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Abstract: Although many researchers have begun to study the area of Cyber Physical Social Sensing
(CPSS), few are focused on robotic sensors. We successfully utilize robots in CPSS, and propose
a sensor trajectory planning method in this paper. Trajectory planning is a fundamental problem in
mobile robotics. However, traditional methods are not suited for robotic sensors, because of their low
efficiency, instability, and non-smooth-generated paths. This paper adopts an optimizing function
to generate several intermediate points and regress these discrete points to a quintic polynomial
which can output a smooth trajectory for the robotic sensor. Simulations demonstrate that our
approach is robust and efficient, and can be well applied in the CPSS field.
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1. Introduction

With the huge developments in sensing and network technologies, Cyber Physical Social
Sensing (CPSS) has attracted the attention of many researchers [1–4]. Although much research has
been proposed to advance the field of CPSS, little research has focused on social robotic sensing.
We successfully utilize robots in the CPSS area, and propose an effective robotic sensing method in
the paper. As shown in Figure 1, we use some robots equipped with specially-designed eye-in-hand
sensors to explore the world, and share the information among all robots using a wireless network
and cloud platform. To move sensors accurately and smoothly, robots need to calculate their trajectory.
Traditional methods, however, cannot be applied directly to robotic sensing in CPSS, mainly because
the existing trajectory planning methods are not designed for sensing tasks. Historically, most trajectory
planning methods are not suitable for eye-in-hand sensors because of their low efficiency due to the
extra calculation of inverse kinematics, instability coming from inadequacy of the traditional methods
with sensor performance optimization, and non-smooth-generated paths. To solve these problems,
we propose a novel trajectory planning method to improve the sensing performance in CPSS.

Trajectory planning is a fundamental problem in robotics. Because of its limitations, both the
velocity and acceleration of robotic drivers cannot achieve the ideal level. Robots are multi-variable
and have highly nonlinear complex systems. It is extremely difficult to obtain a smooth trajectory to
simultaneously meet the requirements of velocity, acceleration, and jerk. Some trajectory planning
methods (e.g., C-space [5] and preprocessing algorithms) can find a smooth trajectory that satisfies the
kinematic limits [6,7]. Most of these traditional methods, however, are focused merely on time and jerk
optimization [8–10], and visual information is not used. In the past decade, significant progress has
been made in machine vision technology [11], and it has been applied to trajectory planning methods
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to improve planning performance. Li et al. [12] adopted vision-guided robot control to build a visual
feedback system for real-time measurement of the end-effector and the joint position. Among all
machine vision methods, classic binocular stereo-vision—which captures the same image from two
angles using two cameras—is used most widely for its simple configuration and high reliability, and
this method is adopted as the visual system in this paper. Using the stereo-matched algorithm [11],
the disparity between two images can be calculated. Following this calculation, the three-dimensional
(3D) position and orientation of the objects can be obtained using the camera calibration technique,
which illustrates the mapping relationship between the pixels in the digital image and the 3D position
in the world coordinate system.

Figure 1. Mobile robotic sensing for Cyber Physical Social Sensing (CPSS).

Trajectory planning methods use a series of transformation matrices [13–15] to obtain the position
of each joint in one robot. When the reverse kinematics method is used to calculate the joint angle
for a given manipulator position, the solution trajectory of relevant joints is usually not distinct.
Therefore, the optimization objective must be determined to arrive at the optimal trajectory [16,17].
Another problem results form the joint positioning errors caused by weight distribution, load change,
vibration, mechanical friction, and recoil, making it difficult to obtain an accurate robotic dynamics
model in real-world applications. Instead of providing the complete trajectory (which would have
some deviation in the actual robotic motion), our approach is to provide the next position that can be
reached at the next time unit. We believe that it is not necessary to get an accurate rotation angle for
each joint, and instead focus on how the end-effector of the robot reaches the object continually and
smoothly to achieve better sensing performance. In practical applications, the working precision of the
robot is confined by such factors as manipulator limitations and working environments, which cause
various errors in the sensor’s motion. We use binocular stereo-vision to rectify these motion errors.
Both velocity and acceleration of the joint must be continuous, and therefore, the proposed method
introduces jerk restriction to avoid vibration and reduce mechanical wear. To make a smooth motion
path of the equipped sensor, we adopt an optimizing function to generate several intermediate points
and regress these discrete points to a quintic polynomial, which ultimately outputs a smooth trajectory
for the sensor.

2. System Overview

Generally, the robotic motion trajectory is described in Cartesian space or joint space.
The trajectory represented in the joint angle space, however, offers several advantages [18].
First, the trajectory directly generated by the angle rotation avoids a lot of forward and inverse
kinematics calculation—in particular for real-time applications. Second, the trajectory represented in
Cartesian space will eventually be converted into the joint coordinates. If the trajectory is generated
directly in the joint space, it is clear that the computation time can be reduced. To improve position
accuracy, a visual sensor is used to compensate for errors and correct the trajectory.
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Due to the accumulated error, the manipulator cannot reach the target to be processed when the
manipulator is running on a predetermined trajectory. In order to improve the accuracy, we use the
binocular stereo visual sensor to compensate and correct the trajectory. Therefore, the schematic of
the trajectory planning method proposed in this paper is divided into a visual module and trajectory
planning module, and Figure 2 shows the schematic of the trajectory planning method with the
binocular stereo visual sensor. In our method, the planning trajectory is first generated according to the
initial states and the end states of the manipulator. When the manipulator is running, the trajectory of
the manipulator is corrected by acquiring the joint angles of the current joints and the positions of the
distal end of the manipulator, which can improve the grasping accuracy of the manipulator. In order to
compensate for the trajectory, we need to measure some parameters, in which the joint angles are
obtained by the angle sensors, and the end position of the manipulator needs to use the binocular
stereo visual sensor and the stereo vision algorithm. The stereoscopic vision algorithm can give the
mapping from the pixel coordinates to the spatial coordinates. This provides us a great convenience to
calculate the trajectory compensation values. Therefore, it can be seen that the binocular stereo visual
sensor plays an great important role in improving the grasping progress of the target to be processed.
After obtaining the trajectory of the angular space, the trajectory in the Cartesian space can be obtained
by the forward kinematics of the manipulator.

Figure 2. Schematic of the proposed trajectory planning method.

After getting the trajectory represented in joint angle space, we can transform it into Cartesian
space by robotic forward kinematics.

2.1. Binocular Vision Sensor

The proposed vision method is shown in Figure 3, which illustrates how the binocular vision
sensor is used to improve the manipulator’s operation accuracy. Many other machine vision methods
have been applied in trajectory planning. Classical binocular stereovision, however, is still widely used
for its simplicity and effectiveness. This method uses two vision sensors to obtain different images of
the same object from different angles. Then, the Cartesian coordinate of the target can be obtained by
finding the difference between the two visual images.

Currently, RGB-Depth sensors and optical fiber sensors [19] are used widely to measure the
Cartesian coordinate of the object. If, however, some obstacles appear between the sensor and the
object, these sensors may fail to get the location and the orientation of the object. Further, additional
computational costs are required to obtain the absolute object coordinates for trajectory planning.
Because relative position is more important than absolute position to control the mobile robot and the
equipped sensor, traditional binocular stereo-vision is adopted in the proposed method.
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Figure 3. Visual sensor and binocular positioning.

2.2. Testing Platform

The proposed system was tested in a simulation environment called Robot Operating System
(ROS). ROS is a software framework for robotic research and development, and has been a mainstream
robotic simulation platform. This system integrates hardware abstraction, device drivers, libraries,
visualizers, message-passing, package management, and many other convenient functions. The UR5
robot is a robot with six degrees of freedom (6-DOF). In our experiments, it is equipped with a mobile
chassis and a binocular stereo vision sensor to conduct the performance evaluations.

3. Binocular Stereo Vision Sensor System

To generate the transform vector that directly maps the end-effector to the target, the mapping
relationship between the space positions and the pixel locations in the camera plane is required.
Considering the influence of lens distortion, the transformation matrix from the camera coordinate to
the world coordinate [14] can be expressed by a homogeneous transformation matrix, per Equation (1):

Zc[u v 1]T = M∗PW (1)

where (u, v) is a pixel of a point in the camera image plane, its homogeneous coordinates are (u, v, 1)T ;
PW is the world coordinate of a point, its homogeneous coordinates are described as [Xw Yw Zw 1]T .
The transformation matrix M∗ can be described as follows:

M∗ =


f /dx 0 u0

0 f /dy v0

0 0 1




f 0 0 0

0 f 0 0

0 0 1 0


[

R3×3 t3×1

01×3 1

]
(2)

The matrix M∗ can be obtained easily by Zhang’s calibrating method [20]. In Equation (2), (u0, v0)

is the origin coordinate of the physical coordinates in camera image plane. dx and dy are the length
and the width of a pixel, respectively. R3×3 and t3×1 are respectively the rotation matrix and the
translation vector of the camera coordinate frame to the world coordinate system. In order to get
the world coordinate of the point, the homogeneous coordinates of the point [Xc Yc Zc 1] in camera
coordinate system is needed. The coordinates [Xc Yc Zc 1] is obtained by binocular stereo vision, which
provides additional information about the objects and environments through the left and right cameras.
If we obtain the perspective difference between the left and right camera images, we then can calculate
the coordinates of the target point. The parallax principle of the binocular stereovision is shown
in Figure 4; l p and r p are the points at which the target point c p is projected on the left and right
camera planes, respectively. If b is the distance between the optical centers of the left and right cameras,
the coordinates of c p in the left and right camera planes are

(
xle f t = f Xc/Zc, yle f t = f Yc/Zc

)
and

(xright = f (Xc−b)/Zc, yright = f Yc/Zc).
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Figure 4. Binocular stereo sensor.

The visual disparity between the left and right image planes then can be obtained by
disp = xle f t − xright. Finally, the coordinates of point c p in the camera coordinate system can
be calculated [9] by Equation (3):

Xc =
b · xle f t

disp
, Yc =

b · yle f t

disp
, Zc =

b · f
disp

(3)

Equation (3) shows the mathematical model of the transformation from the pixel to the
Cartesian coordinate.

4. Trajectory Planning For Binocular Stereo Sensors

Generally, a trajectory is obtained by some calculations pertaining to the initial states and the final
states (e.g., position, velocity, and acceleration) of the joints in the Cartesian coordinates. The points on
the trajectory must then be mapped to a set of joint angles by inverse kinematics calculation. In fact, the
robotic motion is actually the rotary movement of each of joints. Therefore, the trajectory represented
in the joint coordinate system can describe the robotic motion more directly.

4.1. Joint Space-Based Trajectory Planning

A smooth interpolation function is required to obtain a satisfactory joint trajectory connecting the
initial joint angles and the final joint angles. Considering the constraints, a five-order interpolation
function [9] is used to calculate the robotic trajectory. In this calculation, θ (t) is defined as a joint
trajectory function that describes the relationship between the joint angle and time; tb, θb, θ̇b , and θ̈b
represent the initial state of time, joint angle, angular velocity, and angular acceleration, respectively;
and t f , θ f , θ̇ f , and θ̈ f represent the final state of time, joint angle, angular velocity, and angular
acceleration, respectively. The five-order interpolation function can be described as follows:

s (t) = `0 + `1t + `2t2 + `3t3 + `4t4 + `5t5 (4)

Let Tf = t f − tb. Tp—which is determined by the controller of the manipulator—is the trajectory

sampling period, then the sampling number num is
Tf
Tp

. Define τ as the sequence number of sample
points, τ = (t− tb) /Tp, τ ∈ [0, num], then the trajectory can be represented by discrete sampling
points as follows:

θ (τ) = θb +
(

θ f − θb

)
s (τ) (5)

The first derivative and the second derivative of Equation (5) can be expressed as

θ̇ (τ) =
(

θ f − θb

) ṡ (τ)
Tp

(6)
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θ̈ (τ) =
(

θ f − θb

) s̈ (τ)
Tp

2 (7)

In Equations (5)–(7), the initial and final states are known; let θ (tb) = θb, θ̇ (tb) = θ̇b, θ̈ (tb) = θ̈b,
θ
(

t f

)
= θ f , θ̇

(
t f

)
= θ̇ f , θ̈

(
t f

)
= θ̈ f , then putting the initial conditions and termination conditions

into Equations (5)–(7), we can obtain
s (0) = 0

ṡ (0) = θ̇bTp/
(

θ f − θb

)
s̈ (0) = θ̈bTp

2/
(

θ f − θb

)


s (num) = 1

ṡ (num) = θ̇ f Tp/
(

θ f − θb

)
s̈ (num) = θ̈ f Tp

2/
(

θ f − θb

) (8)

Present Equation (8) as matrix by Equation (4) and initial conditions, we can get the following:



s (0)

ṡ (0)

s̈ (0)

s (num)

ṡ (num)

s̈ (num)


︸ ︷︷ ︸

s

=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

1
Tf

Tp
(

Tf

Tp
)2 (

Tf

Tp
)3 (

Tf

Tp
)4 (

Tf

Tp
)5

0 1 2
Tf

Tp
3(

Tf

Tp
)2 4(

Tf

Tp
)3 5(

Tf

Tp
)4

0 0 2 6
Tf

Tp
12(

Tf

Tp
)2 20(

Tf

Tp
)3


︸ ︷︷ ︸

M



`0

`1

`2

`3

`4

`5


︸ ︷︷ ︸

`

(9)

So, vector ` can be expressed as follows:

` = M−1

(
0

θ̇bTp

θ f − θb

θ̈bTp
2

θ f − θb
1

θ̇ f Tp

θ f − θb

θ̈ f Tp
2

θ f − θb

)T

(10)

Then, the trajectory in joint coordinate can be obtained by Equations (5) and (10).

θ (τ) = θb +
(

θ f − θb

)
M−1

(
0

θ̇bTp

θ f − θb

θ̈bTp
2

θ f − θb
1

θ̇ f Tp

θ f − θb

θ̈ f Tp
2

θ f − θb

)T [
1 τ τ2 τ3 τ4 τ5

]
(11)

The relationship between the trajectories represented in the Cartesian space and the joint space
can be expressed as follows:

X (t) = f (θ (t)) (12)

where X (t) and θ (t) are the trajectories in the Cartesian space and the joint space, respectively.
The velocity is a constraint factor that needs to be considered, and the mapping relationship can be
obtained by a derivative of Equation (12) as follows:

Ẋ (t) =
∂ f (θ (t))

∂t
= J (θ (t)) θ̇ (t) (13)

4.2. Coordinate Transformation

The joint positions relative to the base of the manipulator, as well as the positional relationship
between the end-effector and the target object are required to measure the target position. In the
proposed method, the joint coordinates in the Cartesian space are used in each iteration, and the
coordinates in the angular space are used to calculate the joint position in each iteration. The Cartesian
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coordinates of the joints are obtained by using the following forward kinematics equation. The 6-DOF
robot is represented and modeled by the D-H method [14,15], the transformation matrix of link j + 1
to link j is j

j+1 A, and the forward kinematics equations of the 6-DOF robot can be expressed as

T = 0
K A = 0

1 A 1
2 A · · · j

j+1 A · · · (14)

During the operation of the robot, the relative position of joint j can be obtained by using 0
j A. In the

proposed method, bk, ck, and pv shown in Figure 5 need to be calculated using the transformation
matrix and the input of the binocular stereovision sensor. If the D-H parameters of the robot are
determined, the Cartesian coordinate of the end-effector in the base coordinate system can be calculated
by using forward kinematics equations T defined in Equation (14).

Figure 5. Schematic of the proposed method.

4.3. Joint State

Generally, traditional trajectory planning methods merely concentrate on the calculation of the
end effector position using the joint angles. These methods calculate the position from joint angle
readings through the direct kinematics model to estimate the actual position. However in most
instances, these positions are not actually reached due to the mechanical error. A novel trajectory
planning method is proposed in the paper to analyze current joint states. A schematic of the proposed
method is shown in Figure 5. Suppose k is the joint ordinal; bk (k = 1, 2, ..., n− 1) represents the vector
of the link; pv is an approach vector from the end-effector to the target; and ck denotes the vector from
the kth joint to the end-effector. ck can be expressed as

ck = bk + ck+1 (15)

where the penultimate joint cn−1 = bn−1.
The D-H parameters and joint angles are required to obtain the vectors shown in Figure 5. The joint

angles can be obtained by the joint angle sensors. The Cartesian coordinates of the end-effector and
target can be measured using the visual sensors. In Section 4.1, Tp is defined as the sampling period,
num is the sampling times, and tb and t f represent the start and final time, respectively. So, the trajectory
planning problem can be described as follows:

θ
(k)
b = θ(k)(0); ω

(k)
b = θ̇(k)(0); α

(k)
b = θ̈(k)(0) (16)

θ
(k)
f = θ(k)(num · Tp); ω

(k)
f = θ̇(k)(num · Tp);

α
(k)
f = θ̈(k)(num · Tp)

(17)

ω(k)(jTp) ≤ ω
(k)
max and α(k)(jTp) ≤ α

(k)
max, j ∈ [0, num] (18)
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∣∣∣∣∣α(k)
(
mTp

)
− α(k)

(
nTp

)
(m− n) Tp

∣∣∣∣∣ ≤ jmax, 0 ≤ m, n ≤ num (19)

If the second-order reciprocal of θ(k) is continuous and satisfies Equations (16)–(19), then θ(k) can
be used as a trajectory solution that minimizes acceleration, shock acceleration, or run time. In the
proposed method, a robot with K joints has 2K motion patterns. The solved trajectory does not need
to satisfy all of the previously mentioned optimization goals. In practice, the number of joints of the
robot is usually small. For example, K is six in our simulation. Moreover, ck is a major factor to control
the rotation of the joint. Given a state of the manipulator, some ck are important to reduce the length of
pv, whereas other ck can affect the orientation of pv. How ck affects pv can be determined by the angle
between ck and pv. If, for example, ck is almost perpendicular to pv, its main function is to change the
length of pv so it can be used to reduce the distance from the end-effector to the target. On the contrary,
if ck is almost parallel to pv, it is used to change the orientation of pv. As shown in Figure 5, ck−1 is
the main factor to reduce the length of pv, whereas ck is more effective when it is used to change the
orientation of pv. The angle between ck and pv can be obtained by

cosϑ(k) =
pv · ck

‖pv‖ · ‖ck‖
(20)

Next, the angle increment of each joint ∆θ(k) needs to be determined. The effect of the joint
rotation on the pv can be expressed by ∑

(
ck · sinϑ(k)

)
and ∑

(
ck · cosϑ(k)

)
, where ∑

(
ck · sinϑ(k)

)
represents the angle increment in the parallel orientation of pv, and ∑

(
ck · cosϑ(k)

)
represents the

angle increment in the perpendicular orientation of pv. To simplify the computation, tr(k) is defined
in Equation (21) as follows:

tr(k) =
[
∑
(
‖ck‖ · ∆θ(k) · sinϑ(k)

)
, ∑

(
‖ck‖ · ∆θ(k) · cosϑ(k)

)]T
(21)

In Equation (21), pv, ck, and ϑ(k) can be calculated. tr(k) is used to construct the optimization
function, as shown in Equation (22). Then, determining the next position of the joint can be transformed
into finding an appropriate ∆θ(k) such that it satisfies Equation (22).

∆θ(k) = arg max
(

tr(k) · pv
)

(22)

Considering the influence of the restrictive conditions of speed, acceleration, and jerk, some
important variables must be defined. Because the motion trajectory of the end-effector is affected
by the rotation of the joints, two important factors will be considered when correcting the trajectory:
(a) the current joint angles; and (b) the approach vector pv. To address these factors, two pivotal
coefficients ξ(k) and δ(k) are introduced; ξ(k) and δ(k) are shown as Equations (23) and (24), respectively:

ξ(k) =

√
1−

(
ϕ(k)

)2 (23)

where ϕ(k) =
(

θ(k)max − θ(k)
)

/
(

θ(k)max − θmin
(k)
)

, and ξ(k) is used to control the increment of joint
angles at the next iteration (e.g., as the joint angle increases, the angular velocity should be slower
when the angle value approaches the threshold).

δ(k) = ‖pvi‖
(

1− exp
(
−η
‖pv‖
‖pvi‖

− γ

))
(24)

δ(k) denotes the influence of the approach vector pv on the next point of the trajectory. A smaller
step should be taken when the end-effector is closer to the target at the next moment; η and γ are
coefficients to be calibrated. With this implementation, the end-effector can achieve a stable and
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smooth trajectory. When the end-effector is moving, the proposed method provides a wide range of
speeds, and even makes a full stop if necessary. After considering the influence of the current joint
state, Equation (22) needs to be changed into Equation (25), as follows:

arg
∆θ(k)

max

([
∑
(
‖ck‖ ·

∆θ(k)

ξ(k) · δ(k)
· sinϑ(k)

)
, ∑

(
‖ck‖ ·

∆θ(k)

ξ(k) · δ(k)
· cosϑ(k)

)]
· pv

)2

(25)

Equation (25) is a convex function. The angle increment of each joint ∆θ(k) is obtained by
solving Equation (25), and then is described in the coordinate system. After Equation (25) is
solved, the polynomial function given in Equation (4) is used to fit these points. Considering
the impacts of the joint angles, the link vectors, the approach vector, and the parameters
defined in Equations (23) and (24), in the proposed method, the pseudo-code describing
the proposed improved trajectory algorithm (Algorithm 1) is presented as follows:

Algorithm 1: Trajectory Planning

Input: position of joint θ(k) (0);
D-H parameters of manipulators;
vector pv = pvinitial ;
vector ck = ck(0);
planning time Tf ;
control cycle T;
recycle times num = Tf / T
for j in (0, num) do

calculate ξ(k) and δ(k) using Equations (23) and (24)
calculate ∆θ(k) using Equations (17)–(19) and (25)
calculate the new position of approach vector pv using Equation (1)
θ(k) (jT) = θ(k) ((j− 1) T) + ∆θ(k) using five-order interpolation smoothing the generated
trajectory completely
calculate the coordinate of each joint in the Cartesian system using Equation (14)

end
calculate θk (jT) of joint k in angle coordinate system
calculate angular velocity and angular acceleration of joints using Equations (5)–(7) and its
derivative.
calculate trajectories X (t) in Cartesian space by using Equation (12)

At each iteration, θ(k) (jT) is changing with a controller that makes the angle follow the desired
angle increment rate. In this way, an adapted angle increment that is varied with the current condition
can be obtained.

5. Experiments and Analysis

5.1. Experiment Environment

The proposed trajectory planning method is tested on the UR5 robot with 6-DOF. Figure 6 shows
the kinematic model, and Table 1 gives the D-H parameters of UR5.



Sensors 2017, 17, 393 10 of 14

Figure 6. Robotic kinematic model of UR5.

Table 1. The parameters of the UR5 robot.

Joints 1 2 3 4 5 6

Torsion angle αk (rad) π/2 0 0 π/2 −π/2 0
Rod length ak (mm) 0 –425 –392 0 0 0
Bias length dk (mm) 89.2 0 0 109.3 94.75 82.5

Joint angle θ(k) θ(1) θ(2) θ(3) θ(4) θ(5) θ(6)

Constraint of joint (rad) ±π/2 ±π/2 ±π/2 ±π/2 ±π/2 ±π/2

According to the D-H parameters of the UR5 robot, the transformation k
k−1 A from link k to k− 1

can be derived. Therefore, the vectors described in Figure 5 can be obtained by{
bk = bk−1 · k

k−1 A

ck = bk + ck+1
(26)

Supposing k = 6 and ck = bk, the Cartesian coordinates of the object ptarget and the end-effector
pend−e f f ector in the base coordinate system can be obtained by using the left and right cameras’
calibration. The approach vector can be calculated by pv = ptarget − pend−e f f ector. After all unknown
parameters are obtained, the real-time trajectory can be calculated by Algorithm 1. The calibration
of the camera is divided into two steps. The first step is the calibration of the single camera, and
the second step is the stereo calibration of the left and right cameras. The camera’s internal and
external parameters can be obtained using the principles of stereo imaging and camera calibration
described in Section 3. After completing the stereo calibration, the relative position between the left
and right cameras will not change; otherwise, the left and right cameras will need to be calibrated
again. The Cartesian coordinate of the target object in the world coordinate system is usually calculated
by analyzing the visual disparity between the left and right image planes.

5.2. Experimental Results

In order to verify the effectiveness of our approach, we compare this method with the time optimal
algorithm [21]. The UR5 robotic—as shown in Figure 7—is controlled to reach the same target position
from the same starting state in these two methods, respectively. Table 2 shows the initial state and the
terminate states of the joint angles. In the simulation, the rotation of the sixth joint has little impact on
the position of the end-effector. Therefore, its motion is ignored.
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Figure 7. UR5 robot used in the experiments.

Table 2. The initial and terminate joint angles of UR5 robot in the experiment.

θ Initial State Terminate State

1 0 1.142958
2 0 –2.630475
3 0 –2.346571
4 0 –1.654041
5 0 2.346625
6 0 0

The trajectories are recorded to compare these two methods. Figure 8 shows the initial and final
states of UR5 at different viewing angles. The initial and final states are indicated by yellow and
gray, respectively. Figure 9 shows the variation of each joint angle during the motion. Figure 10
shows the angular velocity of each joint. All angular velocities are less then 3.14 rad/s. Figure 10a–e
represent the trajectories of the first, second, third, fourth, and fifth joint, respectively. As shown in
Figures 9 and 10, both the angular velocity and angle variation show smooth curves with the proposed
trajectory planning method.

(a) (b)

Figure 8. Robot state. (a) The initial and terminate state; (b) The state from another perspective.
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Figure 9. The angle variation of each joint.

(a) (b) (c) (d) (e)

Figure 10. The angular velocity. (a) 1st joint; (b) 2nd joint; (c) 3rd joint; (d) 4th joint; (e) 5th joint.

(a) (b) (c)

(d) (e)

Figure 11. The acceleration curve. (a) 1st joint; (b) 2nd joint; (c) 3rd joint; (d) 4th joint; (e) 5th joint.

Figure 11 shows the acceleration curve of each joint. The dotted line indicates the time-optimal
method. The solid line indicates the acceleration curve of the proposed method, which is controlled
and adjusted by the visual system. These solid lines are fitted with the smoothing process of fifth-order
interpolation. In this experiment, sampling time is 20 ms, and the operation time of the proposed
method and time-optimal method are 2.1 and 1.9 s, respectively. For better comparison, the operation
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time of the time-optimal method is extended from 1.9 s to 2.1 s in Figure 11. Figure 12 shows the
trajectory calculated by Equation (11).

(a) (b) (c) (d)

Figure 12. Corresponding trajectories. (a) 2nd joint; (b) 3rd joint; (c) 4th joint; (d) 5th joint.

Although the time-optimal method is faster than the proposed method by 0.2 s, there is always
some offset between the final position of the end-effector and the target object, which is caused by the
errors of mechanical movement and the camera calibration. The proposed method, however, can adjust
the robotic motion according to the relative position between the end-effector and the target object to
avoid motion and calibration errors, and is therefore able to greatly reduce the position errors. Table 3
shows five records of the comparison test, demonstrating that the proposed method is much better
than the time-optimal method at motion precision, which is reflected by the absolute errors.

Table 3. The end-point errors of the UR5 robot (unit: mm).

No. Coordinates of Target Final Position Coordinate
(Time-Optimal/Ours)

Absolute Errors
(Time-Optimal/Ours)

1 (328.04,115.59,341.21) (336.34,124.31,351.14); (329.73,117.62,342.67) 15.63; 3.02
2 (349.76,273.16,345.68) (354.13,274.89,349.98); (361.22,275.72,346.12) 6.68; 2.97
3 (401.58,178.29,323.17) (407.19,183.62,324.55); (401.77,180.37,323.98) 7.87; 2.24
4 (345.43,242.75,350.48) (352.04,247.70,356.78); (345.54,244.85,352.44) 10.39; 2.87
5 (327.12,–41.74,301.31) (332.79,–34.30,303.20); (328.80,–41.57,301.83) 9.54; 1.77

6. Conclusions

This paper presents an effective robotic sensor planning method for CPSS which differs from
traditional polynomial interpolation and inverse trajectory planning methods. This method fully
considers the positions and conditions of robotic joints. The influences of the joint angles, link vectors,
and approach vectors are analyzed to improve planning performance. An optimization function
is adopted to generate several intermediate points, which are regressed to a quantic polynomial.
Ultimately, a smooth trajectory can be generated for the robotic sensor. Experimental results
demonstrate that the proposed method is feasible and effective.
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