planophile, erectophile,
plagiophile, extremophile, and uniform distributions.

LAD Optimum k Mean STD MAX

Planophile 1.28 8.17× 10−5 7.03× 10−5 4.44× 10−4

Erectophile 1.53 1.69× 10−4 1.39× 10−4 8.31× 10−4

Plagiophile 1.19 5.99× 10−5 6.23× 10−5 4.08× 10−4

Extremophile 1.2 6.65× 10−5 6.67× 10−5 4.40× 10−4

Uniform 1.20 6.31× 10−5 6.01× 10−5 3.81× 10−4

4.7. Comparison with the Noise-Equivalent Errors in Satellite Sensors

This study sought to decrease the errors associated with predicting the NIR reflectances by
using red reflectances in the vegetation isoline equations. The goal was to decrease the errors to
the level of the intrinsic errors of the sensor SNR values. Therefore, the errors in the first-order, the
asymmetric-order, and the adjusted asymmetric isoline equations with kopt = 1.29 were compared with
the error arising from the SNR of the earth observation sensors currently in space orbit. We employed
the SNRs of four sensors, including the Aqua-Moderate Resolution Imaging Spectroradiometer
(MODIS) [34], the Landsat 8-Operational Land Imager (OLI) [35], the Greenhouse Gases Observing
Satellite (GOSAT)-Cloud and Aerosol Imager (CAI) [36], and the Suomi National Polar-orbiting
Partnership (SNPP)-Visible Infrared Imaging Radiometer Suite (VIIRS) [37], as summarized in Table 6.

Table 6. SNR in the red and NIR bands for the Aqua-Moderate Resolution Imaging Spectroradiometer
(Aqua-MODIS) [38], Landsat 8-Operational Land Imager (Landsat 8 OLI) [39], Greenhouse Gases
Observing Satellite (GOSAT)-Cloud and Aerosol Imager (CAI) [40], and Suomi National Polar-orbiting
Partnership (NPP)-Visible Infrared Imaging Radiometer Suite (VIIRS) [41]. SNR for MODIS band1 (red)
was derived by calculating 128 (sensor design requirement) × 1.57 (ratio of measured SNR in-orbit to
sensor design requirement) and SNR for MODIS band 2 (NIR) was derived by 201 × 2.64 [38]. Similaly,
SNR for VIIRS I1 and I2 bands (red and NIR) were derived by caluculating 119 × 1.76 and 150 × 1.5,
respectively [41].

MODIS Landsat8 OLI GOSAT-CAI VIIRS

Red band 201 227 200 209
NIR band 530 201 200 225

The ratio of the relative errors in the isoline equations to the sensor SNR (r) was computed
according to:

r =
ε(k)

(ρN/SNR)
(18)

The isoline equations were superior to the noise equivalent errors for values of less than unity,
whereas the equations were inferior to the noise equivalent errors for values greater than unity.
For comparison, the FVC and LAD were fixed, respectively, to unity and spherical.

Figure 8 plots r over the LAI-RsR space. Thicker black lines correspond to r = 1.0. MODIS, OLI,
CAI, and VIIRS correspond to the four rows of Figure 8 from the top to the bottom. From the left
to the right column, the results of the first-order, asymmetric-order, and adjusted asymmetric-order
isoline equations are plotted. The results of first-order isoline equations (Figure 8a,d,g,j) indicate that r
exceeded unity over a large area of parameter space. The asymmetric-order isoline equations resulted
in smaller values of r and exceeded unity for relatively large values of RsR; however, the areas of
these parts were significantly smaller than the area observed in the first-order isoline, as shown in
Figure 8b,e,h,k. Finally, the results of r obtained from the adjusted asymmetric-order isoline equations
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(Figure 8c,f,i,l) revealed that r never exceeded unity, and the maximum values of r were less than 0.5
for all sensors. In summary, the errors in the adjusted asymmetric isoline equations with kopt = 1.29
were smaller than the error arising from the SNR of the four earth observation sensors.

Figure 8. Contour plots of r over LAI-Rsr space. From the top to the bottom, each plot correspond
to the MODIS (a, b, c), OLI (d, e, f), CAI (g, h, i), and VIIRS (j, k, l) sensors, respectively. From the
left to right column, each plot corresponds to the first-order (a, d, g, j), asymmetric-order (b, e, h, k),
and adjusted asymmetric-order (c, f, i, l) (with kopt = 1.29) isoline equations, respectively. The bold
line indicates r = 1.0. (a) MODIS-first; (b) MODIS-asymmetric; (c) MODIS-adjusted; (d) OLI-first;
(e) OLI-asymmetric; (f) OLI-adjusted; (g) CAI-first; (h) CAI-asymmetric; (i) CAI-adjusted; (j) VIIRS-first;
(k) VIIRS-asymmetric; (l) VIIRS-adjusted.
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5. Discussion and Conclusions

The asymmetric-order isoline equations, derived from a previous study, were reformulated as
first-order isoline equations plus a correction term multiplied by a parameter k. The derived equations
with optimized k (as a constant) improved the accuracy of the asymmetric-order isoline equations
while retaining the simplicity of the equations. The k-value was assumed to be a function of LAI, FVC,
and RsR, and the influences of RsR on k were much greater than the influences of LAI and FVC such
that k could be considered primarily to be a function of RsR. One advantage of the isoline equations
was that the parameters in the equations were independent of the soil brightness, i.e., RsR; therefore,
we fixed the k-value to an optimum instead of varying this parameter as a function of RsR.

The errors in the adjusted asymmetric-order isoline equations were computed using kopt.
The errors in the reflectances predicted by the adjusted asymmetric-order isoline equations with
kopt were 4% and 22% of the errors predicted using the first-order and asymmetric-order isoline
equations, respectively.

The value of kopt was optimal for the Spherical LAD. The adjusted asymmetric-order isoline
equations with kopt reduced the errors significantly in the reflectances calculated using any of the six
LADs defined in this study (less than half of the errors for the asymmetric-order isoline equations),
although the use of the optimal k-value along with each LAD reduced the errors more significantly.
In addition, the errors in the adjusted asymmetric-order isoline equations were small over the entire
parameter space relative to the noise equivalent errors computed from the SNR of the satellite sensors
currently in orbit (Aqua-MODIS, Landsat 8-OLI, SNPP-VIIRS, and GOSAT-CAI). The first-order and
asymmetric-order isoline equations displayed both superiority and inferiority to the noise equivalent
errors by relying on the canopy and soil conditions.

This study achieved its goal of reducing the error in the adjusted asymmetric-order isoline
equations using a fixed k-value, yielding an error that was less than the noise equivalent errors based
on the SNRs of some major satellite sensors, without complicating the isoline equations. Validation of
the derived equations would require additional numerical experiments involving the application of
other radiative transfer models of the vegetation canopy. Improved accuracy in the equations may be
necessary if the sensor’s SNR were to increase as a result of technological advancements in the sensor
instrument design.
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