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Abstract: Photoacoustic microscopy (PAM) is a scalable bioimaging modality; one can choose low
acoustic resolution with deep penetration depth or high optical resolution with shallow imaging
depth. High spatial resolution and deep penetration depth is rather difficult to achieve using a
single system. Here we report a switchable acoustic resolution and optical resolution photoacoustic
microscopy (AR-OR-PAM) system in a single imaging system capable of both high resolution and low
resolution on the same sample. Lateral resolution of 4.2 µm (with ~1.4 mm imaging depth) and lateral
resolution of 45 µm (with ~7.6 mm imaging depth) was successfully demonstrated using a switchable
system. In vivo blood vasculature imaging was also performed for its biological application.

Keywords: photoacoustic imaging; AR-PAM; OR-PAM; microscopy; deep tissue imaging

1. Introduction

Photoacoustic microscopy (PAM) is an emerging hybrid in vivo imaging modality, combining
optics and ultrasound, which can provide penetration beyond the optical diffusion limit with
high resolution. This approach can provide deeper imaging than other optical modalities and
has been successfully applied to in vivo structural, functional, molecular, and cell imaging [1–9].
PAM overcomes the limitations of other existing optical modalities combining optical contrast with
ultrasound resolution. In PAM, the contrast is related to the optical properties of the tissue, but the
resolution is not limited by optical diffusion due to multiple photon scattering. Unlike optical coherence
tomography (OCT), PAM does not rely on ballistic or backscattered light. Any light, including both
singly and multiply scattered photons, contributes to the imaging signal. As a result, the imaging
depth in PAM is relatively large. The key advantages of PAM include (1) combination of high optical
contrast and high ultrasonic resolution; (2) good imaging depth; (3) no speckle artifacts; (4) scalable
resolution and imaging depth with the ultrasonic frequency; (5) use of non-ionizing radiation (both
laser and ultrasound pose no known hazards to humans); and (6) relatively inexpensive.

In PAM, a short laser pulse irradiates the tissue/sample. Due to absorption of light by the
tissue chromophores (such as melanin, hemoglobin, and water), there is a temperature rise, which
in turn produces pressure waves emitted in the form of acoustics waves. A wideband ultrasonic
transducer receives the acoustic signal (known as photoacoustic (PA) waves) outside the tissue/sample
boundary. In acoustic resolution photoacoustic microscopy (AR-PAM) deep tissue imaging can be
achieved with weak optical and tight acoustic focusing [10–12]. Since AR-PAM lateral resolution is
dependent on the ultrasound focus, one can achieve high lateral resolution (~45 µm with 50 MHz
focused ultrasound transducer with numerical aperture (NA) 0.44) with an imaging depth of up
to 3 mm, as the PA signal in AR-PAM does not depend on the ballistic photons. Resolving single
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capillaries acoustically need ultrasonic transducers greater than 400 MHz central frequency; however,
at this frequency the penetration depth will be less than 100 µm. In optical resolution photoacoustic
microscopy (OR-PAM), the lateral resolution can be improved by a tight optical focus; one can achieve
a lateral resolution of up to 0.5 µm in the reflection mode and up to 0.2 µm lateral resolution in
the transmission mode [13–20]. There were other techniques employed to attain super resolution
imaging capability including nonlinear enhancement [17,21], use of double excitation process [22],
and use of a photonic nanojet [23,24]. OR-PAM can clearly resolve single capillaries or even a single
cell [25]. However, the penetration depth is rather limited due to light focusing and it can image up
to ~1.2 mm inside the biological tissue [19]. Therefore, in summary AR-PAM can image deeper, but
with lower resolution and OR-PAM can image with very high resolution but limited imaging depth.
The imaging speed of the AR- and OR-PAM system mainly depends on the pulse repetition rate of the
laser source [26].

Not many efforts have been put to integrate both these systems together. Mostly, two different
imaging scanners are used for imaging. However, hybrid imaging with both optical and acoustic
resolution PAM enables imaging with scalable resolution and depth. In one approach, the optical
and ultrasound focus have been shifted for doing both AR- and OR-PAM. However, since the light
focus and ultrasound focus are not aligned, the image quality and resolution was not optimal [27].
In another approach, an optical fiber bundle was used to deliver light for OR- and AR-PAM [28].
In this approach, they have used two separate lasers (high energy laser at 532 nm for the AR and
a low energy high repetition rate laser at 570 nm for the OR), making the system inconvenient,
expensive, and not suitable for applications including oxygen saturation measurements [29]. In any
of these techniques, AR-PAM was not having dark field illumination and hence there were strong
photoacoustic signals from the tissue surface. The use of dark field illumination can reduce the
generation of strong photoacoustic signals from the skin surface hence deep tissue imaging can be
performed using ring-shaped illumination as the detection sensitivity of deep photoacoustic signals
will be higher compared to brightfield illumination [12]. Here, we report a switchable AR- and
OR-PAM (AR-OR-PAM) imaging system capable of both high-resolution imaging as well as low
resolution deep tissue imaging on the same sample utilizing dark field illumination. We use the same
laser for both systems. The AR-OR-PAM system was characterized in terms of spatial resolution and
imaging depth using phantom experiments. In vivo blood vasculature imaging was performed on
mouse ear for demonstrating its biological application.

2. System Description

2.1. The Switchable Acoustic Resolution-Optical Resolution-Photoacoustic Microscopy (AR-OR-PAM) System

The schematic of the AR-OR-PAM system is shown in Figure 1a. Figure 1b shows the photograph
of the switchable AR-OR-PAM scanning head. This AR-OR-PAM system employs a nanosecond
tunable laser system, consisting of a diode-pumped solid-state Nd-YAG laser (INNOSLAB, Edgewave,
Wurselen, Germany) and a dye laser (Credo-DYE-N, Sirah dye laser, Spectra Physics, Santa Clara, CA,
USA). The laser system was tunable between 559–576 nm using Rhodamine 6G dye. The wavelength
range can be changed depending on the dye used. For example, using DCM dye, the wavelength
range can be changed to 602–660 nm. For AR-PAM scanning, the laser beam was diverted using a
right angle prism, RAP1 (PS915H-A, Thorlabs, Newton, NJ, USA), placed on a computer controlled
motorized stage (CR1/M-Z7, Thorlabs). The diverted beam passed through another right angle prism,
RAP2 (PS915H-A, Tholabs), and a variable neutral density filter, NDF2 (NDC-50C-4M, Thorlabs), and
coupled on to a multimode fiber, MMF (M29L01, Thorlabs) using a combination of objective (M-10X,
Newport, Irvine, CA, USA) and XY translator (CXY1, Thorlabs), which acts as the fiber coupler (FC).
The fiber out was fixed on the stage using a translator (TS) (CXY1, Thorlabs). The beam out from the
fiber passed through a collimating lens, L1 (LA1951, Thorlabs), and then passed through a conical
lens (Con.L), having an apex angle of 130◦ (1-APX-2-B254, Altechna, Vilnius, Lithuania) to provide a
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ring-shaped beam. The conical lens was placed on a translating mount, TM1 (CT1, Thorlabs). The ring
shaped beam was allowed to focus weakly onto the subject with the focal region coaxially overlapping
the ultrasonic focus inside the tissue using a homemade optical condenser (OC) (cone angles: 70◦,
110◦), having a 50 MHz ultrasonic transducer (UST) (V214-BB-RM, Olympus-NDT, Waltham, MA,
USA) in the center. An acoustic lens (AL) (LC4573, Thorlabs) having a radius of curvature of 4.6 mm
and a 6 mm diameter was attached using a UV curing optical adhesive (NOA61, Thorlabs) to the
bottom of the transducer, which provided an acoustic focal diameter of ~46 µm. In an optically clear
medium, the optical focus was around 2 mm in diameter, which was wider than the ultrasonic focus.
This type of dark field illumination is beneficial for deep tissue imaging where there are no strong
signals from the tissue surface. The laser repetition rate (LRR) was set to be 1 kHz, and the laser energy
at focus can be varied up to 30 µJ per pulse. The optical illumination on the object surface was donut
shaped with a dark center so that no strong photoacoustic signals were produced from the surface
on the object within the ultrasonic field of view. In our setup, all components were integrated and
assembled in an optical cage setup. For AR, both 30 mm and 60 mm optical cages (OC connected in
60 mm cage) were used. The use of the cage system made the AR setup compact and easier to assemble
and align.
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Figure 1. (a) Schematic of the Acoustic Resolution—Optical Resolution—Photoacoustic Microscopy
(AR-OR-PAM) imaging system. BS: beam sampler; NDF: neutral density filter; RAP: right angle prism;
PD: photodiode; CL: condenser lens; PH: pinhole; FC: fiber coupler; UST: ultrasound transducer; MMF:
multimode fiber; SMF: single mode fiber; DAQ: data acquisition card; TS: translation stage; Con.L:
conical lens; L1: convex lens; L2 & L3: achromatic lens; RA: right angle prism; RP: rhomboid prism;
OC: optical condenser; M: mirror; SP: slip plate; LT: lens tube; TM: translation mount; KMM: kinematic
mirror mount; AL: acoustic lens; (b) Photograph of the prototype AR-OR-PAM system.
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For the OR-PAM setup, the rotational stage (holding the RAP1) would rotate at 90◦ so that the laser
beam went straight and was reshaped by an iris (ID12/M, Thorlabs) and then focused by a condenser
lens, CL (LA4327, Thorlabs), and passed through a 50 µm pinhole, PH (P50S, Thorlabs), for spatial
filtering. The filtered beam was attenuated by a variable neutral density filter, NDF3 (NDC-50C-4M,
Thorlabs), and launched on to a single-mode fiber, SMF (P1-460B-FC-1, Thorlabs), using a single mode
fiber coupler, FC (F-91-C1, Newport). The output port of the single-mode fiber was placed on a slip
plate positioner, SP (SPT1, Thorlabs). The output beam from the SMF was then collimated by an
achromatic lens, L2 (32-317, Edmund Optics, Barrington, New Jersey, United States) was reflected by a
stationary elliptical mirror, M (PFE10-P01, Thorlabs), was fixed on a Kinematic mirror mount, KMM
(KCB1, Thorlabs), and filled the back aperture of another identical achromatic lens, L3, placed on a
translation mount, TM2 (SM1Z, Thorlabs). The achromatic lens was placed on the translation mount
with the help of a lens tube, LT (SM05L10, Thorlabs). The effective clear aperture of the achromatic lens
through the tube was 10.9 mm, which makes the effective numerical aperture (NA) of the achromatic
lens as 0.11. The beam then passed through an optoacoustic beam combiner consisting of a right
angled prism, RA (PS615, Thorlabs) and a rhomboid prism, RP (47-214, Edmund optics) with a layer of
silicon oil, SO (DMPS1M, Sigma Aldrich, St. Louis, MI, USA) in between. The silicon oil layer acts as
optically transparent and acoustically reflective film. An acoustic lens, AL (LC4573, Thorlabs) provided
acoustic focusing (a focal diameter of ~46 µm), was attached at the bottom of the rhomboid prism.
The ultrasonic transducer, a 50 MHz center frequency (V214-BB-RM, Olympus-NDT), was placed on
top of the rhomboid with an epoxy layer from a single part of a two part epoxy (G14250, Thorlabs) for
effective coupling. To maximize the detection sensitivity, the optical and acoustic foci were aligned
confocally. The laser repetition rate for the OR-PAM was set to 5 kHz and the laser energy at focus
could be varied up to 200 nJ per pulse. Like AR, the OR systems components were also integrated and
assembled in a 30 mm optical cage system.

The AR-OR combined system was attached to a homemade plate that helps in switching between
AR and OR scanhead easily by sliding the scanhead on top of the imaging area. At present, the y-axis
translation stage used has a range of 5 cm; therefore, the switching between the AR and OR systems
was done by manual sliding. However, if one uses the y-axis translation stage with a 10 cm range,
manual transition can be avoided. The AR-OR combined scanner head was attached to a 3-axis
motorized stage (PLS 85 for X and Y axis, VT 80 for Z axis, PI—Physik Instrumente, Karlsruhe,
Germany). All three stages were controlled by a 3-axis controller (SMC corvus eco, PI micos) connected
to the computer. For photoacoustic imaging, the bottom of the AR-OR-PAM scanner head was
submerged in a water-filled tank (13 cm × 30 cm) for acoustic coupling. An imaging window of
7 cm × 7 cm was opened at the bottom of the tank and sealed with a polyethylene membrane for
optical and acoustic transmission. The PA signal acquired by the UST was amplified by two amplifiers
(ZFL-500LN, Mini Circuits, Brooklyn, NY, USA) each having a 24 dB gain, and was recorded using a
data acquisition (DAQ) card, (M4i.4420, Spectrum, Grosshansdorf, Germany) in a desktop computer
(Intel xeon E5-1630 3.7 GHz processor, 16 GB RAM, 64 bit windows 10 operating system). The DAQ
card had a 16 bit analog-to-digital converter (ADC), a 250 Ms/s sampling rate, 2 channels, and
a 4 GB on-board memory. The same desktop computer was used for both AR and OR-PAM systems.
The scanning and data acquisition was controlled using Labview software (National Instrument).
Two-dimensional continuous raster scanning of the imaging head was used during image acquisition.
The time-resolved PA signals were multiplied by the speed of sound, 1540 m/s in soft tissue [30]
to obtain an A-line. Multiple A-lines were captured during the continuous motion of the Y stage to
produce a two-dimensional B-scan. Multiple B-scans of the imaging area were captured and stored in
the computer. MATLAB (MathWorks, Natick, MA, USA) was used to process and obtain the maximum
amplitude projection (MAP) photoacoustic images.

The synchronization of the data acquisition and the stage motion was controlled by the signal
from a photodiode (PD) (SM05PD1A, Thorlabs). A beamsampler, BS (BF10-A, Thorlabs), was placed in
front of the laser beam diverted a small portion of the beam (5%) to the PD. A neutral density filter,
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NDF 1 (NDC-50C-4M, Thorlabs), was placed in front of the PD to control the energy falling on the
PD. The PD signal can also used for compensating pulse-to-pulse laser energy variations during data
acquisition. All experiments were done at a laser wavelength of 570 nm in this work.

2.2. Laser Safety

For in vivo imaging, the maximum permissible pulse energy is governed by American National
Standards Institute (ANSI) laser safety standards [31]. The safety limit varies with illumination
wavelength, pulse duration, exposure duration, and exposure area. The maximum pulse energy by a
single laser pulse (MPESP) on the skin surface should not exceed MPESP = 2CA10−2 J/cm2, where
CA the wavelength correction factor, is unity for visible wavelength range (400–700 nm). The irradiance
should not exceed 200 mW/cm2 if a point on skin is exposed to more than 10 s. In the case of raster
scanning, a point on the skin will not be exposed for 10 s; hence, the maximum permissible exposure
(MPEAVE) is limited by 1.1 CAt0.25 mJ/cm2, where t denotes the exposure duration in seconds.

For AR-PAM, the diameter of the optical focus at the ultrasound focus was 2 mm. Having
a minimum pixel separation of 15 µm, an average of 133 (N) adjacent laser pulses overlap at the
ultrasound focus. At 1 kHz LRR, the exposure time was 133 ms, so the maximum pulse energy
for the pulse train (MPETRAIN) was 664 mJ/cm2 (1.1 CAt0.25). The MPESP for the pulse train was
MPEAVG = MPETRAIN/N = 664/133 = 5 mJ/cm2. The current AR-PAM system can deliver
per pulse energy of 0.32 mJ/cm2 (30 µJ/pulse, 2 mm diameter focus), which is well below the MPESP
safety limit. For AR-PAM experiments, we used a pulse energy of 30 µJ/pulse for imaging depth and
6 µJ/pulse for the resolution test and in vivo ear blood vasculature imaging.

For OR-PAM, we believe the effect of optical aberrations at the prism surface and acoustic lens
might have reduced the objective NA from 0.11 to 0.075, which will give a spot size diameter of 3.9 µm
(which agrees with our lateral resolution). Assuming the optical focus is 150 micron below the skin
surface for in vivo imaging, the surface spot size was 22.5 µm in diameter. Having a minimum pixel
separation of 2 µm, an average of 11 (N) adjacent laser pulses overlaps on the skin surface. At 5 kHz
LRR, the exposure time was 2.4 ms. Therefore, the MPETRAIN was 238 mJ/cm2. The MPESP for the
pulse train was MPEAVG = MPETRAIN/N = 238/11 = 21.6 mJ/cm2. The current OR-PAM system
can deliver an MPESP of 20.4 mJ/cm2 (90 nJ/pulse, 0.075 NA) at the skin surface (close to the safety
limit). For OR-PAM experiments, we used a pulse energy of 20 nJ/pulse for the resolution test and
90 nJ/pulse for imaging depth and in vivo ear blood vasculature imaging.

3. Experimental Methods

In order to evaluate the system performance of the switchable AR-OR-PAM system, a series of
experiments were conducted to determine the spatial resolution and the maximum imaging depths
for both AR- and OR-PAM. In vivo imaging was also done using the switchable system to show the
biological imaging capability of the system.

3.1. Spatial Resolution Quantification

The lateral resolution of the AR and OR system was determined by imaging a 100 nm gold
nanoparticle (742031, Sigma Aldrich). To determine the resolution of the AR-PAM system, a single
nanoparticle was scanned with a step size of 5 microns. Similarly, the nanoparticle was scanned with
a step size of 0.5 microns in order to find the resolution of the OR-PAM system. The photoacoustic
amplitude along the central lateral direction of the nanoparticle image was fitted to a Gaussian function.
The full width at half maximum (FWHM) of the Gaussian fit was considered the lateral resolution.
Theoretically, the optical diffraction-limited lateral resolution for the OR-PAM was calculated from
0.51 λ/NA, where λ was the laser wavelength, and NA was the numerical aperture of the objective.
Similarly, the theoretical lateral resolution for the AR-PAM was determined using the equation
0.72 λ/NA, where λ was the central acoustic wavelength, and NA was the numerical aperture of
the ultrasonic transducer. The photoacoustic axial spread profile from the nanoparticle was used
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to determine the axial resolution of the system. Both OR-PAM and AR-PAM share the same axial
resolution since the same ultrasound transducer (and the focusing lens) was used in both systems.
The axial resolution was determined by acoustic parameters according to 0.88 c/∆f, where c is the
speed of sound in soft tissue, and ∆f is the frequency bandwidth of the ultrasonic transducer. Since
the size of the nanoparticle was much smaller than the axial resolution, the axial spread profile can be
considered as axial point spread function of the imaging system. The FWHM of the envelope gives
the axial resolution. The axial resolution was also calculated by numerically shifting and summing
two A-line signals and by checking whether the two peaks could be differentiated in the envelope
with a contrast-to-noise ratio (CNR) greater than 2. The CNR was plotted against the shift between
the two impulse responses. The contrast was defined as the difference between the smaller of the
two peaks in the photoacoustic envelope and the valley between the peaks. The noise was the standard
deviation in the background photoacoustic signal.

3.2. USAF Resolution Test Target Imaging

The lateral resolution of the AR and OR system was further validated imaging a USAF 1951 test
target (R1DS1P, Thorlabs). Initially, a 5 mm × 5 mm area (Group numbers 2 to 7) were scanned using
AR-PAM. The scan step size was 10 µm in both X and Y directions. Similarly, a 1.3 mm × 1.3 mm
area (Group numbers 4 to 7) was scanned using OR-PAM with a step size of 0.5 µm in both X and
Y directions. Finally, a 0.3 mm × 0.3 mm area consisting of the smallest groups (Group Numbers 6
and 7) were scanned using OR-PAM imaging with a step size of 0.5 µm in both X and Y directions.

3.3. Imaging Depth

To determine the maximum imaging depth of both AR-PAM and OR-PAM, a black tape was
inserted obliquely on a chicken tissue. A single B-scan image was captured using both AR-PAM and
OR-PAM. The signal-to-noise ratio (SNR) was also determined at the maximum imaging depth. SNR
is defined as V/n, where V is the peak-to-peak PA signal amplitude, and n is the standard deviation
of the background noise.

3.4. In Vivo Imaging of Mouse Ear Blood Vasculature

To demonstrate in vivo imaging using the combined system, the ears of 4-week-old female
mice with body weights of 25 g, procured from InVivos Pte. Ltd. (Singapore), were used. Animal
experiments were performed according to the approved guidelines and regulations by the institutional
Animal Care and Use committee of Nanyang Technological University, Singapore (Animal Protocol
Number ARF-SBS/NIE-A0263). The animal was anesthetized using a cocktail of ketamine (120 mg/kg)
and xylazine (16 mg/kg) injected intraperitoneally (dosage of 0.1 mL/10 g, body weight). After
removing hair from the ear, the mouse was positioned on a platform that also has a miniature plate
to position the ear. The animal was further anesthetized with vaporized isoflurane system (1 L/min
oxygen and 0.75% isoflurane) during the imaging period. The imaging region was placed into contact
with the polyethylene membrane using ultrasound gel. Using AR-PAM, a large area (9 mm × 7 mm)
of the ear was first imaged, using a step size of 15 µm in the Y direction and 30 µm in the X direction.
The same area (4.5 mm × 5 mm) was scanned using OR-PAM with a step size of 2 µm in the Y direction
and 3 µm in the X direction.

4. Results and Discussion

4.1. Spatial Resolution of the Imaging System

The lateral resolution of the AR-PAM is shown in Figure 2a. The measured lateral resolution
is 45 µm determined by FWHM. Similarly, lateral resolution of OR-PAM is shown in Figure 2b.
The measured lateral resolution determined from the FWHM is 4.2 µm. The inset of the figures shows
the corresponding PAM image of the gold nanoparticle.
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Figure 2c shows the axial spread profile of the averaged PA signal from the gold nanoparticle
and its envelope. The axial resolution was measured to be 33 µm. The experimentally determined
axial resolution matches closely to the theoretical axial resolution of 29 µm. The simulated results
in Figure 2d show that we can distinguish the two absorbers separated by 16.5 µm with a CNR of 2.
Figure 2e shows the plot of CNR versus axial shift.Sensors 2017, 17, 357  7 of 11 
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Figure 2. Spatial resolution test of the AR-OR-PAM system: Lateral resolution estimated by imaging
gold nanoparticles ~100 nm diameter, Black (*) dots: photoacoustic signal; blue line: Gaussian-fitted
curve; (a) AR-PAM; (b) OR-PAM. The inset shows the representative AR-PAM image in (a) and
OR-PAM image in (b) of the single gold nanoparticle; (c) Photoacoustic axial spread profile and its
envelope; (d) Simulated photoacoustic shift-and-sum A-line signals. The dashed line and dotted line
indicate two photoacoustic signals 16.5 µm apart. The solid line indicates the summed envelope of the
two shifted signals; (e) Contrast-to-noise ratio (CNR) versus the shift distance between the two signals.

4.2. USAF Resolution Test Target Imaging

MAP AR-PAM image of a USAF resolution test target is shown in Figure 3a. From Figure 3a,d,
we can see that the AR-PAM system is capable of resolving 49.61 µm line pairs (Group 3, Element 3)
with a modulation transfer function (MTF) of 0.28. Figure 3b is a MAP OR-PAM image done on the
red dotted area shown in Figure 3a.

Figure 3c shows the MAP OR-PAM image done on the yellow dotted area on Figure 3b.
From Figure 3c,d, we can see that the OR-PAM system can clearly resolve 3.91 µm line pairs (Group 7,
Element 1) with an MTF of 0.64. Theoretically, the optical diffraction-limited lateral resolution
for the OR-PAM is 2.6 µm. The experimentally measured lateral resolution was poorer than the
diffraction-limit estimate, which might be due to wavefront aberrations. Similarly, the theoretical lateral
resolution for the AR-PAM is 46 µm. The theoretical resolution agrees well with our experimental data.
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Figure 3. Lateral resolution test of the AR-OR-PAM system: (a) AR-PAM image of an air force resolution
test target; (b) OR-PAM image of the red dotted area; (c) OR-PAM image of the yellow dotted region of
the test target; (d) The cross-sectional profile of the first two elements in Group 3 of the resolution target,
blue line in (a); (e) The cross-sectional profile of the first three elements in Group 7 of the resolution
target, blue line in (c).

4.3. Imaging Depth

Figure 4a shows the schematic of a black tape obliquely inserted on chicken tissue. Figure 4b
shows the B-scan PA image from AR-PAM. It is evident that the AR-PAM system can clearly image the
black tape down to ~7.6 mm beneath the tissue surface. Similarly, using the OR-PAM system, we can
clearly image the black tape down to ~1.4 mm beneath the tissue surface. For AR-PAM, the SNR at
4.6 mm and 7.6 mm imaging depth were 2.5 and 1.4, respectively. In case of OR-PAM, the SNR of the
target object (black tape) at 1.4 mm imaging depth was 1.5.
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Figure 4. Single B-scan PA image of a black tape inserted obliquely in a chicken tissue. (a) Schematic
diagram; (b) AR-PAM image; (c) OR-PAM image.

4.4. In Vivo Imaging of Mouse Ear Blood Vasculature

Figure 5a shows the photograph of the mouse ear vasculature. A unidirectional B-scan imaging
of 9 mm × 7 mm area using AR-PAM took 10 min to complete. The MAP image of AR-PAM is show in
Figure 5b. Figure 5c shows the zoomed out image of the white dotted region in Figure 5b. The same
area as in Figure 5b (4.5 mm × 5 mm) was scanned using OR-PAM (imaging time 50 min). The MAP
image of the OR-PAM is shown in Figure 5d. Figure 5c,d are the same region scanned with AR-PAM
and OR-PAM. We can see OR-PAM can clearly resolve single capillaries that AR-PAM cannot resolve.
AR-PAM can resolve deep vessels thicker than 45 µm. Figure 5e shows the zoomed out area (white
dotted region in Figure 5d). Due to the high resolution of the OR-PAM, the region appears clearer, and
smaller structures are also visible.
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dotted line.

In summary, a switchable AR-OR-PAM system that can achieve high-resolution imaging utilizing
optical focusing as well as deep tissue imaging using dark field illumination and acoustic focusing
was developed. This combined photoacoustic microscopy system can provide high spatial resolution,
which makes the system important for applications including imaging of angiogenesis and drug
response, where imaging single capillaries as well as deep vasculatures will be important. Further
improvement in the system can be done by replacing the switchable plate with a 10 cm traveling
motorized stage (y-axis). Wavefront aberration corrections for the OR-PAM will improve the lateral
resolution further. Delivering higher pulse energy to the AR-PAM will improve the SNR and imaging
depths as well. The limitations of the proposed technique include the scanning speed. Currently longer
scanning time is required, which can be further reduced by acquiring data in both directions during
imaging. High speed imaging using OR-PAM was reported by the use of a high repetition rate laser
and a water immersible MEMS (microelectromechanical system) mirror [32]. Simultaneous image
acquisition using both AR-PAM and OR-PAM is not possible at the moment. Developing a system
that can do simultaneous data acquisition using OR-PAM and dark field AR-PAM would have been
more advantageous.

5. Conclusions

A switchable acoustic resolution and optical resolution photoacoustic microscopy system that can
achieve both high-resolution imaging at lower imaging depth and lower resolution imaging at higher
imaging depth was developed. This is the first combined system using the same laser, which can be
easily switched between OR-PAM and dark field AR-PAM. The combined system will have a 4.2 µm
resolution with a 1.4 mm imaging depth, as well as a 45 µm resolution with a 7.6 mm imaging depth.
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The system is made of minimal homemade components, making it easier to assemble, align, and
build. Using the combined system, in vivo imaging was successfully demonstrated. The developed
system can be used for pre-clinical imaging. Major preclinical applications include imaging of
angiogenesis, microcirculation, tumor microenvironments, drug response, brain functions, biomarkers,
and gene activities.
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