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Abstract: Despite a decrease in the use of currency due to the recent growth in the use of electronic 
financial transactions, real money transactions remain very important in the global market. While 
performing transactions with real money, touching and counting notes by hand, is still a common 
practice in daily life, various types of automated machines, such as ATMs and banknote counters, 
are essential for large-scale and safe transactions. This paper presents studies that have been 
conducted in four major areas of research (banknote recognition, counterfeit banknote detection, 
serial number recognition, and fitness classification) in the accurate banknote recognition field by 
various sensors in such automated machines, and describes the advantages and drawbacks of the 
methods presented in those studies. While to a limited extent some surveys have been presented in 
previous studies in the areas of banknote recognition or counterfeit banknote recognition, this paper 
is the first of its kind to review all four areas. Techniques used in each of the four areas recognize 
banknote information (denomination, serial number, authenticity, and physical condition) based on 
image or sensor data, and are actually applied to banknote processing machines across the world. 
This study also describes the technological challenges faced by such banknote recognition 
techniques and presents future directions of research to overcome them. 

Keywords: banknote recognition; counterfeit banknote detection; serial number recognition; fitness 
classification; various sensors 

 

1. Introduction 

1.1. Motivation of the Research 

Despite a decrease in the use of currency due to the recent global expansion in electronic 
financial transactions, transactions in real money continue to be very important in the global market 
[1]. While performing transactions in real money, touching and counting notes by hand is still a 
common practice in daily life, but the use of various types of automated machines has become 
essential for large-scale and safe transactions. Such automated self-service machines include 
automated teller machines (ATMs) for money deposits and withdrawals, as well as financial 
transactions [2], banknote counters [3] and coin counters [4], mostly used in banks, and automatic 
vending machines, into which money is inserted to purchase goods [5]. These devices must be 
equipped with four essential functions: banknote recognition, counterfeit banknote detection, serial 
number recognition, and fitness classification. While limited surveys have been conducted in 
previous studies on the areas of banknote recognition and counterfeit banknote recognition, this 
paper is the first survey of its kind to review all four areas. This lack of research is ascribable to the 
fact that banknote recognition studies have been mostly carried out in industrial settings rather than 
for academic purposes. In this study, previous studies and the advantages and disadvantages of the 
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different methods related to the four aforementioned areas used therein are analyzed, and future 
applications are also presented. 

1.2. Scope and Method of Our Research 

1.2.1. Scope of Our Research 

This paper presents methodologies for recognizing banknotes in the four main categories of 
banknote recognition, counterfeit banknote detection, serial number recognition, and fitness classification. 
Banknote recognition generally concerns classification of banknotes by denomination, i.e., the 
currency amount of a note of a specific country. This classification also enables recognition of the year 
of printing and input direction of the classified denomination. In some studies, the scope of 
recognition is extended to simultaneous recognition of two or more national currencies. Technologies 
for banknote recognition are described in detail in Section 2. 

Counterfeit banknote detection generally concerns methods for distinguishing between genuine 
and fake notes. As shown in the example of a genuine and a counterfeit USD 100 bill in Figure 1a,b, 
respectively, a validation check is done by examining anti-counterfeiting features. Section 3 describes 
technologies for counterfeit banknote detection in detail. 

 
(a) (b)

Figure 1. Example of genuine and counterfeit banknotes (USD 100 bill): (a) a genuine banknote;  
(b) a counterfeit banknote. 

A banknote serial number is a unique alphanumerical identifier engraved on each banknote in the 
banknote production process. It contains the name of the issuing bank and serial information of each 
denomination [6]; Figure 2 shows the serial number of a USD 100 bill. Since each banknote has its own 
unique serial number, it can be used to trace its source and circulation route and can thus be efficiently 
used to detect counterfeit banknotes. Related technologies are described in detail in Section 4. 

 
Figure 2. Example of serial number code (USD 100 bill). 
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Fitness classification of banknotes generally concerns methods for classifying banknotes 
according to their physical conditions, such as soiling. As shown in the example of two INR 10 bills 
in Figure 3, banknotes of the same denomination may exhibit fit or unfit conditions, which include 
soiling and creases (Figure 3a), depending on circulation intensity and climate conditions. In order 
to maintain the fitness of banknotes in circulation, automated self-service terminals, such as ATMs, 
need to be equipped with a fitness classification function to sort out and retrieve unfit banknotes. 
Retrieving unfit banknotes is also necessary for preventing banknote classification errors. Fitness 
classification-related technologies are described in detail in Section 5. 

 
(a) (b)

Figure 3. Example of unfit and fit banknotes (INR 10 bill): (a) Unfit banknote; (b) Fit banknote. 

1.2.2. Method of Our Research  

Figure 4 presents a typical process flow of banknote recognition implemented in a self-service 
terminal. An input banknote is scanned by a sensor to discern the image and other data necessary for 
recognizing its denomination and anti-counterfeiting features. The first step in the process of 
banknote recognition is identifying the denomination of an input banknote, thereby clustering all 
classes into a single class, and implementing a size-based ① validation check, followed by ① 

banknote recognition on the class of notes identified as banknotes, ③ counterfeit banknote detection 
using anti-counterfeiting data specific to each recognized denomination, and ④ fitness classification. 
The flow direction of ② serial number recognition is determined depending on the counterfeit 
banknote detection method as shown in Figure 4. System efficiency is the main reason for setting the 
process flow direction as ① validation check and banknote recognition, then ③ counterfeit banknote 
detection, and finally ④ fitness classification. For example, any input materials other than banknotes 
to be classified, such as common paper and newspaper, are sorted out at the ① validation check step, 
obviating the later steps of ③ counterfeit banknote detection, ② serial number recognition, and ④ 
fitness classification. On the other hand, an input counterfeit banknote similar to the classified 
banknote [7] may pass through the banknote recognition step, but will likely be detected as 
counterfeit in the counterfeit banknote detection step implemented using anti-counterfeiting features 
specific to the denomination classified, which makes the steps of serial number recognition (case 2 in 
Figure 4) and fitness classification superfluous. 

In a common embedded system environment, such as a banknote counter, rapid real-time 
recognition processing is required so that it can be implemented concurrently with banknote 
counting. When performing counterfeit banknote detection, for example, unnecessary computation 
should be excluded to rapidly process the banknotes queued for input. There are also cases in which 
steps such as serial number recognition and fitness classification need to be processed in the on/off 
mode to enhance the computational flow efficiency. Taking into account such processing paths, most 
automated currency recognition machines use the processing algorithm presented in Figure 4. Therein, 
however, the ② serial number recognition processing step can be bifurcated (case 1 or 2) depending on 
whether the serial number information is used for counterfeit banknote detection or not. If the serial 
number information is used for counterfeit banknote detection (case 1), the input banknote goes 
through the steps of serial number recognition for the corresponding denomination and counterfeit 
banknote detection. On the contrary, if the serial number information is not used for the counterfeit 
banknote detection (case 2), the time-consuming serial number recognition operation can be 
performed after the counterfeit banknote detection step, thus reducing the time taken for counterfeit 
banknote detection. As regards the serial number recognition and fitness classification functions, 
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given their less important roles compared to the banknote recognition and counterfeit banknote 
detection functions, they could be removed from the main computational flow and processed in the 
on/off mode. In the off mode of the serial number recognition and fitness classification functions, the 
user can perform the computations for counterfeit banknote detection more rapidly. This method of 
enabling the off mode of the serial number recognition and fitness classification functions can be 
essential for a banknote counter that carries out real-time computations of over 1000 notes per minute 
to perform rapid counterfeit detection. 

 
Figure 4. Banknote recognition process flow in an automated device. 

Section 2 describes the aforementioned image-based banknote recognition methods. Section 3 
describes counterfeit banknote detection of the recognized denomination on the basis of the obtained 
image and sensor data (ultra violet (UV), near-infrared (NIR), etc.). Section 4 describes methods for 
image-based serial number recognition of a denomination, and Section 5 describes image-based 
fitness classification of the soiled condition of a denomination recognized as a genuine banknote. 
Lastly, Section 6 presents methodologies employing the described banknote recognition technologies 
and areas for further study and future directions. 

2. Banknote Recognition 

2.1. Banknote Recognition Methodology 

Banknote recognition is a process step in which the denomination (e.g., $1, $10 and $100), 
direction (e.g., forward or backward direction), and side (e.g., obverse or reverse side) of the input 
banknote are classified. The reason for classifying direction and side in addition to denomination is 
that the position of a region of interest (ROI) within a banknote, which is used to implement the later 
process steps (serial number recognition, counterfeit banknote detection, and fitness classification), 
changes according to the direction and side of the banknote, as shown in Figure 5. For example, if the 
ROI of a $1 bill is in the top-left corner of its image when input in the forward direction, the position 
changes to the bottom-right corner when input in the backward direction. Moreover, the function of 
an automated machine of classifying input banknotes by denomination, direction, and side is 
essential for a bank employee to manually check the automatically classified banknotes. 

Most conventional sensors for banknote recognition are visible-light line sensors, such as contact 
image sensors (CIS) [8–13]. Such sensors mostly obtain color or black-and-white images and are used 
for the typical process flow of ① preprocessing, ② feature extraction, ③ classification, and ④ 
verification, as shown in Figure 5. Using a color image sensor is more advantageous because it 
provides more information than a black-and-white sensor [14], but its production cost is higher. 
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Besides image resolution, national currencies and classification criteria are factors influencing the 
efficiency of banknote recognition. 

 
Figure 5. Banknote recognition process flow. 

Table 1 lists previous studies on banknote recognition of various national currencies. In this 
table, “N/I” means the case that the appropriate information is not provided in the paper. “A” 
represents the case that the database is available for research purpose whereas “N/A” shows the case 
that the database is not available. USD, CNY, INR, and EUR are the most frequently studied 
currencies. In Table 1, the largest numbers of images are included in the database of [11]. Most 
databases are not available, except for that described in [14]. 

Table 1. Studies on banknote recognition by national currency (Ref.: Reference(s), N/I: No 
Information, A: Available, N/A: Not Available). 

Recognition 
Mode 

National 
Currency 

References 
Databases

Availability 
of Database Ref. #Images 

#Denomination 
Kind 

Single 
Currency 

Recognition 

United States 
(USD) 

[8,9,15–25] 

[8] 61,240 16 N/A 
[9] 99,236 17 N/A 

[15,22] 3570 6 N/A 
[16] 15,000 6 N/A 
[19] 65,700 12 N/A 

China (CNY) [11–13,16,26–31] 

[11] 297,200 3 N/A 
[13] 16,000 5 N/A 
[26] 3360 4 N/A 
[28] 20,000 5 N/A 
[30] 1600 4 N/A 

Euro (EUR) [16,32–35] 
[16] 15,000 7 N/A 
[32] 140 7 N/A 
[35] 82 N/I N/A 

India (INR) [36–43] 
[36] 350 7 N/A 
[38] 39 3 N/A 
[41] 504 6 N/A 

South Korea 
(KRW) 

[44] 10,800 3 N/A 
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Table 1. Cont. 

Single 
Currency 

Recognition 

Iran (IRR) [45–48] 
[45] 4000 8 N/A 
[47] 128 8 N/A 
[48] 240 6 N/A 

Mexico (MXN) [49,50] 1600 5 N/A 
Australia (AUD) [51,52] [51] 1320 6 N/A 

South African 
(ZAR) 

[9] 760 10 N/A 

New Zealand 
(NZD) 

[53] 367 5 N/A 

Sri Lanka (LKR) [54] 280 4 N/A 
Pakistan (PKR) [55] 120 6 N/A 
Angola (AOA) [9] 1366 9 N/A 

Italy (ITL) [56–58] 
[57] 80 8 N/A 
[58] 30 8 N/A 

Saudi Arabia (SAR) [37,59,60] 
[37] 4 2 N/A 
[59] 300 3 N/A 
[60] 110 1 N/A 

Jordan (JOD) [14] 500 10 A 
Ethiopia (ETB) [61] 240 5 N/A 

Bangladesh (BDT) [62,63] 
[62] 1700 8 N/A 
[63] N/I 7 N/A 

Myanmar (MMK) [64] 89 5 N/A 
Malawi (MWK) [9] 2464 6 N/A 

Multi-Currency 
Simultaneous 
Recognition 

USD, EUR, KRW, 
CNY, Russia (RUB) 

[10] 
100,797 from 

5 national 
currencies 

55 from  
5 national 
currencies 

N/A 

23 countries (CNY, 
EUR, INR, USD, 

etc.) 
[65] 

150 from  
23 national 
currencies 

101 from  
23 national 
currencies 

N/A 

Turkey (TRY), 
Cyprus (CYP) 

[66] 180 (TRY),  
144 (CYP) 

5 (TRY),  
4 (CYP) 

N/A 

USD, EUR [67] N/I 
4 (USD),  
7 (EUR) 

N/A 

USD,  
Japan (JPY) 

[68] 
132 (USD),  

50 (JPY) 
6 (USD),  
3 (JPY) 

N/A 

JPY, ITL,  
Spain (ESP), France 

(FRF) 
[69] 

165 (JPY),  
440 (ITL),  
385 (ESP),  
275 (FRF) 

3 (JPY),  
8 (ITL),  
7 (ESP),  
5 (FRF) 

N/A 

USD, EUR,  
BDT, INR 

[70] 

300 (USD),  
300 (EUR),  
500 (BDT),  
300 (INR) 

3 (USD),  
3 (EUR),  
5 (BDT),  
3 (INR) 

N/A 

A number of studies have also been conducted on simultaneous recognition of multiple national 
currencies. The number of classes to be classified increases with the number of national currencies to 
be simultaneously recognized, and the classification efficiency decreases with the increase in the 
number of the national currencies to which the same algorithm is applied. If a banknote counter can 
recognize notes with a speed exceeding 1000 notes per minute, a complicated system such as a multi-
currency simultaneous recognition processing system requires a recognition algorithm optimized for 
accuracy and speed. It involves the process steps presented in Figure 5: ① preprocessing: image 
preprocessing such as precise banknote region segmentation, optimal dimension reduction, and 
noise removal; ② feature extraction: extraction of features best-suited for the classification of the 
given denomination; ③ classification: classification of the recognized denomination into classes using 
the extracted features and classifier; and ④ verification: recheck of the classified denomination). 
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2.2. Preprocessing of Banknote Image 

Preprocessing of the images obtained through the sensor involves the following process steps: 
banknote region segmentation, as shown in Figure 6, to extract the precise denomination region [8], 
noise removal and gray level reduction, brightness normalization and contrast enhancement, and 
reduction of the image resolution and number of image channels to reduce the computational burden. 

 
Figure 6. Preprocessing step in the banknote recognition process flow. 

First of all, the banknote region segmentation algorithm is applied to extract the precise 
banknote region. Relevant methods include corner detection [8,9], least square methods and fuzzy 
systems [12], and component labeling using the Y component of the YIQ color space via axis 
transformation [68] as shown in Table 2. If a banknote has been in circulation for a long time, it may 
be difficult to extract accurate banknote recognition features due to its surface being soiled by dirt 
and sebum from users’ hands. To address this, noise removal is performed as a general preprocessing 
step using techniques based on the Wiener filter [10,49,55,65,71] or median filter [42,64]. Noise 
occurring in the imaging process or banknote aging can also be diminished by reducing the gray level 
of the image beyond the 0–255 range [54,65,71,72]. Some studies have presented methods to 
normalize the brightness and improve the contrast of the image by means of histogram equalization 
[42,45]. 

Table 2. Methods for preprocessing in the banknote recognition process flow. 

Task Method References

Banknote region segmentation 

Corner detection [8,9] 
Least square method and fuzzy system [12] 
Component labeling based on the Y 
component of YIQ space 

[68] 

Noise removal and gray  
level reduction 

Weiner filtering [10,49,55,65,71] 
Median filtering [42,64] 
Gray level reduction [54,65,71,72] 

Brightness normalization and 
contrast enhancement Histogram equalization [42,45] 

Image resolution reduction Nearest neighbor interpolation [10,67] 
Image channel reduction Conversion of color to gray [23,39,46,55,63,72] 

Finally, a data reduction process is performed in order to reduce the computational burden. As 
mentioned previously, this process is essential because of the limited memory and processing speed, 
although the larger the amount of information, the greater the performance. In general, image 
interpolation, e.g., the nearest neighbor interpolation method [10,67], is used to reduce image size. 
Furthermore, conversion from RGB to gray scale can be performed to reduce the color dimension 
[23,39,46,55,63,72]. 
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2.3. Feature Extraction 

As shown in Figure 7, the preprocessed data undergoes feature extraction designed to facilitate 
the denomination classification. Figure 7 provides an example of an extracted similarity map 
expressing the feature regions for efficient classification. 

 
Figure 7. Feature extraction in the banknote recognition process flow. 

Among the methods for extracting banknote features to classify denominations presented in 
Table 3, those using the size or length data of a banknote as a parameter [45,56,60,65,68,72] are 
especially useful for classifying national currencies with different sizes or lengths for different 
denominations. There are also methods using RGB, HSV, or features in the HSI color space 
[37,40,45,49,50,61,68], methods using edge-based features expressed with Canny, Prewitt, or Sobel 
operators [40,44,54,60], and methods using histogram information-based features such as correlation, 
central moments, kurtosis, mean, standard deviation, and skewness [39,43,53,59,64,65]. 

Table 3. Methods for feature extraction in the banknote recognition process flow. 

Method References 
Features of banknote size or length [45,56,60,65,68,72] 
Color information (RGB, HSV, or HSI) [37,40,45,49,50,61,68] 
Edge information (Canny, Prewitt, or Sobel operator) [40,44,54,60] 
Histogram information (correlation, central moments, kurtosis, 
mean, standard deviation, skewness, etc.) 

[39,43,53,59,64,65] 

Local binary patterns (LBP) [41,49] 
Gray-level co-occurrence matrix (GLCM) [39,53,64] 
Principle component analysis (PCA) [8,9,15,20–23,26,46] 
Linear discriminant analysis (LDA) [43,46,70] 
Genetic algorithm (GA) [24,30,69,73] 
Similarity map or difference map [9,10,19] 
Discrete wavelet transform (DWT) [11,16,44,47,48] 
Scale-invariant feature transform (SIFT) or  
speeded up robust features (SURF) 

[14,17,18,25,35,36,61,67,74] 

Compressed sensing [27] 
Features by optical character recognition (OCR) [38] 
Features from selected ROI [8,9,13,17,20,23,30,32,36,38,39,43,48,59,68] 

Furthermore, there are methods that use texture features extracted by local binary patterns (LBP) 
[41,49] and features based on the values of the gray-level co-occurrence matrix (GLCM) [39,53,64]. 
Conventional methods of feature extraction widely used in the common pattern recognition fields, 
include methods using principle component analysis (PCA) [8,9,15,20–23,26,46] and linear 
discriminant analysis (LDA) [43,46,70], and also methods using genetic algorithm (GA)-based 
learning to identify the feature mask optimized for the target class [24,30,69,73]. Similarity maps or 
difference maps are an automated optimal feature search method [9,10,19]. 
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Among high-performance methods for banknote feature extraction, there are wavelet transform-
based methods, with a high computational burden being their drawback [11,16,44,47,48], and 
methods using the scale-invariant feature transform (SIFT) or speeded up robust features (SURF) 
algorithm, known to be robust to scale and rotation changes [14,17,18,25,35,36,61,67,74], which have 
hence been used as methods of feature extraction for banknote recognition. The method based on 
compressed sensing is known to be useful for data dimension reduction [27]. Features can be 
extracted using information based on optical character recognition (OCR) as well [38]. Lastly, many 
methods use selected ROIs, instead of the entire banknote region, as feature extraction regions 
[8,9,13,17,20,23,30,32,36,38,39,43,48,59,68]. 

2.4. Classification and Verification 

The neural network (NN)-based method [15] shown in Figure 8 is the representative method for 
input banknote classification using the features extracted in the feature extraction step described in 
Section 2.3. 

 
Figure 8. Classification example in the banknote recognition process flow. 

As shown in Table 4, NN-based methods for classifying input banknotes use various neural 
networks based on learning vector quantization (LVQ), ensemble networks (ENN) using negative 
correlation, and probabilistic neural networks (PNN) [15,16,20–22,24,26,29–34,38,45–47,49,53,54, 
56–58,62,63,66,69,72,73]. 

Table 4. Studies on classification and verification in the banknote recognition process flow. 

Methods References 

Classification 

Euclidean distance-based classifier [36,37,41,42,48,51] 
Mahalanobis distance-based classifier [23] 

NN (LVQ network, ENN and PNN, etc.) 
[15,16,20–22,24,26,29–34,38,45–47,
49,53,54,56–58,62,63,66,69,72,73] 

SVM [8,11,39,43,67,71] 
HMM [13,65,71] 

K-means algorithm [8,9] 
K-NN method [55,64] 

Preclassification (based on banknote side, direction,  
size, or a Gaussian mixture model (GMM)) 

[8,10,32,75] 

Verification 
Verification (based on the validity of matching  

distance or banknote size) 
[9,54] 

Among other classification methods listed in Table 4, there are simple methods of comparing 
distances using the Euclidean distance-based classifier [36,37,41,42,48,51] or the Mahalanobis 
distance-based classifier [23], and complicated methods using sophisticated pattern recognition-
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based classifiers, such as support vector machines (SVM) [8,11,39,43,67,71] or hidden Markov models 
(HMM) [13,65,71]. Furthermore, there are methods using the clustering-based K-means classifier [8,9] 
and denomination classification methods using K-NN (k-nearest neighbors) [55,64]. 

There are also methods for classifying denominations in which preclassification, based on the 
banknote input side, direction, size, or a Gaussian mixture model (GMM), is performed before 
proceeding with denomination recognition on the preclassified banknote with a reduced number of 
classes for matching [8,10,32,75]. This approach can greatly enhance classification accuracy and 
rapidity because it reduces the number of classes at the preclassification step rather than performing 
the denomination and side/direction check on all input banknotes. 

There are also methods in which the denomination classification errors are reduced by performing 
verification of the classified banknotes [9,54]. Figure 9 illustrates an example of the verification process 
in which fake banknote recognition errors and denomination classification errors in the results of 
classification performed using the Euclidean distance or K-means classifier are removed using 
threshold 1 based on the distance from the first matched candidate class (located at the shortest distance) 
and threshold 2 based on the matching distance between the first candidate class (located at the shortest 
distance) and the second candidate class (located at the second-shortest distance). 

 
Figure 9. Verification example in the banknote recognition process flow. 

Counterfeit banknote recognition errors can be removed as follows: a counterfeit note, such as a 
casino ticket, batch card, or test note, may be judged a genuine banknote as the first candidate class 
in the denomination classification step, but because the distance from the first candidate class is 
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shown to be larger compared to that of a genuine banknote, exhibiting a distance going beyond 
threshold 1 when matched, it is thus rejected as a fake banknote. This is illustrated in Figure 9. 

Denomination recognition errors can be reduced as follows: if the difference in the distance 
between a banknote matched as the first candidate class in denomination classification and the 
second candidate class is smaller than threshold 2, as shown in Figure 9, the result of the 
denomination classification for the matched banknote is judged to be unreliable and the matched 
result is rejected. 

2.5. Analyses and Discussion of Banknote Recognition 

Image-based banknote recognition generally uses color images obtained in the visible light 
spectrum [17,18,23,32,38–40,42,45,49,55,60,61,63,68] and undergoes general image recognition 
processes, such as preprocessing, feature extraction, classification, and verification. From the existing 
body of literature dealing with banknote recognition, important studies were selected and presented 
in Table 5. Selection criteria were the processing time of the digital signal processor (DSP) 
environment actually used by the banknote counter, ≥95% recognition rate based on a data size of 
≥10,000 notes, and significant results yielded in various class environments, such as multi-currency 
simultaneous recognition. 

Table 5. Feature and advantage analyses of existing banknote recognition methods (DSP processing, 
high-capacity DB, multi-currency simultaneous recognition). 

References Features and Advantages

[8] 
Banknote counter DSP processing (processing time: 15.6 ms), preclassification of the 
banknote input side (SVM), number of experimental data points (61,240 notes), accuracy 
(USD: 99.886%) 

[73] 
Banknote counter DSP processing (banknote counting machine by Glory Corp.),  
GA-based selection of optimal mask and use of a NN, number of experimental data points 
(100,000 notes), accuracy (USD and JPY: ≥97%) 

[9] 
Banknote counter DSP processing, feature region selection using a similarity map, number of 
experimental data points (99,236 USD notes), accuracy (USD: 99.998%) 

[10] 
Simultaneous recognition of 5 national currencies (USD, EUR, KRW, CNY, RUB), ROI 
selection after using a similarity map, number of experimental data points  
(84,800 of 5 kinds of banknote), accuracy (100%) 

[16] 

Quaternion WT-based data extraction of the magnitude, horizontal, vertical, and diagonal 
data of banknote images and coefficient feature extraction using the generalized Gaussian 
density function, number of experimental data points (15,000 USD, CNY, EUR notes each), 
accuracy (≥99% on average) 

[65] 
Simultaneous recognition of 23 national currencies including USD, EUR, INR, and CNY, 
banknote texture feature modeling using size data and a HMM, number of experimental data 
points (150 per denomination), recognition rate (98%) 

[67] 
ATM DSP processing (processing time: 54 ms), simultaneous recognition of USD and EUR 
using the dense SIFT feature extraction method, accuracy (≥99.8%) 

[19] 
Real-time embedded system processing (processing time: 16 m), valid feature region 
selection using the difference map, generalized learning vector quantization (GLVQ) 
classification, number of experimental data points (65700 USD notes), accuracy (99%) 

[69] 
GA-based selection of optimal mask, NN-based DSP simultaneous recognition of four 
national currencies (JPY, ITL, ESP, FRF) using a banknote counter, number of experimental 
data points (20,000 notes), accuracy (97%) 

[74] 
Multi-currency simultaneous recognition (INR, CNY, EUR, etc.) using a mobile camera and 
server communication system with a feature enabling overlapping multi-currency 
simultaneous recognition, recognition rate (95%) 

In one study [8], in which an experiment was performed on over 60,000 USD denomination bills 
in a real banknote counter DSP environment, counting performance of 15.6 ms per note with a 
recognition rate of 99.886% was demonstrated. In the method used in this study, the input banknotes 
first undergo classification by input side and direction, followed by denomination classification. The 
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salient feature of this method is progressive processing depending on the number of classes to be 
classified, thus optimizing the processing efficiency. In another study [73] conducted in a real 
banknote counter DSP environment, an error-free recognition rate of over 97% was achieved on 
100,000 USD and JPY denomination bills by adopting the method of selecting a GA-based optimal 
mask and applying it to a NN. This method was also adopted in a study [69] in which a 97% 
recognition rate was achieved in simultaneous denomination recognition of four national currencies. 
The methods used in these studies may well be recommended for banknote counters. The method of 
another study [9] achieved superior results compared to the method used in one of the above-
mentioned studies [8] in terms of processing speed and use of memory capacity, also using the 
method of processing in a real DSP equipment environment, yielding a classification accuracy of 
99.998% on over 90,000 USD denominations. Its particular significance lies in the fact that it extracts 
an ROI of a banknote automatically without manual selection using a similarity map. Another study 
[10] presented a method for simultaneously recognizing five national currencies (USD, EUR, KRW, 
CNY, and RUB), demonstrating 100% accuracy in recognizing 84,800 experimental banknotes 
without error. Study [16] presented a method using frequency characteristics regarding the 
directionality of a banknote based on the quaternion WT and confirmed its performance (≥99% on 
average) on 15,000 notes each of USD, EUR, and CNY notes each. Study [65] presented a method of 
simultaneously recognizing 23 different national currencies, including USD, EUR, INR, and CNY, 
using the note’s size information and a HMM to model its texture characteristics, and demonstrated 
a classification accuracy of 98% on 150 notes per denomination. 

Study [67] presented a method for an actual banknote ATM DSP environment. With a per-note 
processing time of 54 ms, it performed simultaneous recognition of USD and EUR and demonstrated a 
classification accuracy of higher than 99.8%. This method uses the dense SIFT algorithm for feature 
extraction and is significant as an approach to improving the robustness of the processing rate of the SIFT 
algorithm against scale change. Study [19] presents a real-time processing method in an embedded system 
capable of a processing speed of 16 ms per note using the ROI showing the largest inter-class difference 
on a difference map and GLVQ-based classification with an accuracy of 99% on 65,700 USD bills. In the 
method presented in Study [69], a GA-based optimal mask is selected and applied to a NN, as in Study 
[73] mentioned above. It demonstrated a multi-currency simultaneous classification accuracy of 97% on 
20,000 JPY, ITL, ESP, and FRF notes using a real banknote counter. Study [74] presented a multi-currency 
simultaneous recognition method combining a mobile camera and server communication system. It 
performs complicated recognition operations using a high-performance server computer, thus reducing 
processing time and enhancing performance. It showed a multi-currency simultaneous recognition 
accuracy of 95% on several national currencies, including INR, CNY and EUR. The following issues 
should be dealt with and solved in the studies of banknote recognition: 

- The banknote recognition function of a banknote counter should ensure not only a stable 
recognition rate, but also real-time processing speed because it continuously handles real money. 

- The per-note processing time should be constant because time discrepancy in processing 
individual notes leads to non-normal storage of continuous high-speed banknote data input, 
triggering a system crash. 

- With the increasing demand for simultaneous multi-currency recognition, stable recognition 
and a rapid processing speed for an increased number of classes are required, unlike the initially 
used manual selection-based single-currency recognition methods. 

- While there is a considerable body of research presenting numerous banknote recognition 
methods using feature extraction and classifiers, no study has yet been conducted on the 
convolutional neural network (CNN)-based banknote recognition, which has recently been 
attracting attention. This may be ascribed to the difficulty associated with loading a high-
performance graphics card capable of the parallel processing essential for high-speed CNN 
processing onto a banknote counter. Therefore, this method may be applied to server-based 
high-capacity counting systems in the future. 
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3. Counterfeit Banknote Detection 

3.1. Counterfeit Banknote Detection Method 

3.1.1. Analyses of Anti-Counterfeiting Features inside a Banknote 

As presented in Figure 5, banknote recognition is followed by counterfeit banknote detection. 
Most banknotes contain various anti-counterfeiting features. Figure 10 shows images of visible light 
reflection and ultraviolet fluorescence on a genuine USD 100 bill. Examples of anti-counterfeiting 
features are color, size, and security threads [76]. 

(a)

(b)

Figure 10. Visible light reflection image and ultraviolet fluorescence factor on a USD 100 bill: (a) The 
visible light reflection image of the recent USD $100; (b) Anti-counterfeiting feature. 

Figure 11 highlights the anti-counterfeiting features of a genuine USD 100 bill: the magnetic factor 
(obverse), two anti-counterfeiting lines responding to IR reflection, and intaglio and engraving 
technologies (reverse). As illustrated in Figure 11a,b, the magnetic factor and NIR factor contained in a 
genuine banknote, which are not visible under visible light, are perceived by a magnetic sensor and NIR 
sensor, respectively. Therefore, counterfeit banknotes without such magnetic and NIR factors can be easily 
detected by the aforementioned sensors. Figure 11c illustrates the printing technologies used in a genuine 
USD banknote: the dark-colored parts undergo intaglio printing and the mark or serial number undergo 
engraving printing. If a counterfeiter applies intaglio or engraving printing to the entire banknote, it can 
be detected as a counterfeit banknote due to a printing state different from a genuine banknote [76]. 

Figure 12 shows other anti-counterfeiting features on the obverse and reverse sides of a genuine 
USD 100 bill: a security thread, anti-copier line structure (fine line printing), a watermark, safety 
fibers, optically variable ink, microlettering (microprinting), and serial numbers. The optically 
variable ink appears to change color depending on the viewing angle. Microlettering (microprinting) 
refers to microfine printed letters of specific words, such as “USA 100” and “THE UNITED STATES 
OF AMERICA” in the corresponding parts (Figure 12a). These anti-counterfeiting features are used 
in the detection of counterfeit banknotes [76–79]. 

(a) (b)

Figure 11. Cont.  
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(c)

Figure 11. USD anti-counterfeiting features (magnetic factor, IR factor, and printing technology):  
(a) Magnetic factor for counterfeit prevention; (b) NIR factor for counterfeit prevention; (c) Printing 
scheme for a genuine banknote USD. 

 
(a)

 
(b)

Figure 12. Analysis of anti-counterfeiting features inside a USD 100 bill: (a) Front side; (b) Back side. 

Security features for detecting counterfeit banknotes can be called machine readable security 
features because they can measured by counterfeit detection machines [80]. In previous research [81], 
various techniques for printing the security features on genuine banknotes have been reported.  
These features are different for different denominations, and the security features of EUR are reported 
in [82]. 
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3.1.2. Counterfeit Banknote Detection 

As presented in Table 6, there are a variety of methods for identifying anti-counterfeiting 
features by extracting features related to brightness information [83,84], fluorescence characteristics 
[85–92], fidelity of the serial number and printing [93,94], and security threads [95]. Simple methods 
using only wavelengths of the visible light spectrum have limitations in accurately identifying anti-
counterfeiting features. Sensors with various spectral ranges to sense UV [85,86,96,97] and IR 
[75,82,97–101] wavelengths, X-ray [88] etc. are required. 

Table 6. Methods for identifying anti-counterfeiting features. 

Feature Method References 
Brightness information Y histogram of YIQ color space or luminance histogram [83,84] 

Fluorescence 
characteristics 

UV pattern [85–87] 
X-Ray fluorescence [88–91] 

Intrinsic fluorescence lifetime [92] 
Fidelity of serial 

number and printing 
Binarization, edge detection, and radial based function (RBF) NNs [93] 

Printing accuracy by tie point detection [94] 
Security thread Electromagnetic detection based on the pulsed eddy current technique [95] 

Infrared (IR) features 
The middle IR spectrum of several areas in the banknotes [96] 

Near IR features [75,82,97–100] 
Commercial system using multiple sensors including IR ray sensor [101] 

Most of the counterfeit banknote detection methods presented in previous studies 
corresponding to step ③ in Figure 13 (left), are carried out based on denomination and banknote 
input information (input side, deflection, inclination, etc.) after the banknote recognition step. As 
mentioned above, the process flow of counterfeit banknote detection bifurcates into the use and non-
use of the serial number (Figure 13 case 1 and case 2, respectively). 

In Figure 13, ③ counterfeit banknote detection in the overall process flow (left) follows the 
subprocess steps of ① coordinate mapping between the recognized banknote image and sensor data 
for counterfeit detection, ② feature extraction in which ROIs are selected from the recognized 
banknote image for anti-counterfeit feature extraction and sensor data are extracted for counterfeit 
detection based on the related coordinate information, and ③ classification through which 
counterfeit banknotes identified using the detection features are thus extracted. 

 
Figure 13. Counterfeit banknote detection process flow. 

As was the case with banknote recognition, anti-counterfeiting features for counterfeit banknote 
detection vary for individual denominations of the national currency concerned, and their efficiencies 
may also vary by denomination. Table 7 lists studies that have been conducted on counterfeit 
banknote detection by national currency. In this table, “N/I” means the case that the detail 
information is not shown in the paper. “N/A” represents the case that the database is not available 
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for research purpose. The largest number of studies on counterfeit banknote detection focus on the 
Indian rupee, followed by the Euro and US dollar. In Table 7, the largest numbers of images are 
included in the database of [98]. All the databases are not available because the available counterfeit 
banknote can be illegally used. 

Table 7. Studies on counterfeit banknote detection by currency (Ref.: References, N/I: Not Informed, 
N/A: Not Available). 

National Currency References 
Databases Availability 

of Database Ref. #Images #Denomination Kind 

India (INR) [84,87,99,102–115] 
[87] 1000 2 N/A 
[113] 288 3 N/A 

Euro (EUR) [88,94,96,98] 
[96] 18 2 N/A 
[98] 2750 7 N/A 

United States (USD) [88,91,92] 
[91] 120 2 N/A 
[92] 10 5 N/A 

Kuwait (KWD) [116] 4 2 N/A 
Nepal (NPR) [117] 240 1 N/A 

Switzerland (CHF) [118] 82 2 N/A 

Taiwan (TWD) [83,119] 
[83] 99 N/I N/A 
[119] 200 N/I N/A 

South Korea (KRW) [85,86] 
[85] 360 3 N/A 
[86] N/I 9 N/A 

United Kingdom (GBP) [95] 3 2 N/A 
China (CNY) [86] N/I 1 N/A 

Malaysia (MYR) [86] N/I 1 N/A 

3.2. Coordinate Mapping between Recognized Banknote Image and Sensor Data for Counterfeit Detection 

Methods for counterfeit banknote detection are usually applied after the banknote recognition 
step for the validation check of the input banknote by judging the genuineness of each feature based 
on the input denomination and input information (input side, direction, deflection, inclination, etc.), 
combining such input data with IR, UV, and MG sensor data related to individual anti-counterfeiting 
features. Figure 14 illustrates an example of matching a banknote image and sensor signals around 
the ROIs for anti-counterfeiting features when a note recognized as a genuine banknote is input. 

 
Figure 14. Example of data matching between banknote image and sensor data in the counterfeit 
banknote detection process flow. 

3.3. Feature Extraction 

Anti-counterfeiting features can be extracted using the sensor signals matched in predetermined 
ROIs, as shown in the example of extracting a feature using the UV-scanned signal of the corresponding 
ROI presented in Figure 15. Likewise, various methods listed in Table 6 are employed for counterfeit 
detection using light of various spectral ranges besides visible light or MG information. 
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Figure 15. Example of UV anti-counterfeiting feature extraction within an ROI in the counterfeit 
banknote detection process flow. 

Table 8 lists various methods for extracting anti-counterfeiting features, such as intaglio printing, 
ink properties, artwork, fluorescence, or year of printing-based feature extraction [87,106], bit-plane 
slicing and canny edge detection [116], watermark-based feature extraction [105,106,108,110,113,114], 
and luminance histograms and texture features from GLCM [84]. As shown in Table 7, the Indian 
rupee INR has been most intensively studied with respect to counterfeit detection, frequently by 
using methods for extracting features related to intaglio printing, ink properties, artwork, 
fluorescence, year of printing, watermarks, security threads, optically variable ink, identification 
marks, number panels, microlettering or latent images. With the continuing trend of increasingly 
sophisticated counterfeit banknotes, studies on more accurate counterfeit banknote detection 
methods based on multi-features are underway. 

Table 8. Methods for feature extraction in the counterfeit banknote detection process flow. 

Method References 
Features from intaglio printing, ink properties, artwork, fluorescence, or year of printing [87,106] 
Bit-plane slicing and Canny edge detection [116] 
Watermark segmentation [105,106,108,110,113,114] 
Luminance histograms and texture features from GLCM [84] 
DWT [102] 
Security thread information [87,103–105,110,113,114] 
Optically variable ink information [106,110,113] 
SIFT algorithm [112] 
Mean, standard deviation, skewness, entropy, and correlation in an ROI [117] 
Identification mark or number panels [103–106] 
Micro lettering or latent image [104,106] 

If a banknote is in circulation for a long time, it may be difficult to extract correct features for 
counterfeit banknote detection due to its surface being soiled by dirt and sebum from users’ hands. To 
solve this problem, noise removal is performed as a general preprocessing step using techniques based 
on median filtering [87,116], intensity thresholding [97], frame averaging [98], Gaussian low-pass filtering 
[120], and truncated-inhomogeneity-value with squared-homogeneity-difference [75]. Some studies have 
presented methods to normalize the brightness and improve the contrast of the images [116,117]. 

3.4. Classification of Counterfeit Banknote 

Classification, the last step in counterfeit banknote detection, is carried out using the anti-
counterfeiting features extracted in the previous step. Methods used for counterfeit classification are 
similar to those used for classifying banknote recognition. Unlike banknote recognition, the two 
classes are genuine banknote and counterfeit banknote. Figure 16 illustrates an example of SVM-
based counterfeit banknote classification. 
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Figure 16. SVM-based counterfeit banknote classification in the counterfeit banknote detection 
process flow. 

As listed in Table 9, counterfeit banknote classification is performed using various algorithms 
such as template matching [106] or keypoint matching [117], an artificial NN [121], an SVM [84,87,119] 
or multiple kernel SVM [111]. 

Table 9. Methods for classification in the counterfeit banknote detection process flow. 

Method References 
Template matching or keypoint matching [106,117] 

Artificial NN [121] 
SVM [84,87,119] 

Multiple kernel SVM [111] 

3.5. Analyses and Discussion of Counterfeit Banknote Detection 

As mentioned above, unlike in the banknote recognition classification process, in which various 
classes have to be identified concurrently, counterfeit detection needs to classify only two classes, genuine 
banknotes and counterfeit banknotes, and the classifier may be accordingly considered less complicated. 
However, the following two issues should be dealt with and solved in counterfeit  
banknote detection studies: 

- Given the highly sophisticated techniques used for producing counterfeit banknotes, 
distinguishing them from genuine banknotes poses a great challenge. For counterfeit banknote 
classification, it is absolutely necessary to perform precise analyses of the characteristics of all 
anti-counterfeiting features (security features deliberately included in banknotes to deter 
counterfeiting) contained in the genuine banknotes of the denominations concerned. 

- Counterfeit banknote detection is a perpetual process; if a highly efficient counterfeit detection 
algorithm is developed, more refined counterfeit banknotes disabling that algorithm appear, 
which necessitates the development of another algorithm to detect them in a never-ending spear-
and-shield fight. For this reason, it is practically impossible to design a 100% perfect long-lasting 
counterfeit detection algorithm with a genuine banknote false rejection rate of 0%. As an 
alternative approach, developing a highly efficient counterfeit detection algorithm that would 
increase the counterfeit banknote production costs to such an extent that it is not worth making 
counterfeit banknotes may put an end to this endless combat. 
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4. Serial Number Recognition 

4.1. Overall Procedure of Serial Number Recognition 

The serial number recognition step follows the banknote recognition step. It is carried out by 
performing image recognition of the ROI for the serial number specific to the denomination concerned 
using its position information based on the banknote recognition data. As shown in Figure 17, the serial 
number recognition process also goes through the subprocess steps of image preprocessing, feature 
extraction, and classification. 

 
Figure 17. Serial number recognition process flow. 

Like banknote recognition and counterfeit banknote detection, serial number recognition may 
have different degrees of accuracy depending on the currency type. Studies on serial number 
recognition can be divided into studies on the Chinese and Indian national currencies, as listed in 
Table 10. 

Table 10. Resources on serial number recognition by currency (Ref.: References, N/I: No Information, 
A: Available, N/A: Not Available). 

National Currency References 
Databases Availability 

of Database Ref. #Images #Denomination Kind 

China (CNY) [93,122–128] 
[122] 40,000 2 N/A 
[125] 5000 N/I N/A 

[126,127] 24,262 2 A 
India (INR) [129–132] [129,130] 25 5 N/A 

In this table, “N/I” means the case that the detail information is not shown in the paper. “A” 
represents the case that the database is available for research purpose whereas “N/A” shows the case 
that the database is not available. In Table 10, the largest numbers of images are included in the 
database of [122]. Most databases are not available except for those in [126,127]. 

4.2. Image Preprocessing 

Following the banknote recognition process, the preprocessing step of serial number recognition 
generally undergoes noise-removal and binarization processes on the serial number ROI, as 
illustrated in Figure 18. Segmentation separating the serial number components from the background 
is performed as preprocessing for feature extraction to distinguish the individual letters/numbers of 
a serial number. 
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Figure 18. Example of image preprocessing in the serial number recognition process flow. 

Table 11 lists the methods used in the preprocessing step of serial number recognition. If a 
banknote is in circulation for a long time, it may be difficult to distinguish its serial number from the 
background due to its surface being soiled by dirt and sebum from users’ hands. To address this, 
brightness normalization of the banknote image is performed using various methods such as mean 
filtering-based noise reduction [122,123], adjustment of brightness, contrast, and gamma [129], and 
gray-scale normalization [126]. Other measures include size normalization by bilinear interpolation 
[124] and binarization based on the area-ratio and block contrast [125]. These preprocessing measures 
render a banknote fit for separating the serial number from the background. Each letter/number of a 
serial number can then be distinguished from the background with prior information regarding the 
horizontal and vertical lengths of each letter/number in the serial number and a method to detect the 
outermost boundary positions of the horizontal and vertical directions of each letter/number [125]. 

Table 11. Methods for preprocessing in the serial number recognition process flow. 

Methods References 
Mean filtering for noise reduction [122,123] 

Adjustment of brightness, contrast, and gamma [129] 
Size normalization by bilinear interpolation [124] 

Binarization based on the area-ratio and block contrast [125] 
Gray-scale normalization [126] 

4.3. Feature Extraction 

After preprocessing, serial number feature extraction is carried out on each ROI extracted as an 
individual letter/number, as illustrated in Figure 19, which presents an example of key-point-based 
feature extraction. 

 
Figure 19. Example of key-point-based feature extraction in the serial number recognition process flow. 

Serial number feature extraction is carried out using the methods presented in Table 12, namely 
extraction of features from nine local regions and four key-point features from each number/letter 
region [122] and extraction of gradient direction features [126]. Compared with the aforementioned 
feature extraction methods for banknote recognition and counterfeit banknote detection, there are 
only a limited number of studies on feature extraction for serial numbers. This may be attributed to 
the fact that serial number recognition can be classified, once the letter/number region of the serial 
number is detected, using a gray or binarized image, without going through the feature extraction 
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step requiring a separate processing time because there are only letters/numbers and background in 
the serial number region. 

Table 12. Methods for feature extraction in the serial number recognition process step. 

Method References 
Features from nine local regions and four key-point features [122] 

Gradient direction feature [126] 

4.4. Classification 

Classification is carried out after determining the classes of the extracted the letters/numbers 
comprising the serial number based on their characteristics. Figure 20 illustrates an example of NN-
based classification of a serial number. 

 
Figure 20. Example of NN-based classification in the serial number recognition process step. 

As listed in Table 13, algorithms for classification used in the last step of the serial number 
recognition process step include the Euclidean distance-based matching method [122], SVMs [123], 
NNs [124,128], and a cascaded combination of multiple classifiers [126]. 

Table 13. Methods for classification in the serial number recognition process flow. 

Method References 
Euclidean distance-based matching [122] 

SVM [123] 
NN [124,128] 

Cascaded combination of multiple classifiers [126] 

4.5. Analyses and Discussion of Serial Number Recognition 

The following issues should be considered in banknote serial number recognition studies: 

- While serial number recognition is methodologically similar to other in-document number 
recognition problems, it differs from them in that banknote surfaces get soiled over time due to 
dirt and sebum from users’ hands, making it increasingly difficult to distinguish the serial 
number from the background surface as a banknote ages. Moreover, banknotes are frequently 
exposed to risks of damage, such as creases and tears. This makes it necessary to design a strong 
system capable of serial number recognition on the images of various conditions of banknotes, 
including those heavily soiled with hand sebum and dirt or tattered with creases and tears. 

- In general, a banknote serial number contains the year of printing and information on the issuing 
bank. Such information can be effectively used for tracing stolen money and detecting 
counterfeit banknotes once a denomination-wise banknote management system is established. 
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5. Fitness Classification 

5.1. Overall Procedure of Fitness Classification 

Fitness classification of a banknote generally refers to a technique to assess its soiling level using 
visible light and NIR image information. Unlike the image of a clean banknote, a banknote soiled by 
users’ hand dirt or sebum as the result of long use shows decreased brightness on a visible light or 
NIR image. A variety of factors influence the physical state of a banknote, such as the aforementioned 
soiling through dirt and sebum of users’ hands, creases, tears, and scribbling. Most of the previous 
studies on fitness classification use the soiling level as the criterion for judging a banknote fit or unfit 
for further circulation. As shown in Figure 21, fitness classification is carried out in the order of 
feature extraction and classification. 

 
Figure 21. Process flow of fitness classification. 

Table 14. Studies on fitness classification by national currency (Ref.: References, A: Available, N/A: 
Not Available). 

National Currency References 
Databases Availability 

of Database Ref. #Images #Denomination Kind 

Euro (EUR) [100,133–136] 
[100] 800 4 N/A 

[133,136] 9029 4 N/A 

India (INR) [137,138] 
[137] 19,300 5 N/A 
[138] 2300 6 A 

China (CNY) [139,140] [140] 4400 1 N/A 
United States (USD) [138] 3856 7 A 
South Korea (KRW) [138] 3956 4 A 

The standards and accuracy of fitness classification vary according to the currency. Table 14 
shows that studies have been conducted on fitness classification of EUR, INR, CNY, USD, and KRW. 
In this table, “A” represents the case that the database is available for research purpose whereas 
“N/A” shows the case that the database is not available. In Table 14, the largest numbers of images 
are included in the database of [137]. Most databases are not available except for that in [138]. 

5.2. Feature Extraction 

There are various feature extraction methods for fitness classification based on the 
aforementioned basic assumption that as the soiling level of a banknote increases, its image tends to 
be less bright, occasionally showing a higher dispersion rate. As shown in the example in Figure 22, 
a DWT can be used to extract such features for fitness classification. 
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Figure 22. Feature extraction in the fitness classification process flow. 

Table 15 lists various methods that have been used for feature extraction for fitness classification, 
such as gray pixel value [133], color pixel value [133,135,136], pixel values of visible light and NIR 
images [100,134,138], gray level histogram [139], mean and standard deviation from the ROI by DWT 
[137], and acoustic features [141,142]. All methods, except for that using acoustic features, use visible 
light or NIR reflection or transmission images. The study on acoustic features adopted an approach 
to fitness verification using changes in acoustic features of a banknote, drawing on the fact that a 
banknote soiled by dirt and sebum from human hands becomes thicker. One of the listed studies 
presented a method using NIR transmission images instead of reflection images [138]. 

Table 15. Methods for feature extraction in the fitness classification process flow. 

Method References 
Gray pixel value [133] 
Color pixel value [133,135,136] 

Pixel values of visible light and NIR images [100,134,138] 
Gray level histogram [139] 

Mean and standard deviation from ROI by DWT [137] 
Acoustic features of banknotes [141,142] 

5.3. Fitness Classification 

The final fitness classification can be performed in the classification step using various types of 
classifier similar to that of the banknote recognition and serial number recognition processes. A 
method using an SVM-like nonlinear classifier, as shown in Figure 23, was also studied. 

 
Figure 23. Classification in the fitness classification process flow. 

As listed in Table 16, methods used for the classification step of the fitness classification process 
include the Adaboost classifier [133,136], NNs [100,139], SVMs [137,140], and fuzzy systems [138]. As 
in the counterfeit detection process, banknotes are classified into two classes: fit and unfit. 

Table 16. Methods for classification in the fitness classification process flow. 

Method References
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Adaptive boosting (Adaboost) classifier [133,136] 
NN (RBF network or sine basis function) [100,139] 

SVM [137,140] 
Fuzzy system [138] 

5.4. Analyses and Discussion of Fitness Classification 

Fitness classification of banknotes has been a neglected research area in comparison with 
banknote recognition and counterfeit banknote classification. However, with increasing penetration 
of automated self-service machines, such as ATMs, mechanical breakdown caused by unfit banknotes 
has become a serious maintenance and repair issue. Banknotes with high soiling levels also pose 
problems to banknote counters because they trigger false recognition and false rejection problems in 
banknote recognition, counterfeit banknote detection, and serial number recognition. Banks ensure 
circulation of only fit banknotes by withdrawing unfit banknotes from circulation by means of 
continuous fitness classification. In this context, fitness classification of banknotes has recently been 
attracting more attention. The following two issues should be considered in banknote fitness 
classification studies: 

- Most methods for fitness classification classify banknotes into two classes: fit and unfit 
banknotes. However, such a binary classification has the inherent problem of requiring 
subjective judgment without any clear-cut quantifiable criteria. Therefore, experts are usually 
involved to perform visual assessment of the soiling level of banknotes, or densitometers are 
used to distinguish fit and unfit banknotes depending on the measured values. 

- Besides the binary classification of fit and unfit banknotes, it is also important to ensure 
reproducibility of the assigned fitness level when the same banknote is put into a machine 
repeatedly. 

6. Conclusions 

Automated machines such as ATMs and banknote counters are indispensable for large-scale 
banknote circulation and safe transactions. Recent years have also seen extensive research on 
banknote recognition for visually impaired persons [18,23,42,52,143]. While many studies have been 
conducted on banknote recognition methods [143–153] or counterfeit banknote detection methods 
[97,120], this study provides an overview of the overall banknote recognition systems and describes 
in detail each of the process steps of banknote recognition, counterfeit banknote detection, serial 
number recognition, and fitness classification, listing the related studies and describing the methods 
presented by them. These methods are used to recognize banknote information (denomination, 
counterfeit detection, serial number, and fitness classification) using images or sensor data and can 
be applied to automated banknote dispensers and similar self-service terminals. As mentioned above, 
algorithms related to banknote recognition can show different performance characteristics for 
different currencies and numbers of target classes. The more similar the patterns among the 
denominations of a national currency and the higher the number of classes for classification, the lower 
the performance of the applied algorithm, and a stronger algorithm is required. However, an 
algorithm with a large number of computational operations cannot be efficiently used for devices 
requiring rapid processing in an embedded system environment without the aid of a PC, such as a 
banknote counter. Therefore, developing a banknote recognition algorithm with high recognition 
accuracy and processing speed is a great challenge for researchers. Besides banknote recognition, coin 
classification has recently been studied [154,155] using image-based size information and features 
robust to rotation. 

The process flow of counterfeit banknote detection is similar to that of banknote recognition, 
including strong feature extraction and classification steps, but it requires a sensor responding to 
specific wavelengths in order to extract anti-counterfeiting features. While high-resolution image 
sensors and processors may be applied to extract microfine anti-counterfeiting features, such as anti-
copier lines or microlettering, they are disadvantageous in terms of economic feasibility, and UV or 
NIR sensors are commonly used for analyzing anti-counterfeiting features. More recently, counterfeit 
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banknote detection in a mobile environment has been studied [115,118], and a method using data 
communication with a server has also been presented [115]. Studies investigating counterfeit coin 
detection [89,90,156,157] mostly use the X-ray fluorescence-based component analysis instead of 
using visible light. 

Serial number recognition is carried out after banknote recognition by determining the position 
information of the serial number specific to the denomination concerned as the ROI. It requires an 
image-processing technique capable of segmenting the serial number region from the background 
and a pattern-matching algorithm that can classify the class of each number/letter efficiently and 
rapidly. The serial number is a unique piece of information on each banknote, which lends itself well 
to counterfeit banknote detection. Additionally, if server-based data communication becomes 
possible for serial number management, it will greatly contribute to counterfeit banknote detection. 

Fitness classification is a technique used for sorting banknotes in terms of soiling level and is 
necessary for ensuring circulation of clean banknotes. Fitness classification is also important from the 
perspective of counterfeit banknote detection because soiled banknotes tend to broaden the image 
range applicable to genuine banknotes, thus undermining the performance of banknote recognition 
and counterfeit perception algorithms. Fitness classification is also carried out in two process steps 
of feature extraction and classification. Its classification criteria are different from those of banknote 
recognition, counterfeit banknote detection, and serial number detection in that the results largely 
depend on the assessor’s own judgment. To address such an ambiguous boundary, a method 
employing a fuzzy system has been studied [138]. There is a need for a system that can freely control 
and define a fitness boundary. 

As such, if the overall process flow of banknote recognition, counterfeit banknote detection, serial 
number recognition, and fitness classification could be carried out in a refined integral system, such a 
system would greatly contribute to safe banknote transactions and thus prove beneficial to society. 
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