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Abstract: A colorimetric and turn-on fluorescent probe 1 bearing triphenylamine-thiophene and
dicyanovinyl groups has been synthesized and used to detect cyanide anion via a nucleophilic
addition reaction. Probe 1 exhibited prominent selectivity and sensitivity towards CN− in aqueous
media, even in the presence of other anions such as S2−, HS−, SO3

2−, S2O3
2−, S2O8

2−, I−, Br−, Cl−,
F−, NO2

−, N3
−, SO4

2−, SCN−, HCO3
−, CO3

2− and AcO−. Moreover, a low detection limit (LOD,
51 nM) was observed. In addition, good cell membrane permeability and low cytotoxicity to HeLa
cells were also observed, suggesting its promising potential in bio-imaging.
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1. Introduction

Anions play an important role in a wide range of chemical and biological processes. Given this,
anion recognition has been well studied in recent years [1]. Among various anions, cyanide anion
(CN−) is a well-known anion that is toxic to living organisms [2]. As advocated by the World Health
Organization (WHO), the maximum concentration of cyanide anion in drinking water should be
1.9 µM [3]. However, CN− is widely released from industry waste, certain natural plants, cigarette
smoke, etc. [4], and can thus be a serious threat to people’s health and the environment. Hence,
developing effective quantitative determination methods for CN− is urgent and essential.

In order to quickly, easily and accurately detect cyanide anion, various analysis methods were
developed, including titrimetric [5], electrochemical decices [6–8], voltammetric [9], fluorometric [10–17]
and so on. Compared with other methods, fluorometric and colorimetric responses based on chemical
reactions have attracted much attention due to their simple operation, high selectivity, high sensitivity
and low cost [18–22]. The sensing mechanisms of fluorometric and colorimetric chemosenors for
detecting CN− have been reported over the past few years, including hydrogen bonding reactions [23–27],
forming cyanide anion complexes [28,29], electron transfer reactions [30–32] and nucleophilic addition
reactions [33–40]. Among them, the nucleophilic addition reactions generally have high selectivity for
detecting CN−.

Triphenylamine-based thiophene dicyanovinyl compounds, which contain an electron-donating
triphenylamine moiety and a strong electron-withdrawing dicyanovinyl group, were reported as
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red-emitting fluorophores with large Stokes shifts [41]. In recent years, some fluorescent probes
with dicyanovinyl moieties for detecting cyanide anions have been reported [42–47]. Consequently,
we hypothesized that triphenylamine-based thiophene dicyanovinyl compounds could be applied to
selectively detect cyanide anion.

With this hypothesis in mind, probe 1 was synthesized and exhibited prominent selectivity
and sensitivity towards cyanide anion with significant turn-on fluorescent response in PBS/DMSO
(4/6, v/v, pH = 7.4) solution (Scheme 1). Herein, we report a dual colorimetric and fluoresecent probe
to selectively and sensitively detect cyanide anion in aqueous media. Moreover, low cytotoxicity and
good cell membrane permeability in HeLa cells were also observed, suggesting its promising potential
in bio-imaging.
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Scheme 2. The synthesis of probe 1; Reagents and Conditions: (a) NBS, DMF, r.t., 99% yield; (b) (5-
formylthiophen-2-yl) boronic acid, Pd(PPh3)4, dioxane, reflux, 3.5 h, 67% yield; (c) malononitrile, 
piperidine, reflux, 3 h, 70% yield. 

2.2. Selectivity over Other Anions 

After the identification of the optimal fluorescence measurement conditions, a series of relevant 
and interfering anions were investigated to study the selectivity. Before the addition of various 
anions, the light-pink probe solution is non-fluorescent upon excited at 370 nm. The addition of 10 
equivalents of 16 representative anions (S2−, HS−, SO32−, S2O32−, S2O82−, I−, Br−, Cl−, F−, NO2−, N3−, SO42−, 
SCN−, HCO3−, CO32− and AcO−) did not cause significant fluorescence changes (Figure 1a), whereas 
the color of the probe 1 solution faded in the presence of CN− (10 equiv.) and the fluorescence intensity 
enhancement at 480 nm was remarkable. Based on the good selectivity of probe 1 toward CN−, 
competition experiments were further explored. As shown in Figure 1b, the fluorescence intensity of 
probe + CN− remained at a high level by the addition of other interfering anions (10 equiv.), 
suggesting that the response of probe 1 toward CN− has good anti-interference ability. 

Scheme 1. The sensing mechanism of probe 1.

2. Results and Discussion

2.1. Synthesis of Probe 1

As shown in Scheme 2, probe 1 was synthesized via a 3-step synthesis route according to
a literature method [41]. The structure of probe 1 was fully characterized by NMR and ESI-MS
spectroscopy. Detailed synthetic process and structure characterization are given in the Experimental
section and in the Electronic Supplementary Information (ESI).
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(b) (5-formylthiophen-2-yl) boronic acid, Pd(PPh3)4, dioxane, reflux, 3.5 h, 67% yield; (c) malononitrile,
piperidine, reflux, 3 h, 70% yield.

2.2. Selectivity over Other Anions

After the identification of the optimal fluorescence measurement conditions, a series of relevant
and interfering anions were investigated to study the selectivity. Before the addition of various anions,
the light-pink probe solution is non-fluorescent upon excited at 370 nm. The addition of 10 equivalents
of 16 representative anions (S2−, HS−, SO3

2−, S2O3
2−, S2O8

2−, I−, Br−, Cl−, F−, NO2
−, N3

−, SO4
2−,

SCN−, HCO3
−, CO3

2− and AcO−) did not cause significant fluorescence changes (Figure 1a), whereas
the color of the probe 1 solution faded in the presence of CN− (10 equiv.) and the fluorescence intensity
enhancement at 480 nm was remarkable. Based on the good selectivity of probe 1 toward CN−,
competition experiments were further explored. As shown in Figure 1b, the fluorescence intensity of
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probe + CN− remained at a high level by the addition of other interfering anions (10 equiv.), suggesting
that the response of probe 1 toward CN− has good anti-interference ability.Sensors 2017, 17, 405 3 of 9 

 

Figure 1. (a) Fluorescent responses of probe 1 (5 µM) towards various anions (50 µM) in PBS/DMSO 
(4/6, pH = 7.4) solution. λex = 370 nm, Slits: 2.5 nm/5 nm; (b) Competing responses of probe 1 (5 µM) 
at 480 nm towards various analytes (50 µM) in PBS/DMSO (4/6, pH = 7.4) solution. Black bar, probe 
and probe + anions; red bar, probe + CN− + anions. λex = 370 nm, Slits: 2.5 nm/5 nm. 

2.3. Colorimetric and Fluorescent Detection 
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free probe 1 exhibits absorption at 505 nm with a pink color because of ICT process in the large π-
conjugation. Subsequently, a colorimetric assay was performed. As shown in Figure 2a, among tested 
analytes, only cyanide anion resulted in an obvious color change from light pink to colourless. 
Moreover, a bright blue light was achieved in the solution of probe 1 with CN− under the irradiation 
of a UV-lamp at 365 nm, which is visible by the naked eye (Figure 2b). 
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2.4. Spectral Titration of Probe 1 

The fluorescence titration experiment was performed by adding different concentrations of 
cyanide anion ranging from 0 to 75 µM to a 5 µM solution of probe 1 (Figure S3). Saturation was 
observed when the concentration of cyanide anion was raised to 62.5 µM. As shown in Figure 3a, a 
concentration-dependent fluorescence enhancement was observed when CN− from 0 to 25 µM was 
added at 480 nm. A good linear relationship between the fluorescence intensity and the concentration 
of CN− could be obtained in the range of 0 to 25 µM (R2 = 0.99698). 

To calculate the limit of detection (LOD), the standard deviation of the blank measurements was 
determined by measuring the fluorescent intensity of probe 1 10 times [48–50]. Based on the equation 
(LOD = 3σ/m) and the fluorescence titration, the LOD was calculated to be 51 nM, which is much 
lower than the maximum level of cyanide anion (1.9 µM) in drinking water permitted by the WHO, 
suggesting its promising potential for the detection of low levels of cyanide anion in water samples. 

Figure 1. (a) Fluorescent responses of probe 1 (5 µM) towards various anions (50 µM) in PBS/DMSO
(4/6, pH = 7.4) solution. λex = 370 nm, Slits: 2.5 nm/5 nm; (b) Competing responses of probe 1 (5 µM)
at 480 nm towards various analytes (50 µM) in PBS/DMSO (4/6, pH = 7.4) solution. Black bar, probe
and probe + anions; red bar, probe + CN− + anions. λex = 370 nm, Slits: 2.5 nm/5 nm.

2.3. Colorimetric and Fluorescent Detection

The UV-vis spectra changes of probe 1 (5 µM) upon addition of CN− (50 µM) in PBS/DMSO
(4/6, pH = 7.4) solution can be clearly observed (Figure S1) and the absorption at 505 nm decreased.
The free probe 1 exhibits absorption at 505 nm with a pink color because of ICT process in the large
π-conjugation. Subsequently, a colorimetric assay was performed. As shown in Figure 2a, among
tested analytes, only cyanide anion resulted in an obvious color change from light pink to colourless.
Moreover, a bright blue light was achieved in the solution of probe 1 with CN− under the irradiation
of a UV-lamp at 365 nm, which is visible by the naked eye (Figure 2b).
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2.4. Spectral Titration of Probe 1

The fluorescence titration experiment was performed by adding different concentrations of
cyanide anion ranging from 0 to 75 µM to a 5 µM solution of probe 1 (Figure S3). Saturation was
observed when the concentration of cyanide anion was raised to 62.5 µM. As shown in Figure 3a,
a concentration-dependent fluorescence enhancement was observed when CN− from 0 to 25 µM was
added at 480 nm. A good linear relationship between the fluorescence intensity and the concentration
of CN− could be obtained in the range of 0 to 25 µM (R2 = 0.99698).

To calculate the limit of detection (LOD), the standard deviation of the blank measurements was
determined by measuring the fluorescent intensity of probe 1 10 times [48–50]. Based on the equation
(LOD = 3σ/m) and the fluorescence titration, the LOD was calculated to be 51 nM, which is much
lower than the maximum level of cyanide anion (1.9 µM) in drinking water permitted by the WHO,
suggesting its promising potential for the detection of low levels of cyanide anion in water samples.



Sensors 2017, 17, 405 4 of 10
Sensors 2017, 17, 405 4 of 9 

 

Figure 3. (a) Fluorescence spectra of probe 1 (5 µM) in the presence of various concentration of CN− 
(0–25 µM) in PBS/DMSO (4/6, pH = 7.4) solution; (b) Linear relation between the fluorescent intensity 
at 480 nm and the concentration of CN−in the range of 0–25 µM. λex = 370 nm, Slits: 2.5 nm/5 nm. 

2.5. The Sensing Mechanism 

As proposed in the literature [51], the sensing mechanism of probe 1 based on a nucleophilic 
addition reaction has been confirmed by 1H-NMR spectroscopy (Figure 4). Thus, to a 20 mM solution 
of probe 1 in CDCl3 cyanide anion (0.5 equiv.) was added at room temperature and a new proton 
signal appeared at 4.5 ppm (H2a). When the amount of CN− was raised to 1.0 equiv., some significant 
proton signal changes were observed. For example, the vinyl proton signal (H1a, 7.73 ppm) 
disappeared gradually and a new proton signal at 4.5 ppm (H2a) was observed. The two proton 
signals on the thiophene ring (H1b, 7.66 ppm; H1c, 7.30 ppm) disappeared and were observed around 
7.00 ppm. In addition, the two proton signals (H1d) adjacent to the thiophene ring shifted from 7.49 
ppm to 7.36 ppm. These important proton signal changes conformed with the reference. While 1.5 
equiv. CN− was added, the reaction accomplished completely. In addition, the [1 − CN]− adduct was 
characterized by mass spectrometry analysis, and the peak at m/z 457.1471 (calc. 457.1492) 
corresponding to [1 − CN]− was clearly observed (Figure S10). 

 
Figure 4. 1H-NMR spectral changes of probe 1 (20 mM) upon addition of CN− (as 
tetrabutylammonium salts) in CDCl3. 

  

Figure 3. (a) Fluorescence spectra of probe 1 (5 µM) in the presence of various concentration of CN−

(0–25 µM) in PBS/DMSO (4/6, pH = 7.4) solution; (b) Linear relation between the fluorescent intensity
at 480 nm and the concentration of CN− in the range of 0–25 µM. λex = 370 nm, Slits: 2.5 nm/5 nm.

2.5. The Sensing Mechanism

As proposed in the literature [51], the sensing mechanism of probe 1 based on a nucleophilic
addition reaction has been confirmed by 1H-NMR spectroscopy (Figure 4). Thus, to a 20 mM solution
of probe 1 in CDCl3 cyanide anion (0.5 equiv.) was added at room temperature and a new proton signal
appeared at 4.5 ppm (H2a). When the amount of CN− was raised to 1.0 equiv., some significant proton
signal changes were observed. For example, the vinyl proton signal (H1a, 7.73 ppm) disappeared
gradually and a new proton signal at 4.5 ppm (H2a) was observed. The two proton signals on the
thiophene ring (H1b, 7.66 ppm; H1c, 7.30 ppm) disappeared and were observed around 7.00 ppm.
In addition, the two proton signals (H1d) adjacent to the thiophene ring shifted from 7.49 ppm to
7.36 ppm. These important proton signal changes conformed with the reference. While 1.5 equiv. CN−

was added, the reaction accomplished completely. In addition, the [1 − CN]− adduct was characterized
by mass spectrometry analysis, and the peak at m/z 457.1471 (calc. 457.1492) corresponding to
[1 − CN]− was clearly observed (Figure S10).
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2.6. Cellular Imaging

To explore its potential in bio-imaging, the cytotoxicity of probe 1 was investigated by a
standard MTT assay. As shown in Figure 5, HeLa cell viability was slightly reduced when the
probe concentration was raised up to 40 µM, indicating acceptable cytotoxicity of probe 1.
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Figure 5. HeLa cell viability values (%) estimated by MTT assay at different concentrations of probe 1
for 24 h.

Probe 1 was next applied to detect cyanide anion in living HeLa cells. As shown in Figure 6,
HeLa cells were incubated with probe 1 (10 µM) for 1 h and then with different concentrations of CN−

(A, E: 0 µM; B, F: 10 µM; C, G: 80 µM; D, H: 160 µM) for 15 min. Under the fluorescent microscope,
remarkable intracellular blue fluorescence was observed (Figure 6G–H). Moreover, the fluorescence
intensity showed a concentration-dependent manner. As shown in Figure 7, HeLa cells were incubated
with different concentrations of probe (0 µM; 2.5 µM; 5.0 µM; 10 µM) for 1 h and then with CN− (80 µM)
for 15 min. The fluorescence intensity also showed a concentration-dependent manner. In summary,
probe 1 showed the potential to detect CN− in vitro cellular systems in a concentration-dependent
manner for both probe and CN−.
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Figure 7. Images of living HeLa cells: HeLa cells incubated with different concentration of probe 1
((A,E) 0 µM; (B,F) 2.5 µM; (C,G) 5 µM; (D,H) 10 µM) for 1 h and then all cells were incubated
with 80 µM CN− for 15 min. (A–D) is Bright field; (E–H) is under fluorescence (λex = 385 nm,
λem = 405–440 nm), scale bar: 20 µm.
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3. Experimental Section

3.1. Materials and Instruments

All reagents were of analytical grade and used without further purification. The absorption
and fluorescence spectra were measured on a UV-2450 (Shimadzu, Kyoto, Japan) instrument and a
F-7000 (Hitachi, Tokyo, Japan) fluorescence spectrometer. 1H-NMR (300 MHz) and 13C-NMR (75 MHz)
spectra were obtained on a Bruker-300 MHz spectrometer (Bruker, Fällanden, Switzerland) using
tetramethylsilane (TMS) as an internal standard. The following abbreviations were used to denote the
signal multiplicities: s for singlet, d for doublet, t for triplet, q for quartet, m for multiplet, br for broad.
High-resolution mass spectra were obtained on a micrOTOF-Q mass spectrometer (Bruker, Bremen,
Germany). Fluorescence cell imaging was performed with a fluorescence microscope (Olympus, Tokyo,
Japan) with a 40× objective lens.

3.2. Synthesis of Probe 1

3.2.1. Synthesis of 4-bromo-N,N-di-p-tolylaniline (3)

4-Methyl-N-phenyl-N-(p-tolyl)aniline (1.00 g, 3.66 mmol) and NBS (0.68 g, 3.84 mmol) were
dissolved in CHCl3 (20 mL). The mixture was stirred for 1.5 h at room temperature. The mixture was
poured into water (50 mL) and then extracted with dichloromethane. The organic layer was washed
with plenty of brine and dried over anhydrous sodium sulfate. The solvent was evaporated by a rotary
evaporator. A white solid (1.28 g) was obtained. Yield: 99%.1H-NMR (CDCl3): δ 7.26 (d, J = 9.0 Hz,
1H), 7.06 (d, J = 8.2 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 6.87 (d, J = 6.0 Hz, 1H), 2.30 (s, 3H).

3.2.2. Synthesis of 5-(4-(di-p-tolylamino)phenyl)thiophene-2-carbaldehyde (4)

Dioxane (50 mL) was placed in a 3-necked round bottom flask and was purged with nitrogen for
30 min. Under a nitrogen atmosphere, compound 3 (1.00 g, 2.84 mmol), (5-formylthiophen-2-yl)boronic
acid (1.35 g, 3.40 mmol), K2CO3 (2.00 g, 5.68 mmol) and Pd(PPh3)4 (164 mg, 0.14 mmol) were added.
The mixture was violently refluxed for 3.5 h. After cooling to room temperature, the solvent was
evaporated by a rotary evaporator. The residue was purified by column chromatography (silica gel,
ethyl acetate/petroleum ether = 1:20) to give the compound 4. The product was obtained as a yellow
solid (0.73 g). Yield: 67%. 1H-NMR (DMSO-d6): δ 9.84 (s, 1H), 7.93 (d, J = 4.0 Hz, 1H), 7.62 (d, J = 7.6 Hz,
2H), 7.56 (d, J = 4.0 Hz, 1H), 7.15 (d, J = 8.2 Hz, 4H), 6.98 (d, J = 8.3 Hz, 4H), 6.86 (d, J = 8.8 Hz, 2H),
2.27 (s, 6H); 13C-NMR (DMSO-d6): δ 183.6, 153.2, 148.9, 143.9, 140.6, 139.5, 133.5, 130.3, 127.3, 125.3,
124.5, 123.6, 120.3, 20.5.

3.2.3. Synthesis of 2-((5-(4-(di-p-tolylamino)phenyl)thiophen-2-yl)methylene)malononitrile (1)

To a solution of compound 4 (50 mg, 0.13 mmol) and malononitrile (13 mg, 0.19 mmol) dissolved
in toluene (3 mL), and a drop of piperidine was added under a nitrogen atmosphere. The mixture was
refluxed for 3 h. After cooling to room temperature, the solvent was evaporated by a rotary evaporator.
The residue was purified by column chromatography (silica gel, ethyl acetate/petroleum ether = 1:10)
to give the title compound 1 as a red solid (47 mg). Yield: 70%. 1H-NMR (CDCl3): δ 7.73 (s, 1H), 7.66
(d, J = 4.0 Hz, 1H), 7.49 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 4.1 Hz, 1H), 7.13 (d, J = 8.2 Hz, 4H), 7.04 (d,
J = 8.3 Hz, 4H), 6.98 (d, J = 8.7 Hz, 2H), 2.35 (s, 6H); 13C-NMR (CDCl3): δ 157.5, 150.3, 150.2, 143.9,
140.5, 134.2, 132.8, 130.2, 127.5, 125.6, 123.8, 122.9, 120.4, 114.6, 113.7, 74.5, 20.9; HRMS (ESI): m/z,
[M + H]+ calcd. for C28H22N3S+, 432.1529; found, 432.1516.

3.3. General Fluorescence Spectra Measurements

Figure S4 shows that the fluorescence intensity of probe 1 (5 µM) was slightly affected within
a range of pH (7.0–9.0) in the absence and presence of CN− (50 µM) in PBS/DMSO (4/6) solution.
The fluorescence responses of probe 1 were investigated in PBS/DMSO (4:6, v/v, pH = 7.4) solution.
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The response time of the probe 1 towards CN− was 80 min (Figure S2). To ensure the reaction
accomplish completely, fluorescence measurements were delayed for 1.5 h after anion addition.

Probe 1 was dissolved in DMSO to afford a concentration of 5 mM stock solution and then
diluted to 5 µM with PBS/DMSO= 4/6 (v/v, pH = 7.4). Cyanide anion (10 mM) was offered by
tetrabutylammonium cyanide. Moreover, miscellaneous interference anions (as their Na+ or K+

salt, 10 mM) including S2−, HS−, SO3
2−, S2O3

2−, S2O8
2−, I−, Br−, Cl−, F−, NO2

−, N3
−, SO4

2−,
SCN−, HCO3

−, CO3
2− and AcO− in deionized water were used for the sensing experiments. The

fluorescence spectrum changes caused by CN− (50 µM) and miscellaneous interference anions (50 µM)
were recorded at room temperature using a fluorescence spectrometer (λex = 370 nm, λem = 480 nm,
slits: 2.5 nm/5 nm).

3.4. Cell Culture and Confocal Fluorescence Imaging

HeLa cells were obtained from the State Key Laboratory of Biotherapy of Sichuan University.
Cells were seeded to a 12-well plates, and were routinely maintained at 37 ◦C in a humidified 5% CO2

atmosphere using DMEM Growth medium with 10% fetal bovine serum for 24 h before use.
HeLa cells (Figure 6) were incubated with probe 1 (10 µM) for 1 h, and then washed with PBS

five times. All cells were incubated with PBS for 15 min; finally with different concentrations of CN−

were added for 1 h at 37 ◦C: A, E with PBS; B, F with 10 µM CN−; C, G with 80 µM CN−; D, H with
160 µM CN−. Then cells were washed with PBS five times. Fluorescence images were monitored at
425−520 nm for blue channels and the white light channel.

Next, HeLa cells (Figure 7) were incubated with different concentrations of probe 1 for 1 h:
A, E with PBS; B, F with 2.5 µM probe 1); C, G with 5 µM probe 1; D, H with 10 µM probe 1. Then cells
were washed with PBS five times. Then all cells were incubated with 80 µM CN− for 15 min. Cell
imaging was carried out after washing cells with PBS five times.

4. Conclusions

In summary, a colorimetric fluorescent probe 1 bearing triphenylamine-thiophene and
dicyanovinyl groups has been synthesized. Probe 1 exhibited prominent selectivity and sensitivity
for detecting cyanide anion with a significant turn-on fluorescent response in PBS/DMSO (4/6, v/v,
pH = 7.4) solution. Moreover, a low detection limit (LOD, 51 nM) was achieved and it was noted
that the probe 1 has potential for detecting level of cyanide anion in drinking water according to the
requirements of the WHO (1.9 µM). In addition, good cell membrane permeability and low cytotoxicity
to HeLa cells were also observed, suggesting its promising potential in bio-imaging.

Supplementary Materials: The following are available online at www.mdpi.com/1424-8220/17/2/405/s1:
Additional spectral data for probe 1 and spectroscopic characterization of compounds 1–3.
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