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Abstract: Current sensor networks need to be improved and updated to satisfy new
essential requirements of the Internet of Things, where cutting-edge applications will appear.
These requirements are: total coverage, zero fails (high performance), scalability and sustainability
(hardware and software). We are going to evaluate Bluetooth Low Energy as wireless transmission
technology and as the ideal candidate for these improvements, due to its low power consumption, its
low cost radio chips and its ability to communicate with users directly, using their smartphones or
smartbands. However, this technology is relatively recent, and standard network topologies are not
able to fulfil its new requirements. To address these shortcomings, the implementation of other more
flexible topologies (as the mesh topology) will be very interesting. After studying it in depth, we have
identified certain weaknesses, for example, specific devices are needed to provide network scalability,
and the need to choose between high performance or sustainability. In this paper, after presenting the
studies carried out on these new technologies, we propose a new packet format and a new BLE mesh
topology, with two different configurations: Individual Mesh and Collaborative Mesh. Our results show
how this topology improves the scalability, sustainability, coverage and performance.

Keywords: bluetooth low energy; mesh topology; Industry 4.0; Collaborative Mesh; Internet of
Things (IoT); sensor network

1. Our Previous Work

Our research group at the Albacete Research Institute of Informatics (I3A) [1] has been actively
involved in the study and deployment of wireless sensor networks (WSNs) for indoor and outdoor
monitoring. Our research work started in 2005 with Wisevine [2], a regional Project with industrial
partners. This Project enabled us to introduce this new technology into an important sector in our
region: vine growing. We developed a computer-based information system and an operational
prototype for capturing and processing data, which allows the data to be easily analysed by the
specialists. Twenty two measurements points with three nodes located at three different heights were
deployed (66 Mica2 nodes capturing data, see Figure 1). Data collected by the deployed sensors
provides farmers with relevant information. This information can be used together with other tools for
daily decision-making. Furthermore, the information generated throughout a season or year should
prove valuable to improve farm performance.
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(a) (b)

Figure 1. Full operational prototype of Wisevine Project. (a) Nodes location in the vineyard;
(b) Placed devices.

After this outdoor experience, we focused on designing and deploying WSNs for monitoring
environmental indoor conditions, such as the temperature and humidity in an office space. Such a
system should enable a quick and accurate diagnosis of the working environment: a must for
productivity in a competitive society. The hardware equipment used to measure this information
consisted of two development kits of micaZ nodes (MOTE-KIT2400) [3] (see Figure 2).

(a) (b)

Figure 2. Experimental network of Intellbuilding Project. (a) Indoor network deployed; (b) Output
example: humidity and temperature.

The discovered problems and the absence of a global architecture for WSNs took us to define
ROBA (ROle-Based Architecture) [4], a new general purpose architecture for Wireless Sensor Networks.
The main contributions of ROBA were its ease of use, simplicity, and versatility, since it fulfils the
most important aspects in network configuration as physical design, medium access control, network
management and application design. ROBA incorporated a role assignment module and harvesting
techniques, using modern storage devices in combination with new power collection systems. The open
design of ROBA allowed a large number of possible network configurations, combining different
protocols, hardware and applications.
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We also developed ATON I [5] (see Figure 3), a battery less power management system particularly
suitable for wireless sensor networks to be deployed outdoors. We ensured the long-lasting operation
of a low-power sensor node adapting the duty cycle of the radio properly.

Figure 3. ATON I prototype.

Two important protocols, Network and Media Access Control (MAC), were also developed [6].
NORIA [7], at network level, with a network auto-configuration mechanism making use of fuzzy
logic rules, and SA-MAC [8], a power aware solution based on Time Division Multiple Access slot
assignment. With SA-MAC a collision free communication tree is built in a previous network discovery
phase and according to it, only in short periods of time the radio is turning on during the scheduling
phase to establish communication, getting a large duty cycle and energy saving. The integration of
these two protocols can be seen in [9,10].

An improved prototype of ATON I was published in [11], a power management framework
incorporating a solar-powered batteryless power supply prototype, ATONII, which was properly
coupled with improved SA-MAC, a power-aware MAC protocol whose operation is based on the
dynamic adaptation of its duty cycle based on the microclimate conditions. Real world experiments
showed the prototype works continuously in two extreme conditions: with a fixed and long duty cycle
and with a short and variable duty cycle. We also implemented BANMAC [12], a collision-free MAC
protocol for Body Area Networks that monitors and predicts the channel fluctuations and schedules
transmissions opportunistically when the Received Signal Strength Indicator (RSSI) is likely to be
higher. We presented experimental data which showed that the packet loss rate (PLR) of BANMAC is
significantly lower compared to that of the IEEE 802.15.4 MAC.

Besides these publications, we carried out innovative projects, such as the aforementioned
Wisevine and the Ecosense I (2008–2010) [13] and Ecosense II (2014–2017). The Ecosense I project
achieved three objectives: to set up and deploy a wireless sensor network in our Research Institute
in order to collect environmental indoor data (humidity, temperature, CO2 level, luminosity), to set
up a control and security system (presence control, doors and windows opening detectors) and to
implement a testbed. We needed a real cabled sensor node platform in order to test our applications
and protocols easily, and we implemented the I3ASensorbed [14] (see Figure 4), composed of 43 nodes
deployed in the first floor of the I3A. These nodes incorporate temperature, humidity, CO2, presence,
smoke, door and window state (open/close) and energy consumption. In order to deploy all these
nodes, the use of 12 USB hubs and 6 supernodes has been necessary.
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(a) Testbed devices.

(b) Detail of nodes. (c) Testbed distribution.

Figure 4. The I3ASensorBed.

2. Our Current Challenges

From this previous experience, with the current project Ecosense II we want to implement a
reliable heterogeneous network to manage smart spaces, to identify multiples data sources and to
define multiple experiments in real environments (smart homes and Industry 4.0 mainly) in the context
of the Internet of Things (IoT).

IoT is a new paradigm that combines aspects and technologies coming from different
approaches (ubiquitous and pervasive computing, Internet protocols, sensor networks, communication
technologies, and embedded devices). The smart object is the core element of IoT. Smart objects are
everyday objects able to collect environmental information and interact or control the physical world
and, in addition, they can also be interconnected, to exchange data and information [15].

Furthermore, we are surrounding by different kinds of devices and applications gathering large
amounts of data. Although smartphones remain leaders in the mobile industry, wearables and other
innovative IoT devices are also having an unstoppable success. In this new reality, a problem arises;
all these new devices do not use the same communication protocols so it is not possible to get all of
them to work together. This fact has led us to face the challenge of improving the communications
among different standards involved in the IoT revolution. Novel communication standards like
Bluetooth Low Energy (BLE), also known as Bluetooth Smart (BS) [16] open enormous possibilities
to communicate sensors, wearables, smartphones and smart objects with final users, enabling the
utilization of network infrastructure to introduce or improve a wide variety of emerging applications.

Simultaneously, Industry 4.0 [17] or Industrial Internet is blooming and there is a long way to settle
its standards. Industry 4.0 will allow the development and optimization of industrial infrastructure
using new manufacturing practices which take advantage of Information and Communication
Technology (ICT). However, the aim of this tendency is not only to introduce new technologies
in industry but to connect and unify the different ICT components in a networked system.
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The modifications implemented in smart factories eliminate shortcomings, saving costs, and allow us to
automate processes [18]. Energy efficiency in wireless communication protocols is a main requirement
for use in the IoT. The BLE standard will become an important technology for the IoT due to its low
power, low cost and small devices [19].

In [20], we defined an architecture for heterogeneous networks for easy management of smart
spaces. This architecture can be used as reference to deploy real and flexible monitoring platforms
based on IoT scenarios, making a large number of tasks easier for a user. We are working with
innovative protocols such as BLE and smart network organizations [21].

In this paper, we show our current research line, which is focused on IoT and the study of
standards to manage smart objects. BLE is presented as a technology for IoT and the new Industry 4.0
but this tendency brings new challenges for communication protocols. Different initiatives propose a
new BLE topology: the mesh network topology. However, we have discovered that these initiatives
have some weaknesses, therefore it is necessary to continue improving them. For this reason, we have
proposed a novel BLE mesh topology with two configurations, which can be used for different use
cases. Our proposal improves the network packet loss rate, without a substantial increase in the
network traffic, which makes possible the network scalability.

The rest of this paper is organized as follows: Section 3 includes an overview of the works related
with this paper; Section 4 introduces the BLE standard and its available topologies, as well as the
new challenges for Industry 4.0; Section 5 presents a preliminary experiment to know if current BLE
topologies overcome these challenges; in Section 6 we evaluate CSR Mesh in detail, the BLE mesh
initiative, and expose its weaknesses by mean of different use cases. In Section 7, our mesh proposal is
detailed and evaluated. Finally, conclusions and future works are shown in Section 8. To conclude this
section and with the intention of making this work easily readable, Figure 5 shows an outline of the
work flow presented in this paper.

Collaborative 
Mesh

Individual      
Mesh

Improving the CSR Mesh topology:
Our mesh proposal

OUR MESH PROPOSAL:
PRESENTATION AND  EVALUATION

4

Mesh topology 
evaluation

CURRENT PROPOSAL EVALUATION

3
Innovative 

topologies: Mesh

BLE technology study
Industry 4.0 

requirements study
BACKGROUND

1

BLE standard 
topologies evaluation

PRELIMINARY STUDIES

2

Problems discovery

Figure 5. Paper road map.

3. Related Work

Although BLE is a very recent technology, and its standard has not a specification for a mesh
network topology yet, there are interesting works analyzing the BLE standard and related applications:
the Array of Things project of Chicago [22]; inter-vehicular communications [23]; power management
in smart homes [19]; passengers control [24] or remote lock system [25]. However, our main focus is on
papers related with mesh transmission using BLE. In [26], authors propose BLEMesh, a mesh network
topology for BLE that takes advantage of the broadcasting capabilities of wireless networks. To reduce
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the number of packets retransmitted through the network, BLEMesh uses an opportunistic routing
method. However, this proposal does not satisfy the Zero fails requirement of Industry 4.0. In [27] a
light evaluation of a prototype of CSR mesh has been showed using the metric packet delivery ratio.
After a not very clear study case, authors use the Octave simulator. They conclude that more studies
are needed. In [28] authors implement a synchronization protocol. With this protocol nodes can not
transmit in broadcast mode and then it will be impossible the free movement of the nodes such as
smartphones, smartbands or different tools or instruments in the industry 4.0 environment.

On the other hand, the Bluetooth Special Interest Group (SIG) has officially announced the
formation of the Bluetooth Smart Mesh Working Group, which will build the architecture for
standardized mesh networking capability for Bluetooth Smart technology [29]. A new Bluetooth
specification, Bluetooth 5 [30], has just been appeared, but there is no extra information about the
mesh topology.

Well-known companies have also shown interest in incorporating this new functionality to BLE
technology. The most important initiatives are the Nordic Semiconductor [31] and Cambridge Silicon
Radio (CSR) [32]:

• The Nordic project [33] was created in collaboration with the Norwegian University of Science
and Technology [34] as part of a thesis and is not part of the official SDK of Nordic Semiconductor.
This is an open project, which uses the broadcast data transmission. This project uses Nordic
series nRF51 [35] devices. These devices use BLE version 4.0, which causes packet loss in
the mesh, because devices are not able to receive packets while they are retransmitting those
already received.

• CSR is a company that has opted for the development of a mesh network topology for BLE. CSR
has developed devices which use BLE version 4.1: the smart Bluetooth CSR101x family [36],
as well as a proprietary protocol built on BLE, called CSRmesh [37]. This protocol allows to create
a mesh topology by transmitting and receiving broadcast packets, like other projects.

However, mesh topology is not an exclusive BLE topology: ZigBee uses mesh topology to
deploy low-power WSN [13,38], it is also well-known in Wi-Fi [39,40] and it allows connections
among smartphones or tablets. However, BLE technology allows us to unify the advantages of
both alternatives: to create low-power WSNs which are able to connect directly with users, using
their smartphones.

This BLE network topology proposals open a new possibility in the Industry 4.0, because it will
allow us to cover large areas completely. Thus, static or mobile (users) devices which are in the mesh
can communicate with the mesh server or any other mesh device, regardless of their location.

4. Materials and Methods

BLE appeared in the Bluetooth specification 4.0 [41] in 2010 as a breakthrough technology for IoT.
Moreover, BLE has seen an uncommonly rapid adoption rate, and the number of products designs
that already include BLE puts it well ahead of other wireless technologies at the same point of time in
their release cycles. This rapid growth of BLE is relatively easy to explain: BLE has gone further faster
because its fate is so intimately tied to the phenomenal growth in smartphones, tablets, and mobile
computing [16].

For the reasons described before, we selected BLE for detailed study and evaluation in real devices
on our real deployed network, to check its strong points and weakness. In addition, Fourth Revolution
Industrial has created new requirements for communication standards, and BLE may be an interesting
option to manage indoor communications in future factories. In this section, BLE fundamentals are
overviewed: available network topologies, and new requirements for BLE. Later, hardware devices
used in our experiments are described.
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4.1. Fundamentals

In this section, we do not attempt to explain BLE in detail. We present the main characteristics
necessary to facilitate the understanding of our work. The first BLE specification included two network
topologies for data transmission: connection and broadcast, each one with its own advantages and
limitations. BLE versions 4.1 [42], 4.2 [43] and 5.0 [30] maintain these topologies, which have been
improved by combining different roles. However, these later versions are not implemented in most
IoT devices. These two available topologies in BLE specification are described below:

• Connection topology: once the connection has been established, two BLE devices exchange packets
in a permanent and periodical way. Two roles are used here: master (central) and slave (peripheral).
A master device can connect with different slave devices, setting up a star-topology network (see
Figure 6a). This operating mode allows the data exchange in both directions, between a slave
device and the master device. In addition, a master device can use the notification and indication
characteristics to read data immediately when they change. According to BLE specification,
the number of slaves supported simultaneously by a master is unlimited. However, in real devices,
with real memory limitations, this number falls to 4–8 (depending on the device limitations).

• Broadcast topology: a BLE device can transmit data using the BLE advertising mode to any BLE
device in listening range, which uses the BLE scanning mode. This topology defines two roles:
broadcaster (device which transmits data) and observer (device which receives data). In this case,
data exchange is unidirectional, from the broadcaster to one or more observers (see Figure 6b).

These network topologies are enough to cover small and medium IoT installations. However,
the recent emergence of Industry 4.0 includes IoT networks in factories, and changes the requirements
of these networks. These new requirements are as follows [44,45]:

• Total coverage: the entire space of the building must be covered by the network, avoiding dead
zones where the users can not communicate.

• Zero Fails: to provide a high performance, every transmitted packets must arrive at its destination,
getting a success rate of 100% in communications and a PLR close to zero.

• Sustainability: covering both software (devices use efficient programs) and hardware (reducing
the number of devices and using a low power standard). In this context, two new concepts appear:
green-by (IoT network linking physical devices with operators to afford efficient operation) and
green-in (techniques to encourage the deployment of cost efficient networks) [46–48].
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Figure 6. Available topologies in BLE standard (version 4.0). (a) Connection topology: (M) Master;
(S) Slave; (b) Broadcast topology: (B) Broadcaster; (O) Observer.
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4.2. Mesh Topologies in BLE Standard

Future industrial networks will enable a wide range of devices and services to be connected.
So that there will be a need to collect as much real-time relevant data as possible. It is estimated that
the quantity of connected devices will double or triple [45]. Then, the challenge will be connecting
this large number of devices at the field level in a simple cost-efficient way. Of course demanding
requirements for performance and reliability will still need to be met. Perhaps future networks with
high numbers of devices should be hierarchical to simplify network management and operation.
The star topologies have some advantages, such as lower latency and higher reliability, but also
disadvantages mainly the failure of a central device will disconnect all attached devices. Thus, the use
of more complex structures, such as extensively meshed network topologies, will increase. With the
adoption of new protocols, these networks will need less management efforts and will offer quick
network reconfiguration and service assurance [45].

As mentioned above, mesh network topology is not yet implemented in the BLE standard.
Nevertheless, there are some initiatives which implement this topology over BLE. To explain in detail
how this topology is implemented, we have focused on CSR mesh, because their devices use BLE
version 4.1, which allows us to combine the different BLE roles.

CSR proposes the following mesh topology, built on BLE protocol, which uses three different BLE
roles simultaneously:

• Broadcaster: CSR devices transmit data packets as broadcasters. These packets are coded and
have a format which does not follow completely the BLE standard. To ensure that the packets
arrive at the target device, the same packet is sent 3 times, the source device repeats 3 times the
packet sending.

• Observer: using BLE version 4.1, CSR combines broadcast role with observer role. Thus, devices
can receive packets from other devices at any time, even while they are transmitting their own
packets. If received packets have the correct format and comply specific conditions, then they are
repeated in broadcast again. This action increases the global coverage of the source device, and
the network traffic.

• Advertiser: this role enables other devices to establish a master-slave connection. Being a partially
closed protocol, CSR introduces new devices in their mesh using a direct connection to one of its
nodes, which will work as a bridge between the new device and the rest of the mesh, it means,
repeating the original data with the proper format.

Thus, mesh topology created by CSR uses a flood mesh protocol. Nevertheless, the main problem
of this routing protocol is the high number of retransmissions [49], which we will try to reduce. For this
aim, now we need to define two parameter which we will use in our study:

• Time To Live (TTL): one byte of the packet indicates the maximum number of times this packet
can be retransmitted, or the maximum number of hops among devices possible. Each time a
device receives and retransmit a packet, this number is decremented, discarding the packet if this
byte is 0.

• Package ID: each of the packets transmitted by a device has an identifier, which will be the same
while the packet remains in the network. This identifier allows devices to discard packets that
have previously retransmitted, checking only this field.

4.3. Hardware Platform

This section shows the BLE devices used in our studies and experiments. We have chosen
Waspmote devices from Libelium [50], because they can be equipped with multiple sensors and BLE
4.0 radio chips, and CSR1010 devices for evaluating their BLE 4.1 radio chips in mesh network topology.

Waspmote is a modular device (see Figure 7), which allows us to deploy WSNs using a large
number of protocols for data transmission by means of different modules. Its specifications are:
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microcontroller ATmega1281 (14.7456 MHz); SRAM memory (8 KB), EEPROM (4 KB), FLASH (128 KB)
and SD (2 GB); clock RTC (32 KHz); dimensions of 73.5 × 51 × 13 mm (L × W × H) and weight of
20 gr; and finally, different operation levels to reduce the consumption: ON (15 mA), Sleep (55 µA),
Deep Sleep (55 µA) or Hibernate (0.07 µA). Libelium provides us with multiple options to choose a
wireless communication protocol. Specifications of the BLE radio module are: chipset BLE112 from
BlueGiga [51]; RX sensibility of −103 dBm; TX Power interval between −23 dBm and +3 dBm; antenna
of 5 dBi; security using AES-128; range of 100 m; consumption modes: sleep (0.4 µA)/RX (8 mA)/TX
(36 mA).

Figure 7. Waspmote devices equipped with BLE module.

CSR1010 devices (see Figure 8) have a BLE 4.1 radio with direct single-ended 50 Ω antenna
connection, which allows them to transmit BLE data in any direction, at a distance between 20 and
30 m depending on existing obstacles; a 16-bit microprocessor with 64 Kbytes RAM and 64 Kbytes
ROM; 1 µA integrated key scanning hardware; PWMs and quadrature decoders; peripheral I2C and
SPI (debug); analog IOs and UART interface; up to 32 re-assignable programmable digital IOs; up to
4.4 V direct supply connection for Li-poly batteries.

Figure 8. CSR1010 device [36].

5. Preliminary Evaluation: BLE Standard Topologies for Industry 4.0

A preliminary study has been carry out to determine if the available network topologies are
suitable for new Industry 4.0 challenge. For this study, Waspmote devices with a BLE radio module
have been used to deploy our BLE network.

Thus, a 10-BLE-device network was deployed in our institute, I3A. For data transmissions, devices
use the broadcasting capability: the static BLE devices transmit packets as broadcasters, and an user
equipped with a mobile device (which is a observer) receives these packets in different points while he
is moving through the building (from P1 to P16 in Figure 9). Measurements relating to the number of
packets and their RSSI have been taken in different points of the walk-through of the user to know
if the deployed network works correctly. Figure 9 shows the situation of the static BLE broadcasters
(D1, ..., D10) and Testing Points (P1, ..., P16). It has also been shown what we have called Good Points
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and Bad Points. In Good Points, the greatest RSSI corresponds to packets from the nearest device;
Bad Points show both, where the higher RSSI received packets do not come from the nearest device,
or the observer has not received any packet from this nearest static device.

Planta primera
0                                             5

D1 D2

D3

D4 D5

D6

D7
D8

D9
D10

P1 P2 P3 P5

P4

P6
P7

P16

P15

P14 P12P13

P11

P10
P8

P9

Lab1 Lab2

Lab3
Lab4 Lab5

D1, .., D10P1, .. , P16 Testing Points                                         BLE broadcasters
Good point: the highest RSSI received corresponds to the nearest broadcaster
Bad point: the highest RSSI received does not correspond to the nearest broadcaster

Figure 9. Results obtained in preliminary test to check the performance in a BLE IoT installation.

As Figure 9 shows, only 68.75% of the testing points are Good Points, where the observer received
packets from the nearest static device correctly. These results leads us to conclude that this topology
does not fulfil the requirements of the Industry 4.0 identified above: there are several dead zones
where there is not network coverage, and the PLR is too high.

Furthermore, connection topology has been dismissed due to the restriction in the number of
slaves connected simultaneously to a master (this number depends on the memory of device, and,
in practice, this number is 8 at maximum), and the impossibility of deploying a network hierarchy
by means of connecting a master with other master devices working as slave (this characteristic was
included in the specification 4.1 of Bluetooth [42], but most devices do not implement it). In most
Industry 4.0 use cases, just 8 slave devices connected to a master device are not enough, because this is
a very static and limited option, due to every slave device should be within the master slave range. In
addition, these limitations affect the coverage of the network, and make hard to scale the network,
which has a negative impact in its sustainability.

Once the current topologies specified in the Bluetooth standard have been ruled out for use in
Industry 4.0 due to it does not meet its requirements, a new BLE network topology is necessary: mesh
topology. As seen before, there are already some initiatives to use this topology in BLE technology.
However, these first versions have weaknesses which are necessary to solve. So that, in following
sections, we will present our new topology proposal. Moreover, it will be compared with the current
initiatives, evaluating its performance and demonstrating that its packet loss is lower.

6. Discussion

This section is related in the following way: firstly, CSR devices and CSR Mesh are evaluated;
secondly, problems found in this evaluation are established. In this way, the study cases are:

• Study of PLR in CSR devices. One of the most important requirements in Industry 4.0 is the
Zero fails objective, to provide a high performance in networks, so this rate has a great impact. For
this reason, to know the PLR for these devices in optimal conditions is necessary.

• Coverage study for CSR devices in real environments, which allows us to deploy a real network
in a real environment.
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• CSR Mesh evaluation in a real environment.

6.1. Packet Loss Rate in CSR Devices

As described above, packets are retransmitted three times in the CSR Mesh as a reliability measure
and to ensure that the transmitted packets are received in different devices. When a device receives a
packet, it retransmits this packet three times if it is not the destination device. If the same packet is
received more than once, it is discarded and no action is taken. We have carried out a study to verify if
this way of working is enough to provide the needed performance.

A simple mesh network was deployed for this experiment. This network had a single broadcaster
device and a single observer device (CSR1010). The broadcaster sent packets to the observer. The study
has been carried out by evaluating the PLR according to the number of repetitions of each packet.
A new packet was transmitted each 5 s for 3000 s. If the repetitions were configured in broadcaster,
a new packet and its repetitions were transmitted each 5 s. This experiment tried to evaluate the impact
of this measurement on the network, so that the devices were in optimal conditions for transmitting
and receiving data: in a direct line of sight and separated 50 cm, minimizing the packet loss due to
distance or obstacles.

Table 1 shows the PLR for packets transmitted once, twice or three times. These results reflect
an improvement when the number of transmitted packets grows. A PLR of approximately 16% was
observed for packets transmitted only once; 3% when packets were repeated twice and 0% when the
number of repeated packets was three. The need of transmitting three times is due to the fact that the
BLE radio is not only used to receive packets, it has also to transmit advertisement packets (i.e., other
devices can use this device like a bridge) and moreover, the radio must retransmit the received packets.

Table 1. PLR (%) in data transmission between a single broadcaster and a single CSR observer device,
according to the number of packet repetition.

Transmissions of Each
Data Packet

Packet Loss Rate (%)
for Original Packets

1 16.24

2 2.79

3 0.00

As this basic experiment shows, the operating mode taken by CSR mesh topology based on
repeating the packets 3 times ensures the arrival of all packets, but increases the traffic of the network,
the power consumption and the packet collisions in a saturated wireless frequency band. It could
trigger a scalability problem when the number of devices in the network increases.

A new experiment was carried out to evaluate these new problems in a real network. In this
new experiment, a network was deployed using a higher number of network devices to cover a real
building, emulating a factory. However, before the network deployment, a coverage study was needed.

6.2. Coverage Study for CSR Devices

When deploying a real wireless sensor network, the first step is to carry out a coverage study to
determine the least number of needed devices to cover the largest possible area with the lowest cost.
For this reason, this coverage study was performed in the first floor of our research institute (48 m in
length and 15 m in width).

An important consideration when we want to evaluate the range of a device is the antenna.
CSR1010 devices have an Inverted-F Antenna [52]. The radiation pattern in this antenna is circular in
the XZ plane. So, we can distinguish two different area according to the device placing: the coverage
range is favourable in the XZ plane (see Figure 10) and unfavourable in the rest of the plans.
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Figure 10. X, Y and Z plans in a CSR1010 device.

In open areas with a direct line sight, the coverage range of CSR1010 devices is around 30 m.
However, this range is lower in inside environments with obstacles, so it was necessary a study to
evaluate this range in our laboratory.

In this experiment, two devices were used: a broadcaster placed 4 m from a observer, with
constructive elements between them (see Table 2). This study is not used for any building, it means,
it must be repeated for any building to ensure the minimum number of devices needed to cover its
own area. In our experimental scenarios, 80 RSSI samples were taken in coexistence with other wireless
technologies (Wi-Fi and ZigBee).

For each evaluated scenario, two experiments were carried out, regarding the device position:
favourable and unfavourable position. The obtained results are shown in Table 2.

Table 2. Average RSSI obtained in different scenarios.

Scenario Description RSSI with Favourable
Antenna Position on Average

RSSI with Unfavourable
Antenna Position on Average

Direct Line of Sight −67 −57

Dividing panels −65 −63

Doors −68 −73

Columns −80 −83

Walls −60 −62

Walls + storage racks −79 −95

Glass −65 −70

Using this previous evaluation, we were able to study how different construction elements affect
the coverage range. For this purpose, we deployed a mesh network, avoiding the problematic elements,
like columns, walls and particular storage racks.

We begun deploying a 10-CSR device network. Of course, all coverage area was covered, but our
aim was to know the minimum number of devices needed to cover it. So that, the number of devices
was gradually decreased up to we found that two devices were not able to cover the whole area.
Therefore, we established that the minimum needed devices to cover this area was three.

6.3. CSR Mesh Evaluation

Once we studied the behaviour of a single CSR device in optimal conditions, we wanted to know
how really a CSR Mesh network works. For this purpose, the following steps were followed:

• By the previous coverage study, three CSR devices are needed to cover the first floor of our
research Institute

• To guarantee a test environment as real as possible, we emulated an industrial environment where
it was necessary to measure different parameters which were processed by a BLE controller. To do
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this, two Waspmote devices equipped with sensors were added into the mesh, using CSR devices
as a bridge (following CSR topology). These Waspmote devices transmitted sensor data packet
every five seconds. In addition, a BLE controller which receives, processes and stores BLE packets,
was also introduced using the remaining CSR device. Figure 11 shows the final arrangement of
the devices.

• In addition, to determine the influence of repeating packets on a real mesh network, CSR devices
were configured with two different settings: transmitting each packet once, and transmitting three
times (default mode).

• Finally, for each of the proposed configurations, the PLR was measured, as well as the number of
packets received in each CSR device per second, to evaluate the packet traffic in network.

Planta primera
0                                             5

W2

W1

CSR1

CSR3CSR2

Lab1 Lab2

Lab3
Lab4 Lab5

CSR devices                                                 Waspmote devices
Master-slave connection                          Mesh transmission (Broadcast)

BLE Controller

Figure 11. Network deployed using 2 sensor devices and CSR mesh topology.

Tables 3 and 4 show the network traffic (sent and received packets, respectively, by different
devices). As a result of the mesh network topology, the broadcast mode and the proprietary code of
the CSR devices, a typical traffic matrix is not available. Table 3 shows the number of packets sent by
Waspmote devices (W1 and W2) and the number of these packets received by the BLE server, for two
different network configuration. It can be observed that the number of packet repetitions is especially
relevant for packets from W2, which have to be retransmitted by three different devices (CSR3, CSR2
and CSR1) and finally received by the BLE server. On the contrary, for packets from W1, which were
retransmitted from CSR2 to CSR1, there are no significant differences when changing the configuration.

Table 3. Packets sent by sensor nodes and received by BLE server, for each CSR devices configuration.

Sensor Nodes

CSR Devices Transmit
Each Packet Once

CSR Devices Transmit
Each Packet Three Times

Sent Packets Packets Received
by Server Sent Packets Packets Received

by Server

W1
555 (to CSR2,

master-slave connection) 554
577 (to CSR2,

master-slave connection) 575

W2
551 (to CSR3,

master-slave connection) 367
577 (to CSR3,

master-slave connection) 542

Table 4 shows the number of packets received by different CSR devices, as well as BLE server.
From these results, important information has been obtained. Firstly, the number of received packets
grows when the number of repetitions is higher. In other words, the network traffic is higher when
CSR devices transmit each packet three times. Secondly, CSR1 device performed an important packet
filtering, since only 42% of packets for the first configuration and 31% of packets for the second
configuration are original packets, i.e., not repeated packets. Therefore, this connection will be
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maintained in following evaluations. Thirdly, there is an increase in the number of packets received
by CSR3 device higher than the increase in the number of packets received by CSR2. It is quite the
opposite to what is expected since the CSR2 device is located in the middle of the mesh network,
so that it must receive packets from all the rest nodes in the mesh. This behaviour is unsuitable and
ends up in troubles when the network has a high number of devices.

Table 4. Packets received by CSR devices and BLE server in CSR Mesh evaluation, for each CSR
device configuration.

Configuration
Packets Received by

CSR1 CSR2 CSR3 Server

CSR devices transmit
each packet once 2186 4957 3778 921

CSR devices transmit
each packet three times 3629 5542 6003 1117

In Table 5 it can be observed the PLR of each sensor node, which are the source of the information.
In the first configuration, CSR devices retransmitted each packet once, while in second configuration
CSR devices repeated each packet three times. These packets could contain different data (including
key data), therefore avoiding their loss can be crucial. The first conclusion we can draw is quite
expected the results show a lower packet loss when CSR devices repeat each packet three times instead
of one (3.21% against 16.73% on average). The second conclusion is related to the device positioning:
the Waspmote 1 results are much better than the Waspmote 2 results due to the second one is farther
from BLE controller (see positioning in Figure 11), so that, its packets need to be retransmitted by more
devices (increasing their network hops).

Table 5. PLR for 2 sensor devices using the CSR mesh topology, for different CSR device configurations.

Configuration
Packet Loss Rate (%)

Waspmote 1 Waspmote 2

CSR devices transmit
each packet once 0.18 33.39

CSR devices transmit
each packet three times 0.35 6.07

As stated above, an important parameter of this type of network is the number of packets which
are moved by devices at any given time (network traffic). Therefore, the number of packets received in
the CSR devices were measured. These packets could be repeated (either a repetition from the same
device, or a retransmission from another device), so that, the CSR devices must filter them and remove
the duplicate ones. Referring to this, Table 6 shows the number of packets per second in each CSR
device, for two possible configurations: CSR devices retransmit each packet once or three times.

Table 6. Packets per second received by CSR devices in a network with 2 sensor devices and CSR
mesh topology.

Configuration
Packets Received per Second

CSR1 CSR2 CSR3 Average

CSR devices transmit
each packet one 0.62 1.41 1.08 1.04

CSR devices transmit
each packet three times 1.16 1.76 1.91 1.61
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In the Table 6 we can see the payment required to achieve that low PLR (see Table 5): each CSR
device received 0, 57 more packets per second on average when they repeated the received packets
three times. Although it may not seem too much, it can make the situation unsustainable if the number
of devices in the network is increased (in this case, the number of sensor devices was only 2, and the
number of total network devices was 6).

As seen from this experiment, the PLR in CSR Mesh is acceptable, although for this acceptable
PLR packets must be retransmitted three times. In addition, CSR Mesh is a proprietary protocol built
on BLE, and scalability problems arise when different BLE devices are included in network, because
they need a CSR device working as slave to bridging them with the rest of the network. The maximum
number of non-CSR devices on mesh network is the number of CSR devices in it. Moreover, if a wider
coverage range is needed, more CSR devices must be included. To solve these scalability problems,
we propose some improvements. In our proposal, any BLE device with the observer and broadcaster
roles, could take part in the network, and no bridge device is necessary. In next section, this proposal
is detailed, as well as some experiments which were carried out to evaluate its packet loss and its
network traffic.

7. Improving the CSR Mesh

As already described, one of the weaknesses of the CSR mesh network is its scalability, especially
when new sensor devices are adding to it: to introduce a new non-CSR devices on network, the use
of a CSR device as bridge is necessary. Because of great impact that BLE mesh network topology can
have on the Industry 4.0, this network scalability must be complete, irrespective of the devices which
conform the network. After the study of the behaviour of the CSR mesh, we decided to develop a
new mesh proposal based on it. While to connect an external device to a bridge CSR device using
a master-slave connection is necessary in the CSR mesh to take part of this network, our proposal
removes this restriction. In this way, all BLE devices could broadcast packets with the specified format,
which are retransmitted to their destination.

Although the behaviour of the devices may seem similar, there are important differences between
the protocol proposed in this section and CSR Mesh, namely:

• Our proposal is an open protocol, in contrast to CSR Mesh. It allows us to implement our protocol
in any BLE device. In addition, this characteristic will be very useful for future evaluations.

• Bridge devices are not needed. In our proposal, any BLE device can take part of the mesh network,
because all nodes broadcast their data packets to their neighbours. It improves the scalability and
the cost savings, due to bridge devices are not needed for each new added device in the network.

• Master-slave connection is not required in our proposal. It greatly improves the inclusion of
mobile devices (like users smartphones). In this way, a user could move freely within mesh
network, without worrying about master-slave connection interruptions.

In addition to these important differences, for our mesh proposal, a new packet format was
defined. This packet format is compatible with CSR devices, so that these devices can be included
in our mesh as a backbone of it, since their BLE 4.1 chips allow us to obtain a better performance in
this use case than if we used only BLE 4.0 chips. This better performance is due to the possibility of
using observer and broadcaster modes simultaneously, without the need to switch them. A single BLE
4.0 radio only can transmit or receive data at a certain point. However, using BLE 4.1, to change the
mode of operation from observer to broadcaster (or vice versa) is not necessary. It allows us to take
advantage during the idle periods for doing other useful actions. Figure 12 shows these differences
between BLE version 4.0 and 4.1:
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Adv Idle Adv Idle Adv Idle Adv Idle Adv Idle Adv Idle Scan

Advertising Time

Advertising Interval

Observer ModeBroadcaster Mode

Scanning TimeAdvertising Interval

(a)

Adv Scan Adv Scan Adv Scan Adv Scan Adv Scan Adv Scan Adv Scan …

Advertising Time

Advertising Interval

Broadcaster and Observer Mode

Advertising IntervalAdvertising Interval

(b)

Figure 12. Differences between Advertising and Scanning processes in BLE version 4.0 and 4.1.
(a) Advertising and Scanning processes in BLE 4.0; (b) Advertising and Scanning processes in BLE 4.1.

As said above, we created our own packet format since CSR uses its proprietary packet format
for its proprietary mesh protocol, and it is not available for users. However, in our proposal, we have
developed our packet format following BLE standard, and it is compatible with CSR devices, to give
the choice of including them in the network. Thereby, any two devices can communicate using the
mesh when both of them are inside its coverage range. In this way, devices only have to transmit
an advertising package, following the defined format, in their broadcaster mode to transmit data.
Figure 13 shows our proposed format, which can be used by any developer to create a new mesh
network. This packet format follows the BLE specification, so that, the most of its fields can be
consulted in [41]. These fields are shown below:

• Preamble: all BLE packets have an eight bit preamble, which is used in the receiver for
frequency synchronization, symbol timing estimation, and Automatic Gain Control training
tasks. In advertising packets, as in this case, preamble must be 0xAA.

• Access Address: in advertising packets, access address is a 32-bit value, and for advertising
packets shall be 0x8E89BED6.

• Payload Data Unit (PDU): packets have a variable size payload, from 12 to 37 bytes,
which includes:

– Header: a 16-bit header, where PDU type is specified. This PDU type is non connectable
undirected advertising, which is used in broadcast data transmissions.

– Advertising Address: this 6-octet field contains the BLE address. In our proposal this is
a random address generated by device.

– Advertising Data: this variable size field (from 4 to 31 bytes) contains data collected from
sensors or device information (battery level, for example). Advertising Data contains the
following fields:

∗ Advertising Data Packet Length: following the BLE standard, first octet contains the
PDU length.

∗ Data header: contains two different fields. The first field is Type which indicates the PDU
service. For mesh packets, its value is 0x16 (service data). The second field is a 16-bit
UUID. To ensure the compatibility with CSR devices, the UUID for his packets shall be
the CSR UUID.

∗ Destination Device ID: due to the use of random address, devices use an ID to identify
them, which is shorter than a BLE address.
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∗ Data Fields: are divide in two sections, an ID which indicates the data type and its
length, and the data itself.

∗ Packet ID: each packet contains its own ID, to avoid the uncontrolled packet
retransmission, this field includes the source device ID and a packet counter, to ensure
the uniqueness of the packet at any given time.

∗ TTL: where TTL value which limits the lifespan of the packet is stored.

• Cyclic Redundancy Check (CRC): at the end of every packet there is a 24-bit CRC, which shall be
calculated over the PDU.

Data(3) Data Header (6)Packet ID

Type Field 1 Field 2 (…)

Data 
ID

Data

(4)

(2)
Advertising 

Address
Advertising Data

(5) CounterData UUID

Access 
Address

Payload Data Unit CRC

1 byte

(1)

BLE Standard 
packet

Mesh packet 
proposal

Figure 13. Our proposed mesh packet format. (1) Preamble; (2) BLE Header; (3) Advertising Data
Length; (4) Destination Device ID; (5) Source Device ID; (6) TTL.

Using our defined format, to transmit a packet to a device it is enough to know its identifier.
This identifier device can be programmed in the memory of the device or be assigned dynamically by
a BLE network controller.

In addition, this packet format provides two possible configurations for sensor devices, since it is
possible to communicate with a mesh device without being a complete mesh device:

• Individual Mesh: sensor devices only transmit their data packets, but they do not retransmit the
packets of other devices. This option provides us a lower traffic network.

• Collaborative Mesh: sensor devices transmit their data packets and they retransmit the received
packet for other devices. This option increases the network coverage, but also the network traffic.
Furthermore, to deploy a mesh network with this option using only sensor devices is possible,
without the use of CSR devices.

Finally, all these modifications allow us to obtain different improvements:

• To know the source and destination device of each packet.
• To increase the size of the data field in each package.
• To introduce new devices working as mesh devices, either to transmit only their own data or to

retransmit the received packets, without using a CSR device as a bridge. This advantage is notably
accentuated when the devices we want to include in the mesh are mobile or wearable devices
from users: smartphones, tablets, smartwatchs or smartbands, for example. While in the option
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proposed by CSR a device must establish a master-slave connection that will be lost when the
user leaves the range of coverage of the bridge device, our option allows us to transmit packets to
the network in general, accentuating the concept of mesh and total coverage.

• To add new devices, no matter how many bridge devices are available, since they are no required.
In this way, our network provides increased scalability, sustainability, and saving cost, because
we can eliminate CSR bridge devices, reducing the final number of network devices without
compromising the network performance.

7.1. Evaluation of Our New Mesh Proposals

After the description of our mesh topology proposal, an in-depth study about its behaviour is
necessary. In this study, we took advantage of the scalability of our proposed mesh and the possibility
to include any type of device. So that, we used 8 Waspmote devices, 3 CSR devices and a BLE controller.
In addition, Waspmote devices were configured in the two settings before defined: Individual Mesh and
Collaborative Mesh.

To evaluate the behaviour of our mesh topology proposal and its scalability, these steps have
been followed:

• Three CSR devices were deployed following the previous coverage study.
• As in previous experiments, an industrial environment was emulated where different parameters

were measured. A BLE controller was included in the network using a master-slave connection
(CSR1-BLE controller) to take advantage of the BLE 4.1 radio used by CSR devices. Moreover,
in this experiment, 8 Waspmote devices equipped with sensors were included. These devices
monitored different parameters, and transmitted their data each 5 s. Figure 14 shows the
deployed network.

• Network configurations have been defined: Individual Mesh and Collaborative Mesh. For each
configuration, the PLR for each Waspmote device and the number of packets per second received
by each CSR was measured.
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W8

CSR1 CSR3CSR2
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Lab3
Lab4 Lab5

CSR devices                                                 Waspmote devices
Master-slave connection                          Mesh transmission (Broadcast)

BLE Controller

W1
W3

W7

W5W4W2

Figure 14. Network deployed using 8 sensor devices without master-slave connection.

In the following sections, the behaviour of both configurations has been detailed. Moreover, for
each configuration, a study for Low Network Load and High Network Load were carried out. On the
one hand, using a Low Network Load, Waspmote devices repeat each packet once, which reduces the
network traffic and the network PLR. On the other hand, using a High Network Load, Waspmote devices
repeat each packet three times, which increases the network PLR and the network traffic. To choose
the best option, the following studies were carried out.
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7.2. Individual Mesh Evaluation

In this section we evaluate the first Waspmote device configuration: Individual Mesh. As stated
before, using this configuration, Waspmote devices transmit their data packets using our mesh packet
format and receive packets from others devices; if this device is the destination, it process the packet;
else, the packet is discarded.

The main improvement over CSR Mesh is the scalability: this mesh network was deployed using
3 CSR devices and 9 final devices (8 sensor devices and 1 BLE controller). It increases the network
sustainability and reduces the cost (to deploy a network with 200 sensor devices is not necessary to use
200 bridge devices). In addition, the total coverage range of network is maintained, since the number
of devices which retransmit the packets is the same.

As seen before, the CSR devices retransmit each received packet 3 times by default. Although this
number can be reduced, the network PLR is increased. For this reason, our mesh proposal has been
evaluated using both CSR device configurations.

7.2.1. CSR Devices Retransmit Each Packet Three Times: Default Mode

In this evaluation, CSR devices were configured in default mode, while Waspmote devices were
using the two different configurations described before: Low Network Load (each packet is transmitted
only once by Waspmote devices) and High Network Load (each packet is transmitted three times by
Waspmote devices).

Tables 7 and 8 show the received and sent packets, respectively, by different devices in this study.
Specifically, Table 7 shows the number of received packets by CSR devices and by BLE server. As said
before, CSR devices process the received packet, and retransmit it only the first time it is received
(the repeated packets are discarded). However, the CSR API is not completely open, and to know the
number of retransmitted packets is not possible. Results show an increase of the number of received
packets in the High Network Load configuration, due to the high number of original packets from each
sensor node (see Table 8) and the number of repetitions for each original packet (three instead of one).
In this case, the node with the highest number of received packets is CSR2, due to its placement (see
Figure 14).

Table 7. Number of packets received by CSR devices and BLE server for each Waspmote device
configuration in Individual Mesh with CSR devices retransmit each packet three times.

Number of Packets Transmitted
by Waspmote Devices

Packets Received by

CSR1 CSR2 CSR3 Server

1 (Low Network Load) 15,587 26,306 21,618 4761

3 (High Network Load) 23,950 43,306 32,070 6132

Table 8 shows the number of original packets sent by sensor nodes for each network configuration
(Low Network Load and High Network Load). In this case, sensor nodes sent broadcast packets to all
devices in their coverage range, so that, it is not possible to know the receiver device. Despite of this
fact, all sensor nodes sent a similar number of packets for each configuration, being received a higher
number of packets for the second configuration.

As Figure 15 shows, even using a Low Network Load, the PLR average (1.89%) was lower than
the PLR average from CSR Mesh (around 3%) using the recommended configuration. In addition,
the network deployed to evaluate our proposal had 8 sensor devices, compared with the 2 sensor
devices used in CSR Mesh (is not possible to include a higher number of sensor devices in CSR Mesh
due to the bridge restriction).
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Table 8. Number of packets sent by each sensor node and received by BLE server, for each Waspmote
device configuration in Individual Mesh with CSR devices retransmit each packet three times.

Sensor Nodes
Low Network Load High Network Load

Sent Packets Packets Received
by BLE Server Sent Pakcets Packets Received

by BLE Server

W1 644 633 781 780

W2 582 571 811 810

W3 594 576 745 744

W4 588 579 748 746

W5 607 598 763 760

W6 635 623 768 764

W7 627 613 747 747

W8 576 568 782 781

Moreover, Figure 15 shows the PLR for High Network Load configuration: if Waspmote devices
transmit each packet 3 times, the network PLR is, on average, only the 0.21%.
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Figure 15. PLR in our mesh proposal for 8 sensor devices with Individual Mesh configuration and 3 CSR
devices with default configuration.

Another important parameter to be considered is the network traffic, specially in mesh topologies.
Table 9 shows the packets received per second in CSR devices. As it can be seen, even though using the
High Network Load configuration, the number of packet received by CSR devices was 8.338 on average.
In CSR Mesh, we obtained 1.61 packets per second in CSR default mode, but number of sensor devices
was only 2. In addition, using the Low Network Load, a lower number of packets per second is received
by CSR devices (6.564 on average), reducing the traffic network.

Table 9. Packets per second received by CSR devices when they retransmit each packet 3 times (default
mode). Waspmote devices configured as Individual Mesh.

Number of Packets Transmitted
by Waspmote Devices

Packets Received per Second

CSR1 CSR2 CSR3 Average

1 (Low Network Load) 4.833 8.157 6.703 6.564

3 (High Network Load) 6.031 10.906 8.076 8.338
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In this study, we can see the advantages of our mesh proposal with regard to CSR Mesh topology:
our mesh proposal increases the network scalability, and reduces considerably the costs, because the
use of CSR bridge devices is not necessary. Moreover, the network PLR has been reduced, and the
network traffic is maintained.

Finally, it is possible to reduce further the traffic network, reducing the number of packet
retransmitted by CSR devices. Although this measure reduces the network PLR (the default CSR
device configuration is modified), to evaluate the behaviour of this configuration in a real environment
is interesting. Therefore, next section shows the evaluation for Individual Mesh configuration, reducing
the number of packet retransmitted by CSR devices.

7.2.2. CSR Devices Retransmit Each Packet Once

In this experiment, CSR devices were configured in a saving mode, retransmitting each received
packet once, while Waspmote devices used both two available configurations in our mesh proposal:
Low Network Load (each packet is transmitted only once by Waspmote devices) and High Network Load
(each packet is transmitted three times by Waspmote devices).

Tables 10 and 11 contain data relating to network traffic. Specifically, Table 10 shows the number of
packets received by CSR devices, as well as the number of original packets received by the BLE server.
As we can see, the highest number of packets is received by CSR2 and CSR3 devices (especially CSR2)
for both configurations, due to sensor nodes placement (see Figure 14). Analysing each configuration,
an important increase in the number of packets is observed for High Network Load configuration
(198% for the CSR devices, on average, compared to Low Network Load), although the number of
packets received by the BLE server is increase only a 12.4%.

Table 10. Number of packets received by CSR devices and BLE server for each Waspmote device
configuration in Individual Mesh with CSR devices retransmit each packet once.

Number of Packets Transmitted
by Waspmote Devices

Packets Received by

CSR1 CSR2 CSR3 Server

1 (Low Network Load) 7172 11,481 9197 4814

3 (High Network Load) 15,628 20,480 18,395 5410

Table 11 shows the number of packets sent by each sensor node. Although knowing the immediate
destination node is not possible due to the broadcast topology, the number of packets received in the
final destination node (BLE server) is showed. In this case, the number of received packets by BLE
server is increased when the High Network Load configuration is used, as we will analyse later.

Table 11. Number of packets sent by each sensor node and received by BLE server, for each Waspmote
device configuration in Individual Mesh with CSR devices retransmit each packet once.

Sensor Nodes
Low Network Load High Network Load

Sent Packets Packets Received
by BLE Server Sent Pakcets Packets Received

by BLE Server

W1 677 642 669 668

W2 668 624 695 695

W3 646 610 681 678

W4 632 590 670 669

W5 637 538 684 679

W6 660 611 682 675

W7 672 587 681 681

W8 654 612 669 665
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As Figure 16 shows, the network PLR average was lower for these configurations, compared
with the PLR average from CSR Mesh when CSR devices retransmit each packet once: 8.25% for Low
Network Load and 0.39% for High Network Load, compared with the 16.73% for CSR Mesh retransmitting
each packet once. The PLR for High Network Load is notable, specially for Industry 4.0 requirements.
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Figure 16. PLR in our mesh proposal for 8 sensor devices with Individual Mesh configuration and 3 CSR
devices with saving configuration.

Table 12 shows the traffic network, measured in packets per second received in CSR devices.
As seen in CSR Mesh experiment, when packets were retransmitted only once, 1.04 packets were
received in each CSR device, on average, for two sensor devices. Using our mesh proposal, we achieved
a 2.71 packets per second received by each CSR device, on average, for 8 sensor devices configured
with a Low Network Load, which guarantees the network scalability. Moreover, to minimize the PLR is
possible using High Network Load configuration, although network traffic is slightly higher (5.19 on
average for 8 sensor devices).

Table 12. Packets per second received by CSR devices when they retransmit each packet once.
Waspmote devices configured as Individual Mesh configuration

Number of Packets Transmitted
by Waspmote Devices

Packets Received per Second

CSR1 CSR2 CSR3 Average

1 (Low Network Load) 2.096 3.356 2.688 2.714

3 (High Network Load) 4.469 5.856 5.260 5.195

In this experiment, our proposal achieved a lower PLR than CSR Mesh; although the network
traffic was increased, given that there was a higher number of sensor devices. However, the PLR for
this configuration was higher than the PLR achieved for the previous configuration (CSR devices in
default mode).

In these experiments, the Individual Mesh configuration was evaluated. However, our mesh
proposal has another configuration: Collaborative Mesh. In this configuration, every device on the
network collaborates to create the mesh network, retransmitting the received packets. Next section
details this configuration evaluation.
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7.3. Collaborative Mesh Evaluation

In this second configuration, all devices collaborate to create the mesh network. For this reason,
this configuration provides a greater scalability, due to allowing, even, deploying a mesh network
using any BLE device or only sensor devices. In addition, this configuration increases the coverage
range of the network, because the number of devices which retransmits packets is higher, maintaining
the network cost (specific mesh devices are not necessary). This advantage is particularly important
when mobile devices are included, because the network coverage range varies in a dynamic way.

It is important to highlight that this configuration of our topology can not be implemented in the
CSR Mesh topology, due to two reasons: first, the restriction of adding new devices using CSR devices
as bridges creates the need for adding a new CSR device for each new device; second, this requirement
limits the role of the new devices to master.

As the previous experiment, two different configurations for CSR devices are used to evaluate the
behaviour of this collaborative mesh in both cases: default mode and saving mode.

7.3.1. CSR Devices Retransmit Each Packet Three Times: Default Mode

In this experiment, CSR devices were configured in default mode: retransmitting each received
packet three times. Two available configurations were used for Waspmote devices: Low Network Load
(each packet is transmitted once by Waspmote devices, and the received packets in these packets
are retransmitted once the first time that they are received) and High Network Load (each packet is
transmitted, or retransmitted if it is received, three times).

Table 13 shows the number of packets received by CSR devices which make up the core of this
mesh network. The number of packets received is increased, compared with the Individual Mesh, due to
the fact that in this Collaborative Mesh all devices collaborate for retransmitting packets and extending
the network coverage range. In both cases, CSR2 has received the highest number of packets, due to
its placement (see Figure 14), as in Individual Mesh configuration. Further investigations regarding this
lack of network load balance are required.

Table 13. Number of packets received by CSR devices and BLE server for each Waspmote device
configuration in Collaborative Mesh with CSR devices retransmit each packet three times.

Number of Packets Transmitted
by Waspmote Devices

Packets Received by

CSR1 CSR2 CSR3 Server

1 (Low Network Load) 36,917 49,824 34,377 6326

3 (High Network Load) 51,316 77,035 63,009 5411

Table 14 shows the number of packets sent by sensor nodes and the number of these packets
received by the final device: the BLE server. In this case, the number of retransmitted packets
has also been included, owing to sensor nodes also retransmit packets in this Collaborative Mesh,
as explained above.

Figure 17 shows the PLR for each Waspmote device using both configurations, Low Network Load
and High Network Load. The PLR for Waspmote devices is, on average, 2.06% for Low Network Load and
0.11% for High Network Load. This network PLR is lower than CSR Mesh PLR, although the number of
sensor devices was 8 in this experiment and 2 in CSR Mesh topology experiment.

Comparing this configuration with Individual Mesh configuration, whose PLR is 1.89% and 0.21%
(for Low Network Load and High Network Load, respectively), there is not a great difference. However,
the main contrast is that this configuration allows increasing the coverage range of the network, due to
all devices collaborate to retransmit the packets.
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Table 14. Number of packets sent and retransmit by each sensor node and received by BLE server, for
each Waspmote device configuration in Collaborative Mesh with CSR devices retransmit each packet
three times.

Sensor Nodes

Low Network Load High Network Load

Sent Packets

Packets
Received
by BLE
Server

Retransmitted
Packets Sent Pakcets

Packets
Received
by BLE
Server

Retransmitted
Packets

W1 817 800 2928 709 709 4334

W2 787 756 2889 690 689 2143

W3 816 807 3076 688 687 1332

W4 814 795 3101 705 705 939

W5 787 772 3128 626 625 3211

W6 811 798 3148 655 652 4054

W7 838 825 3181 678 678 4354

W8 789 773 2882 666 666 4090
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Figure 17. PLR in Collaborative Mesh for 8 sensor devices and 3 CSR devices with default configuration.

Table 15 shows the traffic network, measured in packet per second received in CSR devices.
As seen before, using CSR Mesh configuration, devices received, on average, 1.61 packets per second
when packets were retransmitted three times, for two sensor devices. In this experiment, the number
of packets received was higher (8.44 for Low Network Load and 11.76 for High Network Load), but also
the number of sensor devices, which is 8 in this case.

Table 15. Packet per second received by CSR devices when they retransmit each packet 3 times (default
mode). Waspmote devices configured as Collaborative Mesh.

Number of Packets Transmitted and
Retransmitted by Waspmote Devices

Packets Received per Second

CSR1 CSR2 CSR3 Average

1 (Low Network Load) 7.720 10.419 7.189 8.443

3 (High Network Load) 9.464 14.208 11.621 11.764

This configuration keeps the advantages of our proposal: its a PLR is close to zero, and increases
the scalability of network regarding to CSR Mesh. Moreover, compared with the Individual Mesh
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configuration, the coverage area is increased, although the traffic network for this configuration is
slightly higher.

Finally, the next section details the evaluation of the behaviour of this configuration in a real
environment, using the saving mode for CSR devices.

7.3.2. CSR Retransmit Each Packet Once

In this experiment, CSR devices were configured to retransmit each received packet once, while
Waspmote devices used two different configurations described before: Low Network Load and High
Network Load.

Table 16 shows the number of packets received by CSR devices (the core of our mesh network)
and by the BLE server. As results shows, for Low Network Load, the number of packets received is
lower than the number of packets received when CSR devices were configured in default mode. It is
expected since, with the current configuration, CSR devices repeat each packet less times. In addition,
for High Network Load, the number of packets received by CSR devices is greatly increased, although
the number of packets (sent and retransmitted by sensor nodes) does not increase (see Table 17). This is
due to the used configuration, which triples the number of repetitions of this packets. However, these
numbers are very high compared with the collaborative mesh with CSR devices configured in default
mode (see Table 13. In future work, a study will be conducted to understand this fact.

Table 16. Number of packets received by CSR devices and BLE server for each Waspmote device
configuration in Collaborative Mesh with CSR devices retransmit each packet once.

Number of Packets Transmitted
by Waspmote Devices

Packets Received by

CSR1 CSR2 CSR3 Server

1 (Low Network Load) 10,384 14,700 12,589 4617

3 (High Network Load) 95,138 116,130 100,465 5218

Table 16 shows the number of packets sent by sensor nodes, the number of original packets from
each sensor node received by BLE server and also the number of packets retransmitted by each sensor
node. The highest number of original packets is obtained for the High Network Load configuration.

Table 17. Number of packets sent by each sensor node and received by BLE server, for each Waspmote
device configuration in Collaborative Mesh and CSR devices retransmit each packet once.

Sensor Nodes

Low Network Load High Network Load

Sent Packets

Packets
Received
by BLE
Server

Retransmitted
Packets Sent Pakcets

Packets
Received
by BLE
Server

Retransmitted
Packets

W1 695 591 3006 652 652 2081

W2 680 537 2997 638 638 2058

W3 690 650 3089 660 660 2161

W4 666 592 2976 660 659 2176

W5 690 547 3046 641 641 2115

W6 680 529 2979 643 643 2121

W7 683 652 3037 670 669 2199

W8 643 519 2921 656 656 2069

Figure 18 shows the PLR for both Waspmote configurations. As shown, the PLR for Low Network
Load is around 15% on average, too high for our Zero fails. It is the highest of all configurations for our
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mesh proposal, and similar to the PLR obtained for 2 sensor devices by CSR Mesh topology, using
the saving mode configuration in CSR devices. However, the PLR for High Network Load is 0.03%, the
lowest of all configuration, including CSR Mesh.
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Figure 18. PLR in Collaborative Mesh for 8 sensor devices and 3 CSR devices with saving
mode configuration.

Table 18 shows the network traffic. For Low Network Load, the traffic network is low for 8 sensor
devices. However, its PLR is too high for real network requirement. For High Network Load, the traffic
network is very high. This high traffic network explains the low PLR.

Table 18. Packets per second received by CSR devices when they retransmit each packet once.
Waspmote devices configured as Collaborative Mesh.

Number of Packets Transmitted and
Retransmitted by Waspmote Devices

Packets Received per Second

CSR1 CSR2 CSR3 Average

1 (Low Network Load) 2.833 4.010 3.434 3.425

3 (High Network Load) 25.316 30.902 26.734 27.651

As can be seen, Low Network Load for Waspmote devices with CSR devices in saving mode is not a
good option for Industry 4.0 due to its Zero fails requirement. However, High Network Load achieved
an incredible PLR, but a higher traffic network. As always in networks, we have to evaluate the
importance and priority of these parameters. For our aim, the most important parameters are: to get
a PLR as close to zero as possible and to provide a wide network coverage, both with an acceptable
network traffic which is not increased in a huge way compared with the traffic on CSR Mesh network.

8. Conclusions

This paper has introduced the need of using a new BLE topology which fulfills the requirements
in the new Industry 4.0. Firstly, existing mesh topologies have been documented. Secondly, we have
chosen CSR Mesh since it allows us to take advantage of the use of BLE 4.1 radio chips, which are not
very common in devices intended for IoT and Industry 4.0 use.

In addition, we have proposed a new mesh topology, with different configuration modes, which
has been evaluated for different use cases in an emulated Industry 4.0 environment. Our topology
allows us to obtain the following benefits with respect to CSR Mesh protocol:
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• To reduce the PLR (improving the network performance). Our proposal has obtained a lower
PLR for sensor devices. Even in networks with a higher number of sensor devices, several
configurations of our proposal maintain this rate close to zero fails required in Industry 4.0.

• To increase the coverage area of the network. All devices can retransmit packets received from the
mesh ensuring the total coverage (another Industry 4.0 requirement).

• To increase the scalability of the network. It is achieved by allowing any device with a BLE chip
to be part of the mesh without master-slave connection.

• To improve the user experience. The most common user devices that will use this mesh network
are mobile devices (for example, smartphones or smartbands), which can communicate with all
the devices of the mesh without reconnecting each time when the user leaves the coverage area of
his bridge device.

• To provide an open packet format for BLE mesh topology.

Moreover, results obtained for different network configurations show that each configuration
works better in a particular use case:

• Collaborative Mesh for use cases in which to cover totally an area using the minimum number of
devices is needed.

• Individual Mesh for use cases where the number of network devices is superior to the number of
devices needed to cover totally the area. Both configurations can be combined to create an hybrid
network, in which some devices use a configuration while the rest of them use the other one.

Regarding the number of packets per second, we can select in a flexible way the best configuration
for our network topology, according to the particular use case: Individual Mesh configurations for
small spaces with a lot of sensor devices and Collaborative Mesh for large areas due to it increases
the network coverage with a low cost. Another possible option is to combine both configuration in
the same network. However, this is not possible in the evaluated CSR topology, since it has a fixed
configuration, and it also requires a bridge device for each new device in the network.

Although the configurations proposed in this paper (Collaborative Mesh and Individual Mesh)
use broadcast transmissions like CSR Mesh, there are several differences between them. The main
differences between CSR Mesh protocol, and the Individual Mesh and the Collaborative Mesh proposed
are showed in Table 19.

Table 19. Differences between CSR Mesh protocol, Individual Mesh and Collaborative Mesh.

Evaluated Characteristics CSR Mesh Individual Mesh Collaborative Mesh

Open protocol No Yes Yes

Bridge device needed
to use the network Yes No No

Master-Slave
connections

Among new devices
and bridge devices No No

Necessary BLE version
4.1 or higher for bridges

4.0 or higher for rest of nodes 4.0 or higher 4.0 or higher

All devices retransmit
mesh packets No No Yes

Despite the advantages of BLE, due to network requirements and a lack of standard for mesh
topology (not yet available in last BLE version [30]), different alternatives are needed. Our proposal
provides an open protocol, built over BLE and completely compatible with it (in contrast to CSR
Mesh [27]). In addition, our proposal uses the broadcast transmission mode, which allows us to take
advantage over other alternatives that uses master-slave connections (see [28]), like a rapid network
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establishment, a greatly device mobility and a greater reliability (the failure of a central device will
not disconnect all attached devices). However, there are some shortcomings in our proposal, which
are given by the type of data transmission, like security (packets are coded but not encrypted), and
the impossibility of ensuring that a packet is received in its destination node, because there are no
mechanisms implemented for that at this time. Future works regarding these weaknesses are required.

In conclusion, our contribution regarding with Industry 4.0 requirements is summarised below:

• Zero fails: our proposal improves the CSR Mesh PLR. In addition, the broadcast transmissions make
our proposed mesh more flexible and reliable (a device failure does not cause a network failure).

• Sustainability: the number of network devices in our mesh topology has been reduced in
comparison with CSR Mesh, due to the use of bridge devices is not needed for new devices.
For example, for a network with 8 sensor nodes and a BLE server we have used 3 CSR devices,
while 9 CSR devices are needed as bridge devices in CSR Mesh.

• Total coverage: in our proposal, all devices collaborate to retransmit mesh packets, increasing the
network coverage range with the same number of devices. In addition, when mobile nodes are
included, this coverage range will be total and dynamic, depending on users movement.

Finally, there are still some points on which we must continue working:

• To reduce the number of duplicated packets, and to ensure the packets are received by
implementing some methods like packet priority or ACK mechanism. It will allow us to fulfil our
Industry 4.0 aims: zero fails and sustainability.

• To test the mesh network with a higher number of static devices (equipped with sensors).
• To include mobile devices in the network (smartphones, smartbands, smartwatches, etc).
• To include devices with actuators to check the correct transmission for different destinations.
• To allow users to retransmit packets from other devices, varying the network in a dynamic way

depending on the users movement and proving total network coverage for all users and devices.
• To improve the collaborative mesh security.
• To use LoRa devices to improve communications by extending the coverage range.
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