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Abstract: Recently, the sparse representation based classification methods have received particular
attention in the classification of hyperspectral imagery. However, current sparse representation
based classification models have not considered all the test pixels simultaneously. In this paper,
we propose a hyperspectral classification method with spatial filtering and `2,1 norm (SFL) that can
deal with all the test pixels simultaneously. The `2,1 norm regularization is used to extract relevant
training samples among the whole training data set with joint sparsity. In addition, the `2,1 norm
loss function is adopted to make it robust for samples that deviate significantly from the rest of
the samples. Moreover, to take the spatial information into consideration, a spatial filtering step
is implemented where all the training and testing samples are spatially averaged with its nearest
neighbors. Furthermore, the non-negative constraint is added to the sparse representation matrix
motivated by hyperspectral unmixing. Finally, the alternating direction method of multipliers is used
to solve SFL. Experiments on real hyperspectral images demonstrate that the proposed SFL method
can obtain better classification performance than some other popular classifiers.

Keywords: alternating direction method of multipliers; hyperspectral classification; outliers;
spatial filtering and `2,1 norm (SFL)

1. Introduction

Over the past few decades, hyperspectral imagery has been widely used in different remote
sensing applications owing to its high-resolution spectral information of the materials in the scene [1–3].
Various hyperspectral image classification techniques have been presented for a lot of real applications
including material recognition, urban mapping and so on [4–8].

To date, a lot of hyperspectral image classification methods have been presented. Among them,
the most representative method is the support vector machine (SVM) [9], which has shown desirable
hyperspectral image classification performance. Recently, the sparse representation based classification
methods have received a lot of attention in the area of image analysis [10–14], particularly in the
classification of hyperspectral image. Chen et al. introduced a dictionary-based sparse representation
framework for hyperspectral classification [15]. To be specific, a test pixel is sparsely represented by
a few labeled training samples, and the class is determined as the one with the minimal class-specific
representation error. In addition, Chen et al. also proposed the simultaneous orthogonal match pursuit
(SOMP) to utilize the spatial information of hyperspectral data [15]. To take the additional structured
sparsity priors into consideration, Sun et al. reviewed and compared several structured priors for
sparse representation based hyperspectral image classification [16], which can exploit both the spatial
dependences between the neighboring pixels and the inherent structure of the dictionary. In [17],
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Chen et al. extended the joint sparse representation to the kernel version for hyperspectral image
classification, which can provide a higher classification accuracy than the conventional linear sparse
representation algorithms. In addition, Liu et al. proposed a class-specific sparse multiple kernel
learning framework for hyperspectral image classification [18], which determined the associated
weights of optimal base kernels for any two classes and led to better classification performances.
To take other spectral properties and higher order context information into consideration, Wang et al.
proposed the spatial-spectral derivative-aided kernel joint sparse representation for hyperspectral
image classification [19], and the derivative-aided spectral information can complement traditional
spectral features without inducing the curse of dimensionality and ignoring discriminating features.
Moreover, Li et al. proposed the joint robust sparse representation classification (JRSRC) method to take
the sparse representation residuals into consideration, which can deal with outliers in hyperspectral
classification [20]. To integrate the sophisticated prior knowledge about the spatial nature of the
image, Roscher et al. proposed constructing a novel dictionary for sparse-representation-based
classification [21], which can combine the characteristic spatial patterns and spectral information
to improve the classification performance. In order to adaptively explore the spatial information
for different types of spatial structures, Fu et al. proposed a new shape-adaptive joint sparse
representation method for hyperspectral image classification [22], which can construct a shape-adaptive
local smooth region for each test pixel. In order to capture the class-discriminative information,
He et al. proposed a group-based sparse and low-rank representation to improve the dictionary for
hyperspectral image classification [23]. To take different types of features into consideration, Zhang et al.
proposed an alternative joint sparse representation by the multitask joint sparse representation
model [24]. To overcome the high coherence of the training samples, Bian et al. proposed a novel
multi-layer spatial-spectral sparse representation framework for hyperspectral image classification [25].
In addition, to take the class structure of hyperspectral image data into consideration, Shao et al.
proposed a probabilistic class structure regularized sparse representation method to incorporate the
class structure information into the sparse representation model [26].

It had been argued in [27] that the collaborative representation classification can obtain very
competitive classification performance, while the time consumption was much lower than that
of sparse representation. Thus, various collaborative representation methods had been proposed
for hyperspectral image classification. Li et al. proposed the nearest regularized subspace (NRS)
classifier by using the distance-weighted Tikhonov regularization [28]. Then, the Gabor filtering based
nearest regularized subspace classifier had been proposed to exploit the benefits of using spatial
features [29]. Collaborative representation with Tikhonov regularization (CRT) had also been proposed
for hyperspectral classification [30]. The main difference between NRS and CRT was that the NRS only
used within-class training data for collaborative representation while the latter adopted all the training
data simultaneously [30]. In [31], the kernel version of a collaborative representation was proposed
and denoted as kernel collaborative representation classifier (KCRC). In addition, Li et al. proposed
proposed combining the sparse representation and collaborative representation for hyperspectral
image classification to make a balance between sparse representation and collaborative representation
in the residual domain [32]. Moreover, Sun et al. combined the active learning and semi-supervised
learning to improve the classification performance when given a few initial labeled samples, and
proposed the extended random walker [33] algorithm for the classification of hyperspectral image.

Very recently, some deep models had been proposed for hyperspectral image classification [34].
To the best of our knowledge, Chen et al. proposed a deep learning method named stacked autoencoder
for hyperspectral image classification in 2014 [35]. Recently, convolutional neural networks have
been very popular in pattern recognition, computer vision and remote sensing. Convolutional neural
networks usually contained a number of convolutional layers and a classification layer, which can learn
deep features from the training data and exploit spatial dependence among them. Krizhevsky et al.
trained a large convolutional neural networks to classify the 1.2 million high-resolution images in the
ImageNet, which had obtained superior image classification accuracy [36]. Since then, convolutional
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neural networks had been applied for hyperspectral image classification [37,38], which had achieved
desirable classification performance. To take the spatial information into consideration, a novel
convolutional neural networks framework for hyperspectral image classification using both spectral
and spatial features was presented [39]. In addition, Aptoula et al. proposed a combined strategy of
both attribute profiles and convolutional neural networks for hyperspectral image classification [40].
To overcome the imbalance between dimensionality and the number of available training samples,
Ghamisi et al. proposed a self-improving band selection based convolutional neural networks method
for hyperspectral image classification [41]. In addition, some patch based convolutional neural
networks hyperspectral image classification methods had also been proposed, such as the method
in [42,43]. In order to achieve low computational cost and good generalization performance, Li et al.
proposed combining convolutional neural networks with extreme learning machines for hyperspectral
image classification [44]. Furthermore, Shi et al. proposed a 3D convolutional neural networks
(3D-CNN) method for hyperspectral image classification that can take both the spectral and spatial
information into consideration [45].

However, all of the above mentioned methods, whether they are based on sparse representation,
collaborative representation or deep models, adopt the pixel-wise classification strategy, i.e., they do
not consider all the pixels simultaneously. In [46], theoretical work has demonstrated that multichannel
joint sparse recovery is superior to applying standard sparse reconstruction methods to each single
channel individually, and the probability of recovery failure decays exponentially with the increase in
the number of channels. In addition, the probability bounds still hold true even for a small number
of signals. For the classification of hyperspectral images, the multichannel means recovering multi
hyperspectral pixels simultaneously. Therefore, inspired by the theoretical work in [46], in this paper,
we propose a hyperspectral classification method with spatial filtering and `2,1 norm (SFL) to deal
with all the test samples simultaneously, which can not only take much less time but also obtain
comparable good or better classification performance. First, the `2,1 norm regularization is adopted to
select correlated training samples among the whole training data set. Meanwhile, the `2,1 norm loss
function which is robust for outliers is also implemented. Second, we adopt the simple strategy in [47]
to exploit the local continuity, and all the training and testing samples are spatially averaged with
their nearest neighbors to take the spatial information into consideration, which can be seen as spatial
filtering. Third, the non-negative constraint is added in the sparse representation coefficient matrix
motivated by hyperspectral unmixing. Finally, to solve SFL, we use the alternating direction method of
multipliers [48], a simple but powerful algorithm that is well suited to distributed convex optimization.

The main contribution of this work lies in proposing an SFL for hyperspectral classification that
can deal with all the test pixels simultaneously. Experiments on real hyperspectral images demonstrate
that the proposed SFL method can obtain better classification performance than some other popular
classifiers.

2. Related Work

In this section, we briefly introduce the classical sparse representation for the classification of
hyperspectral images, which can be found in [16]. It is assumed that the pixels in the same class lie in
the same low-dimensional subspace, and it has K different classes. Therefore, for an unknown test
sample y ∈ RB, where B denotes the the number of bands, y is assumed to lie in the union of the K
different subspaces, which can seen as the sparse linear combination of all the training samples

y = A1x1 + A2x2 + · · ·+ AKxK

= [A1 · · · AK]

x1

...
xK

 = Ax.
(1)
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Therefore, given the dictionary of training samples A ∈ RB×M, where M is the number of training
samples. For an unknown test sample y, the sparse representation coefficient vector x ∈ RM can be
obtained by solving the optimization problem as follows:

x̂ = arg min
x
‖y− Ax‖2

2 + λ‖x‖1, (2)

where A consists of the class subdictionaries {Ak}k=1,··· ,K, and λ is the regularization parameter.
In addition, Equation (2) can be solved by the alternating direction method of multipliers in [49]. Thus,
the class label of x is determined as the one with the minimal class-specific reconstruction residual:

Class(y) = arg min
k=1,··· ,K

‖y− Ak x̂k‖2
2. (3)

3. Proposed Classifiers

In [46], it has been proved that, with the increase in the number of channels, the failure probability
of sparse reconstruction decreases exponentially. Thus, multichannel sparse reconstruction is superior
to single channel sparse reconstruction. In addition, the probability bounds are valid even for a small
number of signals. Based on this theory, we deal with all the test samples simultaneously, and the
proposed SFL classification method will be briefly described.

Let Y = [y1, y2, · · · , yN ] ∈ RB×N , where {yn}n=1,··· ,N denotes the columns of Y , and N denotes
the number of test pixels. To deal with all the test pixels simultaneously, it is natural that the sparse
representation coefficient matrix X = [x1, x2, · · · , xN ] ∈ RM×N for all the test pixels can be obtained
by solving the optimization problem as follows:

X̂ = arg min
X
‖Y − AX‖2

F + λ‖X‖1, (4)

which also can be solved by the alternating direction method of multipliers in [49]. ‖.‖F represents the
matrix Frobenius norm, which is equal to the Euclidean norm of the vector of singular values, i.e.,

‖X‖F =
√
〈X, X〉 = (

M

∑
i=1

N

∑
j=1

X2
ij)

1
2 = (

r

∑
i=1

σ2
i )

1
2 , (5)

where σi (i = 1, ..., r) denotes the singular value of X. After the optimized X̂ is obtained, the classes of
all test pixels can be obtained by the minimum class reconstruction error:

Class(yn) = arg min
k=1,··· ,K

‖yn − Ak x̂n
k‖2

2, n = 1, · · · , N. (6)

However, Equation (4) adopts the pixel-wise independent regression, which ignores the
correlation among the whole training data set. Recent research shows that the high-dimensional data
space is smooth and locally linear, and it has been versified in image reconstruction and classification
problems [50,51]. For joint consideration of the classification of neighborhoods, in this paper, we
introduce the `2,1 norm regularization and adapt it to extract correlated training samples among the
whole training data set with joint sparsity, which is defined as follows:

‖X‖2,1 = ∑M
i=1

√
∑N

j=1 X2
ij. (7)

The `2,1 norm was first introduced by Ding et al. [52], which makes the traditional principal
component analysis more robust for outliers. The outliers are defined as data points that deviate
significantly from the rest of data. Traditional principal component analysis optimizes the sum of
squared errors, since the few data points that have large squared errors will dominate the sum.
Therefore, the traditional principal component analysis is sensitive to outliers. It has been shown that
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minimizing the `1 norm is more robust and can resist a larger proportion of outliers compared with
quadratic `2 norms [53]. The `2,1 norm is identical to a rotational invariant `1 norm, and the solution of
`2,1 norm based robust principal component analysis is the principal eigenvectors of a more robust
re-weighted covariance matrix, which can alleviate the effects of outliers. In addition, the `2,1 norm has
the advantage of being rotation invariant compared with the `1 norm [52,54,55], i.e., applying the same
rotation to all points has no effect on its performance. Due to the above-mentioned advantages, the `2,1

norm has been applied in feature selection [56], multi-task learning [57], multi-kernel learning [58],
and non-negative matrix factorization [59]. Nie et al. [56] introduced the `2,1 norm to feature selection,
and they used `2,1 norm regularization to select features across all data points with joint sparsity.
The `2,1 norm based loss function is used to remove outliers, and the feature selection process is proved
to be effective and efficient.

Similarly, we adopt the `2,1 norm regularization to select correlated training samples among
the whole training data set with joint sparsity for hyperspectral image classification. Thus, the
corresponding optimization problem is as follows:

X̂ = arg min
X
‖Y − AX‖2

F + λ‖X‖2,1, (8)

which can be solved by the alternating direction method of multipliers in [60]. This model can be
seen as an instance of the methodology in [61], which can impose sparsity across the pixels both at
the group and individual levels. In addition, to make it more robust for outliers, the `2,1 norm loss
function is adopted. Thus, the corresponding optimization problem is as follows:

X̂ = arg min
X
‖Y − AX‖2,1 + λ‖X‖2,1. (9)

Due to limited resolution of hyperspectral image sensors and the complexity of ground materials,
mixed pixels can easily be found in hyperspectral images. Therefore, a hyperspectral unmixing step
is needed [62,63]. Hyperspectral unmixing is a process to identify the pure constituent materials
(endmembers) and estimate the proportion of each material (abundance) [64]. The linear mixture
model has been prevalently used in hyperspectral unmixing, and the abundance is considered to
be non-negative in a linear mixture model [65]. If we deem A as the spectral library consisting
of endmembers, then X can be seen as the abundance matrix. Therefore, X is also non-negative.
When adding the non-negative constraint into the sparse representation matrix, the corresponding
optimization problem is as follows:

X̂ = arg min
X≥0
‖Y − AX‖2

F + λ‖X‖2,1, (10)

X̂ = arg min
X≥0
‖Y − AX‖2,1 + λ‖X‖2,1. (11)

In addition, since the spectral signatures of neighboring pixels are highly correlated, which
make them belong to the same material with high probability, we thus adopt the simple strategy
in [47] to exploit the local continuity, and all the training and testing samples are spatially averaged
with their nearest neighbors to take the spatial information into consideration, which can be seen as
spatial filtering. Moreover, when N=1, it is easy to see that Equation (8) reduces to Equation (2), and
Equation (9) reduces to the optimization problem as follows:

x̂ = arg min
x
‖y− Ax‖1 + λ‖x‖1. (12)

To sum up, the detailed procedure of our proposed method can be seen from Figure 1. Finally,
to solve the optimization problem from Equation (9) to Equation (12), Equation (10) can be solved by
the alternating direction method of multipliers in [60], and Equations (9) and (12) are special cases of
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Equation (11). Thus, it comes down to solving Equation (11). For simplification, Equation (11) can be
written as:

min
X
‖AX− Y‖2,1 + λ‖X‖2,1 + lR+(X), (13)

where lR+(X) = ∑P
i=1 lR+(Xi) is the indicator function of nonnegative quadrantR+, and Xi is the i-th

column of X. If Xi belongs to the nonnegative quadrant, then lR+(Xi) is zero. If not, it is +∞.

Figure 1. Flow chart of the proposed method.

In order to solve Equation (11), the alternating direction method of multipliers [48] method is
implemented. By introducing auxiliary variables P, Q and W, Equation (11) could be rewritten as:

min
X
‖P‖2,1 + λ‖W‖2,1 + lR+(X),

s.t. AQ− Y = P,

Q = W,

Q = A.

(14)

A compact version of it is:
min
V,Q

g(V) s.t. GQ + BV = Z, (15)

where g(V) = ‖P‖2,1 + λ‖W‖2,1 + lR+(A), G =

 A
I
I

, B =

 −I 0 0
0 −I 0
0 0 −I

, Z =

 Y
0
0

,

V ≡ (P, W, X), and I is the unit matrix. Thus, the augmented Lagrangian function could be
expressed as:

L(V, Q, Λ) = g(V) +
µ

2
‖GQ + BV− Z−Λ‖2

F, (16)

where µ > 0, Λ/µ stands for the Lagrange multipliers. In order to update P, we solve

Pk+1 = arg min
P
‖P‖2,1 +

µ

2
‖AQk − Y− P−Λk

1‖2
F, (17)

and its solution is the famous vector soft threshold operator [10], which updates each
row independently

Pk+1(r, :) = vect-soft(ζ(r, :),
1
µ
), (18)

where ζ = AQk − Y−Λk
1, and the vect-soft-threshold function g(b, τ) = b max{‖b‖2−τ,0}

max{‖b‖2−τ,0}+τ
. To update

W, we solve

Wk+1 = arg min
W

λ‖W‖2,1 +
µ

2
‖Qk −W−Λk

2‖2
F, (19)
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and its solution is also the vector soft threshold operator [10]:

Wk+1(r, :) = vect-soft(γ(r, :),
λ

µ
), (20)

where γ = Qk −Λk
2.

To update X, we solve

Xk+1 = arg min
X

lR+(X) +
µ

2
‖Qk − X−Λk

3‖2
F

= max (Qk −Λk
3, 0).

(21)

To update Q, we solve

Qk+1 = arg min
Q
‖AQ− Y− Pk+1 −Λk

1‖2
F+

‖Q−Wk+1 −Λk
2‖2

F + ‖Q− Xk+1 −Λk
3‖2

F,

=(ATA + 2I)−1[AT(Y + Pk+1 + Λk
1) + Wk+1+

Λk
2 + Xk+1 + Λk

3].

(22)

The stopping criterion is ‖GQk + BVk − Z‖2
F < ε ∗

√
(J ∗ K), where ε is the error threshold, and J

and K are the number of rows and columns of Z. µ is updated in the same way as [48], which keeps the
ratio between the alternating direction method of multiplier primal norms and dual residual norms
within a given positive interval. Based on this, we can get Proposition 1, whose proof of convergence
is given in [48].

Proposition 1. Function g in Equation (15) is closed, proper, and convex. If there exist solutions V∗ and Q∗,
then iterative sequence {Vk} and {Qk} converge to V∗ and Q∗, respectively. If not, at least one of {Vk} and
{Qk} diverge [48].

4. Experiments

4.1. Experimental Data

Two datasets are used in the experiment. The first dataset is Indiana Pines obtained by Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) in 1992. The image size is 145 × 145, and 220 bands
are taken in the spectral range from 0.4–2.5 µm. After removal of water absorption bands (No. 104–108,
150–163, 220), 200 bands are used, and the ground truth image is shown in Figure 2a. There are 16
material classes in Indiana Pines and 10,249 labeled samples. In addition, 1027 samples (about 10%)
are used as training data, as shown in Table 1. Thus, the rest is used for testing.

The second dataset is Pavia University obtained by a Reflective Optics System Imaging
Spectrometer (ROSIS) in 2001 at Paiva University, Pavia, Italy. The size of the image is 610 × 340 with
a spatial resolution of 1.3 m. The number of bands is 103, and the ground truth image is shown in
Figure 2b. There are nine classes and 42,776 labeled samples, 426 of them (about 1%) are chosen as the
training data, and the others are used as test data, as shown in Table 2.
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(a) (b)

Figure 2. Ground truth image of (a) Indian Pines; (b) Pavia University.

Table 1. Sixteen ground-truth classes in Aviris Indian Pines and the training and test sets for each class.

Class Samples

No. Name Train Test

1 Alfalfa 5 41
2 Corn-notill 143 1285
3 Corn-min 83 747
4 Corn 24 213
5 Grass/Pasture 48 435
6 Grass/Trees 73 657
7 Grass/Pasture-mowed 3 25
8 Hay-windrowed 48 430
9 Oats 2 18
10 Soybeans-notill 97 875
11 Soybeans-min 246 2209
12 Soybeans-clean 59 534
13 Wheat 21 184
14 Woods 127 1138
15 Buildings-Grass-Trees-Drives 39 347
16 Stone-Steel Towers 9 84

Table 2. Nine classes in the University of Pavia and the training and test sets for each class.

Class Samples

No Name Train Test

1 Asphalt 66 6565
2 Meadows 186 18,463
3 Gravel 21 2078
4 Trees 31 3033
5 Metal sheets 13 1332
6 Bare soil 50 4679
7 Bitumen 13 1317
8 Bricks 37 3645
9 Shadows 9 938

4.2. Parameter Setting

In experiments, we mainly compare the classification performance when using the pixel-wise
strategy and dealing with all the test pixels simultaneously. In addition, we also made a step-by-step
comparison by adding or removing spatial filtering and/or constraints to see which step’s contribution
is more important. For these methods, there are mainly five parameters: i.e., the neighbor size T,
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the regularization parameter λ, the Lagrange multiplier regularization parameter µ, the error tolerance
ε and the maximum number of iteration. The neighbor size T and the regularization parameter λ play
an important role in the proposed method, which control the size of spatial filtering and the trade-off
between fidelity to the data and sparsity of the solution, respectively. While the Lagrange multiplier
regularization parameter µ, the error tolerance ε and the maximum number of iteration, which have
lesser impact on the efficiency of the corresponding algorithms, are set to a fixed value, i.e., µ = 10−2,
ε = 10−6, and the maximum number of iteration is 1000. For the neighbor size T, we use the same
parameter setting in [16]. For the Indian Pine data set, a spatial window of 9× 9 (T = 81) is adopted,
which is due to this image consisting of mostly large homogeneous regions. For the University of
Pavia data set, a spatial window of 5× 5 (T = 25) is used, which is due many narrow regions being
present in this image. The regularization parameter λ is chosen from the given intervals {10−6, 10−5,
10−4, 10−3, 10−2, 10−1 }.

Figure 3 shows the performance of overall accuracy as a function of the regularization parameter
λ using the hyperspectral image of Indian Pines and Pavia University. For convenience, the “Spatial
Filtering” and “Non-negative Constraint” are abbreviated as “SF” and “NC”, respectively. For example,
for the “`2,1+`2,1+SF+NC”, the first “`2,1” denotes the loss function norm, the second “`2,1” denotes
the regularization term norm, “SF” denotes using the spatial filtering, and “NC” denotes using the
non-negative constraint. Thus, they are the same as the abbreviation of the other compared methods.
It can be seen from Figure 3 that the overall accuracy remains stable when ε < 10−2. It then decreases
when ε > 10−2. In addition, “`2,1+`2,1+SF+NC” and “`2,1+`2,1+SF” have much better overall accuracy
than “`2,1+`2,1+NC” and “`2,1+`2,1”, respectively, which demonstrate that it is significant to improve
the overall accuracy when taking the spatial filtering into consideration. Moreover, “`2,1+`2,1+SF+NC”
and “`2,1+`2,1+NC” have better overall accuracy than “`2,1+`2,1+SF” and “`2,1+`2,1”, respectively,
which demonstrate that it helps to improve the overall accuracy when taking the non-negative
constraint into consideration. Furthermore, the elevation of overall accuracy when using the spatial
filtering is much larger than those when using the non-negative constraint, which suggests that the
spatial filtering has a larger effect on the overall accuracy than the non-negative constraint.
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Figure 3. Performance of overall accuracy as a function of the parameter λ using the hyperspectral
image of (a) Indian Pines; (b) Pavia University.

4.3. Classification Performance

The experiments are performed on a desktop with 3.5 GHz Intel Core CPU, 64 GB memory
and Matlab Code. To evaluate the classification performance of different methods, the overall
accuracy, average accuracy and kappa statistic [16] are used to evaluate the performances of these
methods. Tables 3 and 4 show the classification performances for Indian Pines data set when using the
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pixel-wise strategy and dealing with all the test pixels simultaneously, respectively. It can be seen from
Tables 3 and 4 that methods using the spatial filtering generally obtain better overall accuracy, average
accuracy and kappa statistics than those without spatial filtering. For example, “`2+`1+SF+NC”
and “`2+`1+SF” have much better overall accuracy than “`2+`1+NC” and “`2+`1”, respectively,
which demonstrates that it helps a lot to improve overall accuracy by using the spatial filtering.
In addition, methods using the non-negative constraint generally obtain better overall accuracy than
those without non-negative constraints. For example, “`1+`1+SF+NC” and “`1+`1+NC” have better
overall accuracy than “`1+`1+SF” and “`1+`1”, respectively, which demonstrates that it helps to
improve overall accuracy by using the non-negative constraint. It also can be clearly seen that the
spatial filtering has a larger effect on the classification performance than the non-negative constraint.
Moreover, methods using `2,1 norm regularization term can generally obtain better classification
performance than methods using `1 norm regularization term, for example, “F+`2,1+SF+NC” and
“F+`2,1” generally have better overall accuracy than “F+`1+SF+NC” and “F+`1”, respectively, which
demonstrate that it is beneficial to select correlated training samples among the whole training data
set, and can impose sparsity across the pixels both at the group and individual levels. Furthermore,
methods using `2,1 norm loss function can generally obtain better classification performance than
methods using F norm loss function. For example, “`2,1+`2,1+SF+NC” and “`2,1+`2,1” generally have
better overall accuracy than “F+`2,1+SF+NC” and “F+`2,1”, respectively, which demonstrate that the
`2,1 norm loss function is more robust for outliers than F norm loss function. Tables 5 and 6 show
the classification performances for Pavia University data set when using the pixel-wise strategy and
dealing with all the test pixels simultaneously, respectively. We can also obtain the above-mentioned
conclusion from Tables 5 and 6 when using the Pavia University data. In addition, from Tables 3–6,
it can be observed that these methods when dealing with all the test pixels simultaneously can obtain
comparable or better overall accuracy than these regression based pixel-wise sparse representation
methods, and they are much faster than these pixel-wise sparse representation methods, which
demonstrates that it is significant to considerer all the test pixels simultaneously. Figures 4 and 5 show
the classification maps for the Indian Pines and Pavia University data sets, respectively, which can
give a visual comparison between different methods.

Table 3. Overall Accuracy, Average Accuracy, Kappa Statistic and Time of the Indian Pines data set
when using pixel-wise strategy.

Spatial Filtering No No Yes Yes No No Yes Yes

Method Non-Negative Constraint No Yes No Yes No Yes No Yes

Norm `2+`1 `1+`1

1 14.63 39.02 95.12 100.00 17.07 53.66 95.12 100.00
2 67.16 73.07 97.90 99.84 68.40 76.19 97.74 99.46
3 36.68 56.22 92.90 97.32 37.08 58.37 96.39 97.19
4 20.66 33.33 97.18 97.18 21.13 30.05 96.71 98.12
5 75.63 90.11 96.78 99.54 76.09 91.49 96.09 99.31
6 86.15 94.67 95.89 99.39 87.52 96.04 98.63 99.70
7 4.00 24.00 32.00 84.00 4.00 32.00 36.00 80.00
8 97.67 100.00 100.00 100.00 97.91 99.77 100.00 100.00

Class 9 5.56 11.11 38.89 55.56 5.56 16.67 33.33 83.33
10 38.86 29.14 95.09 95.43 38.29 32.80 96.46 96.34
11 67.22 80.62 97.96 97.69 67.90 81.58 98.28 98.46
12 49.81 34.46 97.19 97.38 49.06 39.89 97.94 97.75
13 76.09 81.52 91.30 94.02 76.63 88.04 90.22 95.65
14 96.84 98.59 99.12 100.00 97.01 98.95 99.38 100.00
15 39.77 31.41 96.54 96.54 39.48 36.02 98.56 98.85
16 91.67 92.86 85.71 94.05 91.67 92.86 91.67 92.86
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Table 3. Cont.

Spatial Filtering No No Yes Yes No No Yes Yes

Method Non-Negative Constraint No Yes No Yes No Yes No Yes

Norm `2+`1 `1+`1

Overall Accuracy (%) 65.63 71.32 96.64 98.06 66.07 73.34 97.44 98.47
Average Accuracy (%) 54.27 60.64 88.10 94.25 54.68 64.02 88.91 96.06

Kappa Statistic 0.603 0.667 0.962 0.978 0.608 0.690 0.971 0.983
Time (s) 5536 5613 4953 4832 30,168 31,843 32,643 32,998

Table 4. Overall Accuracy, Average Accuracy, Kappa Statistic and Time of the Indian Pines data set
when dealing with all the test pixels simultaneously.

Spatial Filtering No No Yes Yes No No Yes Yes No No Yes Yes

Method Non-Negative Constraint No Yes No Yes No Yes No Yes No Yes No Yes

Norm F+`1 F+`2,1 `2,1+`2,1

1 26.83 14.63 95.12 100.00 36.59 31.71 95.12 100.00 36.59 80.49 100.00 100.00
2 49.34 67.00 98.13 99.84 65.21 63.42 97.82 99.30 69.57 66.54 99.46 99.47
3 50.87 34.27 95.72 97.32 38.96 44.44 94.78 96.52 44.18 69.75 97.19 97.86
4 14.08 22.54 97.18 97.18 22.54 21.60 98.12 100.00 27.70 31.46 97.65 97.65
5 79.77 76.32 97.47 99.54 85.98 83.68 97.01 98.85 85.06 91.26 99.31 99.31
6 93.00 87.21 97.26 99.39 93.46 94.22 98.02 99.54 95.89 98.48 99.70 99.85
7 20.00 4.00 52.00 84.00 4.00 16.00 52.00 84.00 8.00 40.00 80.00 92.00
8 99.07 97.91 100.00 100.00 99.77 99.53 100.00 100.00 100.00 99.53 100.00 100.00

Class 9 5.56 5.56 33.33 55.66 5.56 11.11 83.33 100.00 5.56 22.22 83.33 100.00
10 28.91 38.74 95.89 95.43 25.14 26.06 96.69 96.91 31.54 49.49 96.34 97.71
11 78.86 67.81 98.37 97.69 80.81 76.28 98.14 98.78 78.32 83.88 98.46 98.64
12 31.27 50.19 97.75 97.38 32.21 34.08 97.75 98.69 41.01 63.86 97.75 98.50
13 74.46 78.80 89.67 94.02 87.50 82.61 90.76 96.20 94.02 98.37 95.65 97.28
14 98.33 96.49 99.21 100.00 98.24 97.98 98.95 99.91 98.15 98.51 100.00 100.00
15 25.94 38.90 98.27 96.54 36.31 33.14 97.69 98.56 42.07 44.09 98.85 98.85
16 92.86 88.10 84.52 94.05 88.10 94.05 84.52 88.10 91.67 96.43 92.86 92.86

Overall Accuracy (%) 65.42 65.67 97.31 98.49 67.96 71.49 97.41 98.59 70.15 77.35 98.48 98.88
Average Accuracy (%) 54.34 54.28 89.37 94.25 56.27 56.87 93.07 97.21 59.33 70.90 96.03 98.14

Kappa Statistic 0.597 0.603 0.970 0.978 0.625 0.616 0.969 0.984 0.653 0.737 0.982 0.987
Time (s) 168 287 188 366 52 253 68 337 488 527 539 551

Table 5. Overall Accuracy, Average Accuracy, Kappa Statistic and Time of the Pavia University data set
when using pixel-wise strategy.

Spatial Filtering No No Yes Yes No No Yes Yes

Method Non-Negative Constraint No Yes No Yes No Yes No Yes

Norm `2+`1 `1+`1

1 58.42 95.31 75.83 90.92 61.42 82.07 84.52 90.94
2 90.78 95.26 99.93 99.83 92.62 93.45 99.92 99.73
3 24.21 56.30 71.94 85.13 26.90 59.24 69.44 82.82
4 83.12 87.27 94.33 92.71 83.98 82.10 93.37 93.31

Class 5 99.77 99.77 100.00 100.00 99.77 99.70 100.00 100.00
6 37.26 49.43 61.92 86.64 36.96 62.00 65.74 86.06
7 10.78 4.48 80.64 97.72 9.95 42.90 56.87 95.44
8 52.18 38.79 59.92 67.85 53.83 39.62 73.85 73.83
9 62.58 72.49 42.32 83.90 60.98 89.02 49.47 85.39

Overall Accuracy (%) 69.50 79.22 84.63 92.50 71.01 79.39 86.85 92.80
Average Accuracy(%) 57.68 66.11 76.31 89.41 58.49 72.23 77.02 89.72

Kappa Statistic 0.587 0.716 0.792 0.900 0.606 0.723 0.822 0.904
Time (s) 2715 2788 2729 2756 18,218 18,256 18,273 18,286
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Table 6. Overall Accuracy, Average Accuracy, Kappa Statistic and Time of the Pavia University data set
when dealing with all the test pixels simultaneously.

Spatial Filtering No No Yes Yes No No Yes Yes No No Yes Yes

Method Non-Negative Constraint No Yes No Yes No Yes No Yes No Yes No Yes

Norm F+`1 F+`2,1 `2,1+`2,1

1 62.13 82.00 81.78 90.25 67.78 81.78 82.38 90.27 67.27 95.31 86.60 89.61
2 93.65 93.47 99.64 99.71 94.82 93.53 99.86 99.72 96.14 95.26 99.96 99.67
3 24.11 59.10 68.33 85.61 21.17 59.19 70.12 85.42 39.51 56.30 79.50 88.64
4 84.70 82.20 93.64 92.68 85.00 82.23 92.91 92.75 86.58 87.27 94.56 93.60

Class 5 99.77 99.70 100.00 100.00 99.70 99.70 100.00 100.00 99.77 99.77 100.00 100.00
6 37.76 61.98 74.05 88.97 35.87 61.78 71.92 89.05 36.77 49.43 81.34 89.68
7 3.19 42.52 40.39 97.11 2.43 42.52 43.43 96.74 18.38 0.38 95.52 98.03
8 57.53 39.78 73.39 70.89 60.52 40.30 74.10 70.86 58.93 38.79 78.74 72.87
9 43.92 88.70 51.81 83.80 43.50 88.91 55.54 84.54 57.89 72.49 65.03 87.53

Overall Accuracy (%) 71.72 79.50 86.75 92.88 72.57 79.62 87.09 92.90 76.10 81.23 92.29 93.34
Average Accuracy (%) 56.31 72.16 75.89 89.89 56.75 76.70 66.11 89.93 62.36 74.11 86.80 91.07

Kappa Statistic 0.608 0.722 0.821 0.905 0.624 0.723 0.824 0.905 0.656 0.716 0.887 0.911
Time (s) 147 452 169 437 66 433 108 477 611 637 621 648

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 4. Classification maps for the Indian Pines data set. (a) `2+`1; (b) `2+`1+NC; (c) `2+`1+SF;
(d) `2+`1+SF+NC; (e) `1+`1; (f) `1+`1+NC; (g) `1+`1+SF; (h) `1+`1+SF+NC; (i) F+`1; (j) F+`1+NC;
(k) F+`1+SF; (l) F+`1+SF+NC; (m) F+`2,1; (n) F+`2,1+NC; (o) F+`2,1+SF; (p) F+`2,1+SF+NC; (q) `2,1+`2,1;
(r) `2,1+`2,1+NC; (s) `2,1+`2,1+SF; (t) `2,1+`2,1+SF+NC (SFL).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 5. Classification maps for the Pavia University data set. (a) `2+`1; (b) `2+`1+NC; (c) `2+`1+SF;
(d) `2+`1+SF+NC; (e) `1+`1; (f) `1+`1+NC; (g) `1+`1+SF; (h) `1+`1+SF+NC; (i) F+`1; (j) F+`1+NC;
(k) F+`1+SF; (l) F+`1+SF+NC; (m) F+`2,1; (n) F+`2,1+NC; (o) F+`2,1+SF; (p) F+`2,1+SF+NC; (q) `2,1+`2,1;
(r) `2,1+`2,1+NC; (s) `2,1+`2,1+SF; (t) `2,1+`2,1+SF+NC (SFL).

We also choose other eight methods for comparison, i.e., SVM [9,66], NRS [28,67], CRT [30,67],
KCRC [31,68], OMP [15], SOMP [15], JRSRC [20] and 3D-CNN [45,69]. The SVM is a very popular
classifier, the 3D-CNN is a deep neural network based classifier, and the other six compared methods
are collaborative representation and sparse representation based classifiers. Tables 7 and 8 show
the classification performances of the proposed SFL and eight compared methods using the Indian
Pines and Pavia University data set, respectively. In addition, Figures 6 and 7 show the classification
maps of the Indian Pines and Pavia University data set when using the proposed SFL and eight
compared methods, which can give a visual comparison between different methods. From Tables 7
and 8, it can be clearly seen that the proposed SFL can obtain the best classification performance, which
demonstrates that our proposed SFL is efficient for hyperspectral image classification. In addition, the
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SVM is the fastest, the reason lies in that it is implemeted in C Lagnuage which is much faster than
Matlab. NRS, CRT and KCRC are very fast due to the fact that they are collaborative representation
methods, and they have closed solutions, which do not need iteration. The OMP and SOMP are
also very fast due to the fact that they are greedy sparse representation methods, while the JRSRC
method is very time-consuming due to the fact that JRSRC is a regression based sparse representation
method. In addition, the 3D-CNN is not fast because the main time-consuming aspect lies in the
training. Our proposed method is also a regression based method, which takes more time than the
collaborative representation methods and greedy sparse representation methods. There are several
possible ways for us to improve the time consumed in the process. One way is to use C Language and
graphic processing unit for fast implementation. Another way is to use the first-order primal-dual
algorithm in [70] to achieve faster convergence.

Table 7. Overall Accuracy, Average Accuracy, Kappa Statistic and Time of the Indian Pines data set
when using the compared methods and the proposed methods.

Method SVM NRS CRT KCRC OMP SOMP JRSRC 3D-CNN SFL

1 41.46 60.98 26.83 36.59 60.98 68.29 68.29 75.61 100.00
2 80.39 51.98 87.24 72.84 67.32 94.63 90.97 84.98 99.77
3 66.93 26.91 55.02 55.15 51.67 86.48 95.31 72.82 97.86
4 68.54 30.05 27.70 24.41 38.50 89.20 66.67 66.67 97.65
5 88.51 88.74 91.95 83.22 85.98 95.63 95.17 89.20 99.31
6 94.67 94.82 99.24 98.17 93.15 99.24 99.39 96.96 99.85
7 32.00 48.00 20.00 24.00 36.00 12.00 4.00 40.00 92.00
8 99.53 100.00 100.00 100.00 99.53 100.00 100.00 99.30 100.00

Class 9 33.33 33.33 11.11 22.22 38.89 11.11 11.11 22.22 100.00
10 74.86 24.91 65.83 56.11 51.54 80.69 71.09 80.23 97.71
11 84.52 97.87 84.43 90.00 70.08 92.21 98.10 82.16 98.64
12 84.83 32.58 67.42 44.19 46.07 88.01 96.25 80.90 98.50
13 99.46 97.28 98.91 98.37 95.65 99.46 100.00 99.46 97.28
14 97.10 98.33 97.36 98.51 95.08 100.00 100.00 95.08 100.00
15 43.23 53.31 51.59 40.63 41.50 67.72 65.71 52.74 98.85
16 94.05 85.71 91.67 90.48 86.90 98.81 100.00 92.86 92.86

Overall Accuracy (%) 82.81 70.74 80.65 76.95 70.57 91.44 92.02 84.04 98.88
Average Accuracy (%) 73.96 64.05 67.27 64.68 66.18 79.52 78.18 76.95 98.14

Kappa Statistic 0.803 0.652 0.777 0.732 0.662 0.902 0.908 0.818 0.987
Time (s) 3 40 147 33 10 145 4231 1895 551

Table 8. Overall Accuracy, Average Accuracy, Kappa Statistic and Time of the Pavia University data set
when using the compared methods and the proposed methods.

Method SVM NRS CRT KCRC OMP SOMP JRSRC 3D-CNN SFL

1 89.02 92.60 82.96 82.99 67.83 91.96 99.19 89.38 89.61
2 99.00 98.94 99.26 97.87 93.48 100.00 98.94 99.88 99.67
3 14.58 58.23 49.37 29.84 55.63 65.78 67.28 88.98 88.64
4 85.46 85.23 86.38 80.42 79.49 85.00 93.34 93.44 93.60

Class 5 98.35 98.27 99.62 97.75 99.62 100.00 100.00 100.00 100.00
6 47.96 52.16 55.11 34.61 57.96 63.04 76.64 86.93 89.68
7 6.45 43.43 61.96 60.06 55.28 86.48 73.58 98.48 98.03
8 96.84 87.96 87.22 91.91 68.23 71.08 86.26 68.86 72.87
9 99.68 91.68 90.72 100.00 80.70 80.38 89.23 86.46 87.53

Overall Accuracy (%) 83.27 86.58 85.80 81.89 79.02 88.31 92.34 92.72 93.34
Average Accuracy (%) 70.82 78.71 79.18 75.05 73.14 82.64 87.16 90.27 91.07

Kappa Statistic 0.770 0.817 0.807 0.751 0.719 0.841 0.897 0.903 0.911
Time (s) 3 60 110 56 15 369 1086 663 648
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 6. Classification maps for the Indian Pines data set using the compared methods and the proposed
method. (a) SVM; (b) NRS; (c) CRT; (d) KCRC; (e) OMP; (f) SOMP; (g) JRSRC; (h) 3D-CNN; (i) SFL.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 7. Classification maps for the Pavia University data set using the compared methods and the
proposed method. (a) SVM; (b) NRS; (c) CRT; (d) KCRC; (e) OMP; (f) SOMP; (g) JRSRC; (h) 3D-CNN;
(i) SFL.

5. Conclusions

In this paper, we propose an SFL method for a hyperspectral image classification method based
on the multichannel joint sparse recovery theory in [46], which can deal with all the test pixels
simultaneously. The proposed SFL can not only obtain comparably good or better classification
performance than using the pixel-wise classification strategy but also takes much less time. In addition,
spatial filtering and the non-negative constraints are both adopted to improve the classification
performance, and the spatial filtering has a larger effect on the classification than the non-negative
constraint. Moreover, methods using `2,1 norm regularization term can generally obtain better
classification performance than methods using an `1 norm regularization term, which demonstrate
that it is beneficial to select correlated training samples among the whole training data set, and
the `2,1 norm regularization term can impose sparsity across the pixels both at the group and
individual levels. Furthermore, methods using `2,1 norm loss function can generally obtain better
classification performance than methods using F norm loss function, which demonstrate that the
`2,1 norm loss function is more robust for outliers than F norm loss function. Finally, experiments
on two real hyperspectral image data sets demonstrate that the proposed SFL method outperforms
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some other popular classifiers. In our future work, we can adopt the CNN framework to extract
deep features of hyperspectral images, which can be integrated into our method to improve the
classification performance.
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