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Abstract: Acquisition of stabilized video is an important issue for various type of digital cameras.
This paper presents an adaptive camera path estimation method using robust feature detection
to remove shaky artifacts in a video. The proposed algorithm consists of three steps: (i) robust
feature detection using particle keypoints between adjacent frames; (ii) camera path estimation and
smoothing; and (iii) rendering to reconstruct a stabilized video. As a result, the proposed algorithm
can estimate the optimal homography by redefining important feature points in the flat region using
particle keypoints. In addition, stabilized frames with less holes can be generated from the optimal,
adaptive camera path that minimizes a temporal total variation (TV). The proposed video stabilization
method is suitable for enhancing the visual quality for various portable cameras and can be applied
to robot vision, driving assistant systems, and visual surveillance systems.
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1. Introduction

The demand for a compact, portable camera is rapidly growing because of popularized consumer
hand-held cameras with easy handling and compact size such as mobile cameras, digital cameras,
digital camcorders, drone cameras, and wearable cameras. With the advancement of cloud services,
acquisition of high quality videos becomes more important to share contents without the barriers of
time and space. However, video sequences are subject to undesired vibrations due to camera shaking
caused by poor handling and/or a dynamic, unstable environment. To overcome this problem, various
video stabilization methods have been developed to improve the visual quality of various hand-held
cameras [1]. A mechanical video stabilization system controls the camera vibrations using the gyro
sensor or accelerometer. It either moves the lens to change the light path and the optical axis or uses
an internal sensor to minimize the shaky motion. In spite of the high performance, the mechanical and
optical video stabilizer is not suitable for portable camera because of the increased volume and cost of
the system. On the other hand, an image processing-based video stabilizer can efficiently remove the
movement of video frames without extra cost of additional hardware devices.

An image processing-based video stabilization method generally consists of two steps:
(i) removing undesired motion by smoothing the camera path and (ii) rendering the stabilized
frames [2]. Existing video stabilization systems can be classified by the camera path estimation
method. Early two-dimensional (2D) stabilization methods used the block matching algorithm to
estimate inter-frame motion vectors. Jang et al. estimated the optimal affine model between adjacent
frames by using a variable block size [3]. Xu et al. proposed a video stabilization algorithm using
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circular block matching and least square fitting [4]. Since the 2D block matching-based methods
can easily estimate the camera path, they are applied in various applications [5]. However, they are
sensitive to noise and produce a matching error between acquired video frames under a dynamic
environment. An improved 2D video stabilization method used the optical flow to estimate the global
camera path. Chang et al. used the Lucas-Kanade optical flow estimation algorithm to define an affine
motion model between frames, and stabilized the camera path by motion compensation [6]. Matsushita
et al. estimated the camera path using the homography between adjacent frames and smoothed the
global path using a Gaussian kernel [7]. Xu et al. used Horn-Schunck optical flow estimation algorithm
to compute an affine model between successive frames and smoothed camera path by model-fitting
filter [8]. Although optical flow-based stabilization methods can compute an affine motion model
in a simple, flexible manner, they fail to stabilize multiple objects with different distances at the
same time. To improve the quality of stabilized video, an alternative approach used feature points to
estimate a rotation- and scale-invariant camera path. Battiato et al. used the scale invariant feature
transform (SIFT) to estimate the camera path and reduce the estimation error using the least squares
algorithm [9]. Lee et al. used trajectories of SIFT feature points to estimate the camera path and
minimized an energy function to smooth the camera path with reducing geometric distortion [10].
Xu et al. estimated motion parameters of the affine model using the fast accelerated segment test
(FAST) algorithm for video stabilization [11]. Nejadasl et al. stabilized calibrated image sequence using
the Kanade-Lucas-Tomasi (KLT) tracker and SIFT [12]. Cheng et al. presented motion detection using
the speeded up robust features (SURF) and modified random sample consensus (RANSAC) for video
stabilization [13]. To define a more powerful 2D camera model, the locally estimated camera path are
proposed. Liu et al. modeled mesh-based 2D camera motion with bundled camera path to improve
the video stabilization performance [14], and Kim et al. classified background feature points using the
KLT tracker [15]. Although 2D video stabilization methods are faster and robust because of the use of
a linear transformation, they fail to estimate the optimal camera path in textureless regions.

Currently, 3D camera motions are estimated based on the image segmentation result to improve
the quality of a video. Liu et al. proposed a 3D video stabilization method using structure from motion
and spatial warping to preserve 3D structures [16]. Zhou et al. generated labeled frames using 3D
point cloud and estimated the homography of each label to reduce distortion in textureless regions [17].
The 3D stabilization methods can generate higher quality results and are suitable for an accurate video
analysis [18,19]. However it is hard to implementation in real-time or near real-time service because
of the high computational complexity, and these methods have the common problem of the parallax
caused by feature tracking failure in flat region.

To solve these problems, this paper presents a novel video stabilization algorithm using a robust
feature detection method to improve existing 2D methods instead of the less robust 3D methods.
The proposed algorithm redefines important feature points using particle keypoints. The homography
is accurately estimated by detecting robust particle keypoints. Undesired motions are removed by
minimizing the temporal total-variation of the camera path. As a result, the proposed method provides
a significantly increased visual quality of shaky video acquired by a handheld camera.

This paper is organized as follows. Section 2 presents theoretical background of video stabilization.
Section 3 presents the robust feature extraction and matching based video stabilization and Section 4
presents the optimal camera path estimation. Experimental results are given in Section 5, and Section 6
concludes the paper.

2. Theoretical Background

Digital video stabilization plays an important role of a stabilized sensor in acquiring high-quality
video with preserving information for visual perception. A portable or wearable camera produces jitter
and an undesired camera path because of various unstable video acquisition environments with camera
shaking. Specifically, we can observe the geometric distortion of the video due to the mislocation of the
pixels as shown in Figure 1a. The camera path is not consistent with camera coordinate system from
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the world coordinate system’s point of view. Since a perspective distortion is generated by undesired
camera motion and rotation, the geometric transformation in the sensor output generates unstable
video frames. For that reason, the proposed video stabilization algorithm compensates the perspective
distortion caused by the transformation of the acquired video as shown in Figure 1b.

(a) (b)

Figure 1. Video acquisition process using a complementary metal oxide semiconductor (CMOS) sensor
portable camera: (a) input shaky camera path and (b) the smoothed camera path.

The shaky video can be considered as a geometrically transformed version of the ideally stable
video. The relationship between feature points in the original and the shaky frames is defined in the
homogeneous coordinate as

q = Hp, (1)

where H represents the homography, p = [x, y, 1]T a feature point in the original frame, and
q = [x̂, ŷ, 1]T its correspondence point in the shaky fame. The homography is generally estimated
using the correspondences between adjacent frames. Although state-of-the-art feature extraction
algorithms can detect distinguishable keypoints regardless of scale change, rotation, and brightness
change, these methods fail to estimate the accurate homography of the images including a large flat
region without any salient texture. The incorrectly estimated homography significantly degrades the
performance of the video stabilization with an erroneous camera path.

To solve these problems, we extract robust feature points to estimate the optimal homography
of the textureless region. By updating important feature points in flat regions using the particle
keypoint, the proposed method can significantly remove undesirable jitter using the optimally
estimated homography in the entire image. The proposed method can also improve the visual
quality without expensive optical devices by reconstructing stable video with a significantly reduced
perspective distortion.

3. Feature Extraction and Matching for Robust Video Stabilization

The proposed video stabilization method estimates the optimal camera path of a certain length of
video by redefining robust feature points and it is an extended version of Jeon′s work [20]. Figure 2
shows the block diagram of the proposed video stabilization method. The proposed algorithm consists
of three steps: i) robust feature detection, ii) estimation of camera path, and iii) rendering to reconstruct
a stabilized video.
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Figure 2. Block diagram of the proposed video stabilization method.

Given a pair of input shaky video frames ft−1 and ft, the flat region map is generated. The FAST
and BRIEF keypoints XFB

t−1, XFB
t are extracted in ft−1 and ft, respectively. The particle keypoints in

the two frames, XP
t−1 and XP

t , are generated using statistical analysis of extracted FAST and BRIEF
keypoints in flat regions. After that, the global camera path Ct is estimated by the optimal homography
Ht, and the smoothed camera path Pt is then estimated using a variational method. As a result, the
stabilized frame f̂t is obtained using the estimated camera path.

3.1. Flat Region Map Generation for Feature Extraction

Conventional video stabilization methods enhance the quality of a consumer video by estimating
and smoothing the global path. Existing video stabilization methods assumed that temporally adjacent
frames are related by a homography, which is robust to camera transformation, and the global camera
path can be easily estimated using the geometric transformation. The global camera path is estimated
by matching feature points that are robust to a geometric transformation. However, existing methods
fail to detect feature points in a flat region. In addition, an inaccurately estimated homography in a
textureless region further degrades the stabilization performance. In order to solve this problem, the
proposed method generates the flat region map and the optimal camera path by redefining important
keypoints in a flat region.

A textureless region is extracted using the flat region map. A spatially smoothed frames are
obtained by convolving the shaky frames ft−1 and ft with a 3× 3 Gaussian low-pass filter. The frames
are divided into flat and active regions using the absolute difference of the original frame and its
smoothed version. As a result, the estimated flat region map is used to redefine robust feature points.
Figure 3 shows the t-th original shaky frame and the corresponding flat region map.

(a) (b)

Figure 3. Example of a flat region map: (a) an input image and (b) its flat region map using the
proposed method.

3.2. Robust Feature Matching between Adjacent Frames

Matching of features between temporally adjacent frames is very important to understand the
geometric relationship of two frames and detect specific objects in video [11,21]. Various feature
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detection methods were proposed and widely applied to detect a common region in two images [22].
Harris et al. proposed a seminal model to detect corner points where shifting a local window in
any directions yields a large change in appearance [23]. Lowe proposed the scale-invariant feature
transform (SIFT) that generates an image pyramid using the difference of Gaussian (DoG), and then
keypoints are detected at the local maxima in the image pyramid [24]. Although SIFT can detect
scale- and rotation- invariant feature points, the computational complexity is a bottleneck of video
applications. To solve this problem, Bay et al. proposed the speeded up robust features (SURF) that
uses an approximated filters and integral images to reduce the processing time [25]. Recently, a number
of intensity-based feature point detection algorithms were proposed. Rosten et al. proposed a faster
corner detection algorithm using an accelerated segment test, which is called FAST [26]. Calonder et
al. proposed a simple description method using the binary robust independent elementary features
(BRIEF), which compares image intensities of sampling pairs [27]. More binary descriptors were
proposed using a special sampling pattern to compensate the orientation of keypoints [28,29].

The proposed method combines FAST and BRIEF for fast, accurate extraction of feature points.
FAST extracts feature points by comparing intensities with 16 neighborhood pixels in the circle.
We determine the corner if the intensity of the n contiguous neighborhood pixels Ip→x are all brighter
than that of the candidate pixel Ip, or if they are all darker than that of the candidate pixel Ip. To arrange
the neighborhood pixels in order of the amount of information about whether the candidate pixel p
is a corner, the decision tree classifier is trained using the iterative Dichotomiser 3 (ID3) algorithm.
The keypoints p is defined as

Sp→x =


d, Ip→x ≤ Ip − t (darker)
s, Ip − t < Ip→x < Ip + t (similar)
b, Ip + t ≤ Ip→x (brighter)

, (2)

where x represents the neighborhood that is selected by decision tree using the ID3 algorithm, and
t the threshold for comparing intensity. We used t=0.2 for the experimentally best result. BRIEF
identifies local feature points by comparing intensities of sampling pairs. The homography can be
computed very efficiently because a binary string can be matched using the hamming distance by the
XOR operation.

The FAST keypoints are extracted between two adjacent video frames ft−1 and ft to determine
the distribution of random particle keypoints. The descriptors are generated using BRIEF and
matched using the hamming distance. The extracted FAST and BRIEF keypoints are denoted as
XFB

t−1 = {(x1
t−1, y1

t−1), · · · , (xM
t−1, yM

t−1)} and XFB
t = {(x1

t , y1
t ), · · · , (xM

t , yM
t )}. Next, particle keypoints

are randomly generated in a flat region to detect robust feature points. The distribution of N particle
keypoints XP

t−1 = {(x1
t−1, y1

t−1), · · · , (xN
t−1, yN

t−1)} and XP
t = {(x1

t , y1
t ), · · · , (xN

t , yN
t )} are characterized

as Gaussian functions G(X̄FB
t−1, ∑t−1) and G(X̄FB

t , ∑t) in flat regions of frames ft−1 and ft, respectively.
The Gaussian distribution is given as

G(µ, σ2) =
1√

2πσ2
e
−(x−µ)2

2σ2 , (3)

where µ and σ respectively represent the mean and standard deviation of the distribution.
The descriptor matches the frames in the sense of the distance between particle keypoints and FAST
and BRIEF keypoints. The descriptor Dt of t-th frame is defined as

Dt = XP
t − XFB

t . (4)

Final correspondences are matched using the sum of squared difference (SSD) of the descriptors of
two frames. The descriptor is used to match robust keypoints in the flat region using particle keypoints.
Finally, the optimal homography Ht is estimated using random sample consensus (RANSAC) to
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eliminate outliers [30]. RANSAC defines the optimal geometric model between two images by
repeating random sampling of matched points.

Figure 4 shows feature detection results using the proposed method. Figure 4a shows matched
points using SIFT with RANSAC, and Figure 4b shows matched points using SURF with RANSAC.
Figure 4c shows matched points using FAST and BRIEF, and Figure 4d shows the results using the
proposed particle keypoints. As a result, the particle keypoints can extract robust feature points of
overall image including flat region.

(a) (b)

(c) (d)

Figure 4. Experimental results of feature matching using: (a) SIFT, (b) SURF, (c) FAST and BRIEF, and
(d) the proposed particle keypoint detection method.

4. Estimation of the Optimal Camera Path

Traditional video stabilization methods use a moving average of Gaussian filter to smooth
the camera path. The moving average filter can smooth the camera path using the temporal
mean of neighboring frames. The Gaussian kernel can remove undesired motion using the global
transformation [7]. However, these methods fail to track a sharp change of the camera path.
Furthermore, the performance of video stabilization becomes low when cropping regions and the
amount of distortion increase. To solve this problem, the proposed method adaptively smooths the
camera path using 1D TV algorithm [31]. The holes represent an empty region in a video frame which
is generated after moving the frame by smoothed camera path. To compensate the holes, the boundary
region of a stabilized video is generally cropped out, and the remaining central region is enlarged
to fill the original size of the video frame. Therefore it is important to minimize the hole region to
preserve the original contents. The stabilized video has less holes since the TV method can preserve
the original path and removes undesired outliers.

Given the optimal homography Ht between ft−1 and ft, a global camera path Ct is generated.
The corner points denoted as Vt = {(1, 1), (1, h), (w, 1), (w, h)} in w × h input shaky frame ft are
transformed to V̂t by Ht. Ht can be regarded as the transformation matrix of the camera movement.
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Therefore, the camera motion between ft−1 and ft is simply considered as the difference between Vt

and V̂t. The global camera path Ct is computed by adding the movement of adjacent frames as

Ct = Ct−1 + (V̂t −Vt), (5)

where V̂t = HtVt. The estimated global camera path Ct is smoothed by 1D TV for video stabilization.
The energy function for the smoothed camera path Pt is defined as

E(Pt) = ‖Pt − Ct‖2
2 + λ‖APt‖1, (6)

where A the temporal difference matrix

A =


−1 1

−1 1
. . .
−1 1

 ,

and λ represents the weight coefficient for smoothing. The first term of Equation (6) enforces the
smoothed camera path that is close to the original path, and the second removes noisy motions by
smoothing the camera path. The energy function of Equation (6) can be minimized by the iterative
clipping algorithm.

(a) (b)

(c) (d)

Figure 5. Results of camera path: (a) the x-coordinates of original camera path in dotted curve and the
smoothed camera path using the moving average filter in solid curve, (b) the y-coordinates of original
camera path in dotted curve and the smoothed camera path using the moving average filter in solid
curve, (c) the x-coordinates of original camera path in dotted curve and the smoothed camera path
using the proposed method in solid curve and (d) the y-coordinates of original camera path in dotted
curve and the smoothed camera path using the proposed method in solid curve.
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Figure 5 shows the estimated camera path using the proposed method. Figure 5a shows the
x-coordinates of the original camera path in the dotted curve and the smoothed path using the moving
average filter in the solid curve. Figure 5b shows the y-coordinates of the original camera path in the
dotted curve and the smoothed path using the moving average filter in the solid curve. Figure 5c shows
the x-coordinates of the original camera path in the dotted curve and the smoothed path using the
proposed method in the solid curve. Figure 5d shows the y-coordinates of the original camera path in
the dotted curve and the smoothed path using the proposed method in the solid curve. The proposed
method can smooth the camera path without undesirable jitters and delay.

The final step of video stabilization is to reconstruct geometrically transformed frames using the
smoothed camera path. The smoothed homography Ĥt can be estimated by the difference between the
original camera path Ct and the smoothed path Pt as

(Ct − Pt) + Vt = ĤtVt, (7)

where Vt represents the four corner points of the image. The stabilized video frame f̂t is generated by
transforming using Ĥt as

f̂t = Ĥt ft. (8)

As a result, the proposed video stabilization method can successfully generate a stabilized video
by estimating the optimal homography.

5. Experimental Results

This section presents experimental results and compares the performance of the proposed and
existing methods. The proposed method improves the video quality by estimating the optimal
homography using the particle keypoint update. To verify the accuracy of the estimated homography
Ht of temporally adjacent frames, ft−1 and ft, we tested the estimated projective transformation
matrices from four feature different extraction methods, SIFT, SURF, FAST+BREIF, and the proposed
method. We used SIFT and SURF algorithms with threshold values used in [24,25], respectively. Also,
the proposed algorithm uses the intensity threshold t = 0.2 for FAST and a 256-bit string for BRIEF
descriptor. After extracting feature points between ft−1 and ft, each transformation matrix is estimated.
By combining all correspondences from the four methods, we evaluated the motion errors between the
correspondences using l1-norm error evaluation as

E1 =
1
n ∑

n

∥∥X̃t − Xt
∥∥

1, (9)

where X̃t = HtXt−1 represents the transformed feature points in the previous frame
Xt−1 = {(x1

t−1, y1
t−1), · · · , (xn

t−1, yn
t−1)}, and Xt = {(x1

t , y1
t ), · · · , (xn

t , yn
t )} the feature points in the

current frame. Table 1 summarizes the error of estimated homography using the four feature detection
algorithms. The proposed method estimates the more accurate homography than other feature
extraction methods as shown in Table 1.

Table 1. Error of the estimated homography using four different feature detection algorithms.

Proposed Particle Keypoints SIFT [24] SURF [25] FAST [26] + BRIEF [27]
video1 54.9254 56.3924 59.3830 60.6980
video2 11.9697 12.9337 13.1445 13.4249
video3 42.5910 43.3902 45.3725 44.0657

Figure 6a shows the 80th, 81st, and 82nd frames in the original shaky video, and Figure 6b the
correspondingly stabilized frames using the feature-based global camera path smoothing method [7],
which cannot avoid a geometric distortion on the boundary because of the inaccurately estimated
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homography. We can easily find the distortion from the vertical structure on the right side of each
frame. The bundled path algorithm fails in warping textureless blocks on the bottom of frame as shown
in Figure 6c [14]. On the other hand, the proposed particle keypoint-based method can significantly
enhance the shaky video with less geometric distortion on the boundary as shown in Figure 6d.

(a)

(b)

(c)

(d)

Figure 6. Experimental results of various video stabilization methods: (a) the input shaky video frames
(80th, 81st, and 82nd frames), (b) the stabilized video using the global camera path using feature
detection [7], (c) the bundled path algorithm [14], and (d) the proposed method.

Figure 7 shows the expanded version of an upper right region of Figure 6 for clearer comparison.
The long object at the right side of each image is observed carefully. Figure 7a shows the expanded
images of three temporally adjacent frames in original shaky video and Figure 7b shows the results
of the stabilized video with geometric distortion by feature-based global smoothed camera path
estimation method [7]. As shown in Figure 7c, the video stabilization method based on the bundled
path could not successfully stabilize the video [14]. On the other hand, the proposed stabilized
algorithm improves considerably the video quality with preserving the contents.

Figure 8 shows the difference of two temporally adjacent frames. Figure 8a shows the differences
of three pairs of original frames {(79, 80), (80, 81), (81, 82)}. Figure 8b shows the differences of three
pairs of stabilized frames {(79, 80), (80, 81), (81, 82)}. As shown in Figure 8, the proposed method can
significantly compensate the undesirable movements.
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(a)

(b)

(c)

(d)

Figure 7. Experimental results of various video stabilization methods: (a) the expanded shaky video
frames (80th, 81st, and 82nd frames), (b) the stabilized video using the global camera path using feature
detection [7], (c) the bundled path algorithm [14], and (d) the proposed method.

(a)

(b)
Figure 8. Experimental results of the video stabilization method: (a) differences of the original video
(80th, 81st, and 82nd frames) and (b) the stabilized video (80th, 81st, and 82nd frames).
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To evaluate the empty region caused by the process of frame registration for stabilization, we
compared the results of the proposed stabilization method and YouTube stabilizer using the same
test video as shown in Figure 9. Stabilized frames are cropped to eliminate the missing boundaries,
so it is important to have less cropping ratio to preserve the significant region of the original image.
To measure the amount of cropping in various stabilization methods, tick marks are inserted on
the diagonal line in the 80th input frame as shown in Figure 9a. Figure 9b,c respectively show
the stabilized frames using auto-directed video stabilization method [32] and the proposed video
stabilization method. As shown in Figure 9, the proposed video stabilization method can successfully
preserve the contents of input frame with a reduced cropping ratio.

(a) (b) (c)
Figure 9. Experimental results of the video stabilization method: (a) the input shaky video frame
(20/20), (b) the stabilized video using auto-directed (13/20) [32], and (c) the proposed video
stabilization method (16/20).

(a)

(b)

(c)

(d)

Figure 10. Experimental results of various video stabilization methods: (a) the input shaky video
frames (170th, 171st, and 172nd frames), (b) the stabilized video using the global camera path using
feature detection [7], (c) the bundled path algorithm [14], and (d) the proposed method.

Figure 10 shows the same test results of Figure 6 using different input video. Figure 10a shows
the 170th, 171st, and 172nd frames of the input shaky video captured by a mobile camera. The
significant portions of the stabilized video using the existing methods in [7,14] are removed by
cropping to eliminate holes in the boundaries as shown in Figure 10b,c. As shown in Figure 10d, the
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stabilized video using the proposed method shows significantly improved video quality by removing
undesired artifacts.

As shown Figure 11, a bottom right region of Figure 10 is enlarged to easily compare the results.
Figure 11a shows the enlarged three original frames, and Figure 11b shows the stabilized results using
the feature-based global camera path smoothing method [7]. Figure 11c shows the stabilized frames
using the bundled path algorithm [14]. As shown in Figure 11d, the proposed method successfully
obtains stabilized video with less holes.

(a)

(b)

(c)

(d)
Figure 11. Experimental results of various video stabilization methods: (a) the enlarged shaky video
frames (170th, 171st, and 172nd frames), (b) the stabilized video using the global camera path using
feature detection [7], (c) the bundled path algorithm [14], and (d) the proposed method.

(a)

(b)
Figure 12. Experimental results of the video stabilization method: (a) differences of the original video
(170th, 171st, and 172nd frames) and (b) the stabilized video (170th, 171st, and 172nd frames).

Figure 12 shows the same results of Figure 8 to demonstrate performance using the second test
video. Figure 12a shows the differences of three pairs of original frames {(169, 170), (170, 171), (171,
172)}, and Figure 12b shows the differences of three pairs of stabilized frames {(169, 170), (170, 171),
(171, 172)}.
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Figure 13 compares the performance of various camera path smoothing methods. Each resulting
frame is divided into sixteen rectangular grids to easily evaluate the performance of the stabilization.
Figure 13a shows the input shaky video frames acquired by a hand-held camera, and Figure 13b
shows the results of stabilized video by smoothing the camera path using a moving average filter [7].
The stabilized frames using the proposed method that minimized the 1D TV are shown in Figure 13c.
Based on comparing each grid, the proposed method can successfully enhance the shaky video with
significantly reduced holes.

(a)

(b)

(c)

Figure 13. Experimental results of various camera path smoothing methods: (a) the input shaky video
frames (275th, 276th, and 277th frames), (b) the stabilized video using a moving average filter [7], and
(c) the proposed video stabilization method.

(a)

(b)

(c)

Figure 14. Experimental results of various camera path smoothing methods: (a) the enlarged shaky
video frames (275th, 276th, and 277th frames), (b) the stabilized video using a moving average filter [7],
and (c) the proposed video stabilization method.
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Figure 14 shows the enlarged version of Figure 13. Figure 14a shows the first three frames in the
original shaky video. Figure 14b shows the distorted object moving back and forth in the center of
each frame. On the other hand, the proposed method successfully reduces the noisy motion of the
shaky video as shown in Figure 14c.

(a)

(b)

Figure 15. Experimental results of the video stabilization method: (a) differences of the original video
(275th, 276th, and 277th frames), and (b) the stabilized video (275th, 276th, and 277th frames).

Figure 15 shows results of the difference of the successive two frames. Figure 15a shows the
differences of three pairs of original frames {(274, 275), (275, 276), (276, 277)}. Figure 15b shows the
differences of three pairs of stabilized frames {(274, 275), (275, 276), (276, 277)}.

The difference between two successive frames is minimized since the proposed method reduces
the noisy motions. To evaluate the objective performance, we used the peak signal to noise ratio
(PSNR) values of the temporally adjacent frames. The PSNR is defined as

PSNR = 10 log
MAX2

f

MSE
, (10)

where MSE = 1
M

1
N

M−1
∑

x=0

N−1
∑

y=0
‖ ft−1(x, y)− ft(x, y)‖2 represents the mean square error, and MAX f the

maximum intensity value of the frames. Table 2 summarizes the PSNR values of adjacent video
frames stabilized by the proposed method. As a result, the proposed video stabilization can correct the
location of the pixels in the adjacent frames.

Finally, we measured the perspective distortion for objective assessment of the proposed video
stabilization method using Liu′s method [14]. As mentioned in Section 2, a perspective distortion
generally occurs when the real world is projected onto the image sensor. An inaccurately estimated
homography results in the perspective distortion that significantly degrades the geometric quality of
the video. For that reason, we estimated the perspective distortion using the transformation between
the original and stabilized frames. The homography of the stabilized image sequences can be defined as

Pt = BtCt, (11)

where Ct and Pt respectively represent the cumulative homographies between adjacent frames of the
observed shaky and stabilized videos, and Bt the transformation matrix. The perspective distortion
is computed by averaging the perspective components in Bt since the homography with distortion
determines the video quality. Tables 3–5 summarize the perspective distortion of various video
stabilization method. As shown in the Tables, the proposed video stabilization method can successfully
remove the undesired motion without perspective distortion compared with conventional video
stabilization algorithms.
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Table 2. Comparison of the original and stabilized videos in the sense of PSNR values.

Frame Original Proposed
80 15.9449 19.8664
81 15.6589 21.3699

video1 82 15.7211 23.1769
average (300

frames) 14.6864 17.4694

170 19.7881 20.4265
171 18.0865 19.7723

video2 172 16.4552 20.1274
average (680

frames) 18.0661 20.0122

275 17.2482 21.7773
276 17.7494 21.8341

video3 277 20.0378 22.3599
average (390

frames) 18.4174 19.4447

Table 3. Perspective distortion of the various video stabilization methods.

Proposed Single [7] Bundled [14]
video1 0.000052 0.000068 0.000057

Table 4. Perspective distortion of the various video stabilization methods.

Proposed Single [7] Bundled [14]
video2 0.000149 0.000178 0.000153

Table 5. Perspective distortion of the various video stabilization methods.

Proposed Moving average [7]
video3 0.0000925 0.0001070

(a)

(b)

Figure 16. Experimental results of the object tracking: (a) shaky video and (b) stabilized video.

Unstable videos with undesired camera motions have the limited performance of object detection
and tracking. The final experiment is performed to demonstrate whether the proposed method can
play a practical role of pre-processing in various video analysis systems. We used the Lucas-Kanade
feature tracker (LKT) to demonstrate the performance of the object tracking on shaky and stabilized
videos. Figure 16 illustrates the experimental results of the object tracking. The yellow boxes in
Figure 16 represent the tracking results using the LKT tracking method. Although the popular LKT
algorithm tracked robust features with image rotation and view point change, it has a fundamental



Sensors 2017, 17, 337 16 of 18

problem of missing the interest objects on the shaky video as shown in Figure 16a. As shown in
Figure 16b, the proposed method can significantly improve the object tracking performance.

The stabilized results used in Figures 6–16 using the proposed method can be found in the
supplementary video with the comparison between the original and stabilized version.

6. Conclusions

The proposed video stabilization method removes unstable motions by estimating the optimal
camera path using the robust keypoints extraction in the textureless region, and it smooths the shaky
motions without frame delay using the variational optimization method. In addition, the proposed
method is particularly suitable for hardware implementation in handheld cameras since it estimates
the optimally camera path of shaky video using only four vertices in each frame. As a result, the
proposed algorithm can successfully enhance the shaky video using an improved 2D stabilization
method based on particle keypoints. The proposed method can be used for various video systems
including mobile imaging devices, video surveillance systems, and vehicle imaging information
systems. To overcome the vibration of the video acquired by vision-based mobile robots, the state of
the art technology presents video stabilization system on a field programmable gate array (FPGA)
based mobile robot system to apply to the single chip based embedded system for real-time video
stream [33]. The proposed method can be applied to this system to extract correct features in the flat
region and to improve the quality of stabilized video. Recently, an aerial surveillance system uses
the video stabilization method to detect objects in a wide area [34]. The aerial video acquired with a
moving camera cannot avoid jitters between temporally adjacent frames. For that reason, the video
stabilization algorithm is an indispensable pre-processing step for robust detection of objects in the
aerial surveillance system. The proposed method can define the significant feature points which is
hard to be extracted in the flat or low-resolution region. It can significantly improve the performance of
conventional video stabilization methods. The portable handheld camera users communicate with the
dynamic activity videos such as walking, cycling, and hiking and it is important to remove undesirable
shaky motion. The proposed feature extraction algorithm can be flexibly modified to extract robust
initial keypoints, and it can also be used in a computationally powerful server-based cloud service to
enhance the quality of the uploaded videos. The road videos in the first person can be stabilized by
optimally estimating the camera path based on particle keypoints update in the flat region. Moreover,
the personal videos nowadays are summarized in the form of the time lapse video because of the
limited battery energy of the mobile devices and speed of the wireless network. In this context, the
proposed method can be applied to the pre-processing step of a video summarization algorithm to
remove wobble effects.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/17/2/337/s1.
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