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Abstract: The multichannel or wide-angle imaging performance of synthetic aperture radar (SAR)
can be improved by applying the compressed sensing (CS) theory to each channel or sub-aperture
image formation independently. However, this not only neglects the complementary information
between signals of each channel or sub-aperture, but also may lead to failure in guaranteeing the
consistency of the position of a scatterer in different channel or sub-aperture images which will make
the extraction of some scattering information become difficult. By exploiting the joint sparsity of the
signal ensemble, this paper proposes a novel CS-based method for joint sparse recovery of all channel
or sub-aperture images. Solving the joint sparse recovery problem with a modified orthogonal
matching pursuit algorithm, the recovery precision of scatterers is effectively improved and the
scattering information is also preserved during the image formation process. Finally, the simulation
and real data is used for verifying the effectiveness of the proposed method. Compared with single
channel or sub-aperture independent CS processing, the proposed method can not only obtain
better imaging performance with fewer measurements, but also preserve more valuable scattering
information for target recognition.

Keywords: synthetic aperture radar; multichannel; wide-angle; compressed sensing; joint
sparse recovery

1. Introduction

As an active microwave remote sensing imaging tool, synthetic aperture radar (SAR) has the
unique capability of obtaining abundant electromagnetic information from ground objects throughout
the day and night under all-weather circumstances. As such, SAR imaging has been widely utilized in
many military and civilian applications [1,2]. The development of multichannel and wide-angle SAR
imaging greatly broadens the application field of SAR. Interferometric SAR (InSAR) and polarimetric
SAR (PolSAR) are two representative forms of multichannel SAR. InSAR can obtain three-dimensional
(3-D) topographic mapping data and the ground surface deformation monitoring from the phase
difference of the corresponding pixels of two SAR images received by two spatially separated antennas
or locations [3,4]. PolSAR focuses on transmitting and receiving polarized radar waves to characterize
the observed target. For the sake of polarimetric scattering characteristic analysis, the polarimetric
scattering matrix is firstly extracted from SAR images generated by different polarization channels [5].
In a wide-angle SAR imaging scenario, the isotropic point scattering assumption employed by
conventional imaging does not usually hold, leading to inaccuracies in the relative reflectivities
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of scatterers with different levels of anisotropy. Yet, such aspect dependence can itself be an important
feature for scene interpretation and target recognition. The composite image formation is usually
used for producing a reflectivity estimate for each spatial location and some information on aspect
dependence. The idea is to form sub-aperture images from narrower-angle subsets of the data, and
then form a composite image through a nonlinear combination of these sub-aperture images [6].

In SAR applications, higher image resolutions are usually essential to determine finer parts of the
target for better identification of the target. Conventionally, a finer azimuth resolution of an SAR image
requires a longer coherent accumulation time and a finer range resolution is achieved by increasing
the system bandwidth. Limited by the Nyquist sampling theorem, the SAR system faces a number of
challenges, such as very high sampling rate, a huge amount of sampled data and difficulty of real-time
processing. In particular, for InSAR and PolSAR imaging systems, the data volume may increase by a
factor of 2 and 4, respectively, which will further increase the challenges as mentioned above.

The recently introduced theory of compressed sensing (CS) provides a new sampling paradigm
that is able to reconstruct the sparse or compressible signals exactly from limited measurements
by solving an optimization problem [7,8]. In radar imaging, according to CS theory, if the scene is
sparse or compressible, it is sufficient to use only a few samples to reconstruct a high-resolution
SAR image. Fortunately, many radar scenes are spatially sparse or can be sparsely represented by
time-frequency transform [9], wavelet transform [10] or adaptive sparse transform [11], etc., which
intrinsically provides a foundation to apply CS in generating high-resolution SAR imagery. In [12],
CS is applied to range compression to eliminate the need for the pulse compression matched filter
with reduced samples. For the strip-map SAR, Alonso et al. successfully reconstructs the SAR images
with reduced pulses in azimuth after range compression [13]. As these methods apply CS to either
range or azimuth compression, they are regarded as one-dimensional (1-D) CS-based SAR imaging
methods. Two-dimensional (2-D) CS-based SAR imaging methods and some accelerated algorithms are
proposed in [14–18]. In order to improve the robustness of the CS-based methods, some CS-based SAR
imaging methods take phase errors [19,20] or off-grid problem [21,22] into account during the imaging
process. Besides, CS-based methods for tomography SAR imaging have been successfully applied
in recent years, obtaining high-resolution 3-D images [23–25]. Exploiting the statistics of the target’s
distribution, structured sparse recovery methods are proposed to further improve performance in
high-resolution SAR imaging [10,26–28]. All of the above mentioned works strongly demonstrated that
some advantages of CS-based SAR do exist as compared with traditional SAR imaging methodologies,
say, relaxation of required measurements, reduction of sidelobes, and a further suppression of noise.

However, all those works are based on single channel or narrow-angle SAR systems.
For multichannel SAR systems, such as InSAR and PolSAR, we can directly process each channel
independently using those exiting CS-based SAR imaging methods, and then extract height or
polarization information from multichannel SAR images. Similarly, for wide-angle SAR imaging,
we can directly process each sub-aperture independently using those exiting CS-based SAR imaging
methods, and then extract the aspect scattering information from these sub-aperture SAR images. It is
a fact that the dominant scatterers of the target locate on the same positions in different channel or
sub-aperture images, namely, sharing the same sparsity support. Single channel or sub-aperture CS
independent processing neglects this fact, and thus cannot guarantee the consistency of the number
and the positions of scatterers in different channel or sub-aperture images, leading to difficulties in the
extraction of some scattering information [29–31]. Besides, due to the imaging scene being the same
in each channel or sub-aperture, there exists abundant complementary information between signals
of each channel or sub-aperture, but independent CS processing cannot exploit the complementary
information. If the complementary information is used, namely joint processing of all channels or
sub-apertures, high-quality SAR images can be reconstructed with fewer measurements and the noise
suppression ability can also be improved, compared with independent CS processing.

To overcome the existing problems of independent CS processing when applied to multichannel
or wide-angle SAR imaging, in this paper, we derive a class of signal models for multichannel or
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wide-angle SAR imaging, and propose a novel CS-based method for joint high-resolution imaging and
scattering information preservation. Exploiting the joint sparsity of the signal ensemble, multichannel
or wide-angle SAR imaging is handled as a multichannel joint sparse recovery problem, which is
efficiently solved by modified orthogonal matching pursuit algorithm. SAR images of all channels or
sub-apertures are reconstructed simultaneously. Meanwhile, it guarantees that the number and
the positions of scatterers in each channel or sub-aperture are consistent. Due to the usage of
complementary information, the proposed method can reconstruct high-resolution focused SAR images
with fewer measurements and under lower SNR, compared with independent CS processing. At last,
the experimental data processing results are shown to demonstrate the validity of the proposed method.

The rest of this paper is organized as follows: in Section 2, the observation model of multichannel
or wide-angle SAR system is described. In Section 3, independent CS and joint CS processing methods
are presented, respectively. Section 4 provides the experimental results to verify the proposed method.
Finally, in Section 5, some conclusions are summarized, and the future work outlook is given as well.

2. Signal Model

In SAR systems, one of the most widely used transmitted signals is the chirp signal as follows:

s(tr) = rect
(

tr

TP

)
· exp

[
j2π
(

fctr +
γ

2
t2
r

)]
(1)

where tr denotes the fast time (range time), fc is the carrier frequency, γ is the chirp rate, Tp denotes the
pulse width, and rect(tr/Tp) stands for the unit rectangular function. There are in total L channels in
the multichannel SAR system, and the received signal of the l-th channel can be expressed as:

sl(tr, ta) =
x

D

gl(x, y) exp

{
jπγ

[
tr −

2Rl(ta, x, y)
c

]2
}

exp
[
−j

4π fc

c
Rl(ta, x, y)

]
dxdy (2)

where c is the speed of light, ta is the slow time (azimuth time), D is the region to be imaged, (x,y) is the
coordinates of the target, gl(x,y) is the backward scattering amplitude of the target in the l-th channel,
and Rl(ta,x,y) is the range from the target to the antenna of l-th channel at time ta.

The scene to be imaged is firstly discretized to a 2-D matrix. Then, to denote the radar data in a
matrix multiplication form, the 2-D reflectivity coefficient matrix gl(x,y) is reshaped to a 1-D vector:

gl = [gl(1, 1), · · · , gl(P, 1), gl(1, 2), · · · , gl(P, 2), · · · , gl(1, Q), · · · , gl(P, Q)]T (3)

where [·]T denotes a vector or matrix transpose, gl is a PQ× 1 vector, PQ is the total number of discrete
spatial locations in the scene. P and Q are the number of locations along the x-axis and y-axis.

Based on Equation (2), the discrete normalized spatial expression of the radar data is given by:

sl(tr, ta) =
PQ

∑
i=1

gl(i) exp

{
jπγ

[
tr −

2Rl(ta, i)
c

]2
}

exp
[
−j

4π fc

c
Rl(ta, i)

]
(4)

where gl(i) is the backscattering amplitude of the i-th scatterer (i.e., the i-th element in gl), and Rl(ta,i)
is the distance from the i-th scatterer to the antenna of the l-th channel at azimuth time ta. The imaging
geometry is shown in Figure 1.
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Figure 1. Geometry model for multichannel SAR imaging. 
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Figure 1. Geometry model for multichannel SAR imaging.

In practice, the range and azimuth times are also discrete due to the sampling process. The 2-D
discrete SAR time signal can be expressed as:

sl(tr,n, ta,m) =
PQ
∑

i=1
gl(i) exp

[
−j 4π fc

c R(ta,m, i)
]

exp
{

jπγ
[
tr,n − 2R(ta,m ,i)

c

]2
}

n = 0, 1, · · · , N − 1; m = 0, 1, · · · , M− 1
(5)

where M is the number of azimuth samples and N is the number of samples for each pulse.
Considering the noise in the signal model, Equation (5) can be expressed in a matrix form as:

sl = Algl + el (6)

where sl is an MN × 1 vector, Al is an MN × PQ matrix, gl is a PQ× 1 vector, and el is the noise term.
In (6):

sl = [sl(tr,1, ta,1), · · · , sl(tr,N , ta,1), sl(tr,1, ta,2), · · · , sl(tr,N , ta,2), · · · , sl(tr,1, ta,M), · · · , sl(tr,N , ta,M)]T (7)

Let:

al(tr,n, ta,m, i) = exp
[

jπγ(tr,n − 2Rl(ta,m, i)/c)2
]

exp[−j4π fcRl(ta,m, i)/c];

al,i = [al(tr,1, ta,1, i), · · · , al(tr,N , ta,1, i), al(tr,1, ta,2, i), · · · ,
al(tr,N , ta,2, i), · · · , al(tr,1, ta,M, i), · · · , al(tr,N , ta,M, i)]

(8)

then the projection matrix can be expressed as:

Al =
[
al,1, al,2, · · · , al,i, · · · , al,PQ

]T (9)

Hence, the projection from the scene to the returned data of the i-th channel is obtained. Like
Equation (6), the projections of other channels can also be obtained easily. Due to the same sampling
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area, the support sets of gl(l = 1, 2, · · · , L) are consistent, and the only difference is the backward
scattering amplitude. In conclusion, the multichannel SAR imaging model can be expressed as:

s =



s1
...
sl
...
sL−1

sL


=Ag+e=



A1
...
Al
...
AL−1

AL





g1
...
gl
...
gL−1

gL


+



e1
...
el
...
eL−1

eL


(10)

where s is an LMN × 1 vector, corresponding to multichannel SAR returned signal; A is an
LMN × PQ matrix, corresponding to the projection of the targets to the multichannel antennas;
g is an LPQ× 1 vector, corresponding to the backscattering amplitude of L channels; e is an LPQ× 1
matrix, corresponding to the noise of each channel. Without loss of generality, the projection matrixs
Al(l = 1, 2, · · · , L) is considered to be varied with different channels. In many situations, such as
PolSAR and InSAR, the projection matrices Al(l = 1, 2, · · · , L) are the same in different channels.

In wide-angle SAR imaging, due to the dependence of the reflectivity response on the aspect of an
impinging electromagnetic wave, there exists a reflectivity map of a scene at each aspect. Assume that
the imaging scene is interrogated and reconstructed at a number of different aspects. Denote the set of
time observations at the l-th aspect as sl , denote the spatial reflectivity field at the l-th aspect as gl and
denote the projection from the scene to the returned data of the l-th aspect as Al . Then the signal model
of wide-angel SAR imaging can be also expressed the same as Equation (10). We emphasize the spatial
geometry of the data collection, as well as aspect angles at which the spatial reflectivity fields are being
reconstructed on Figure 2. This figure shows a target in the coordinate center and the aircraft’s circular
trajectory at a large stand-off range, with the phase history returns over small sub-apertures tied to
one spatial image.
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Figure 2. Wide-angle SAR data collection and reflectivity reconstruction geometry. The aircraft 
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Figure 2. Wide-angle SAR data collection and reflectivity reconstruction geometry. The aircraft
transmits pulses at the ground patch from a circular trajectory and reflectivity fields of the ground
patch are reconstructed at a discrete set of aspects.
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3. Multichannel and Wide-Angle SAR Imaging Based on CS

3.1. The Scheme of Compressive Sampling

In order to apply a CS scheme to Equation (10), a reduced set of elements in s is selected randomly,
and a reduced set of rows in A is also selected accordingly. Rigorously, this sampling process can
be realized with a measurement matrix Φ. Let sCS = Φs be the down-sampled data selected from s
randomly, eCS = Φe be the noise included with the signal sCS, ACS = ΦA be the reduced projection
matrix, the rows of which are selected from A accordingly. The CS measurement of the multichannel
or wide-angle SAR signal can be expressed as:

sCS = Φs =


Φ1 0 · · · 0
0 Φ2 · · · 0
...

...
. . . 0

0 0 · · · ΦL

s = ΦAg + Φe = ACSg + eCS (11)

where Φl = Φa
l ⊗ Φr

l (l = 1, 2, · · · , L) represents the measurement matrix of each channel or
subaperture,⊗ represents the Kronecker product, Φa

l corresponds to the measurement submatrix in the
azimuth direction, Φr

l corresponds to the measurement submatrix matrix in the range direction. In the
radar system, we can realize the random range under-sampling by using a random A/D converter or
random frequency synthesizer driven by set of random numbers [32]. For the azimuth under-sampling,
there are two methods: random azimuth under-sampling and jittered azimuth under-sampling [12].

After compressive sampling, the sampling data sCS of the signal s is far from Nyquist sampling
requirements, and thus the traditional SAR imaging methods cannot realize imaging efficiently.
However, provided that the sparsity or compressibility condition holds, the targets can be reconstructed
exactly by using the CS scheme. In radar imaging, many radar scenes are spatially sparse or can be
sparsely represented [9–11], which meets the condition of CS application and thus CS can be applied
into radar imaging.

3.2. Independent CS Processing Method

We can easily apply the conventional CS-based SAR imaging methods to each channel or
sub-aperture. According to CS, g can be recovered by solving L optimization problems corresponding
to each channel or sub-aperture:

min‖gl‖0 suject to ‖sCS
l −ACS

l gl‖
2
2 ≤ ξl (l = 1, 2, · · · L) (12)

where ‖·‖0 is defined as the number of the non-zero elements (also called sparsity or l0 norm), min(·)
denotes the minimization, gl is the backward scattering estimator of the l-th channel or sub-aperture
with respect to ACS

l and ξl is the noise level of the l-th channel or sub-aperture, which can be estimated
by the range bins containing only noise [9]. When L optimization problems are successively solved,
SAR images of all channels or sub-apertures are obtained accordingly.

Since Equation (12) is an NP-hard problem, namely computationally infeasible, in practice
approximations of Equation (12) are explored to give approximate solutions. This optimization
problem can be efficiently solved by both greedy algorithms such as orthogonal matching pursuit
(OMP) [33] and regularized orthogonal matching pursuit (ROMP) [34] and compressive sampling
matching pursuit (CoSaMP) [35], etc. An alternative solution uses l1 norm instead of l0 norm to convert
it into a convex optimization problem [36], which is usually more precise but less efficient. To improve
the computational efficiency of l1 norm optimization problem, some algorithms are sequentially
proposed, such as fast iterative shrinkage/thresholding algorithm (FISTA) [37], sparse reconstruction
by separable approximation (SpaRSA) [38], and split augmented Lagrangian shrinkage algorithm
(SALSA) [39]. SALSA is consistently and considerably faster than the state of the art methods FISTA
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and SpaRSA, due to the usage of the Hessian of the data fidelity term. In the case of SAR imaging,
the signal for construction (i.e., the backward scattering coefficient vector after the discretization of
the scene) is usually very long, so we need to choose some faster algorithms. Generally, the OMP
algorithm is faster and easier to implement, and provides guarantees of exact recovery. In this paper,
the OMP algorithm is selected to solve the optimization problem.

The purpose of the application of CS is to reduce the sampling data. The needed measurements
is closely related to the sparsity K, namely the amount of dominant scatterers. According to the CS
theory, the required number of target samples Ns should satisfy Ns = O(K log(PQ/K)). In many
scenes, the amount of dominant scatterers is usually much less than that of the pixels of the image
plane. The more sparse nonzero pixels distribute over the image plane, the larger the data reduction
rate can be set. In real applications, there always needs the statistical analysis of the imaging scene
before the selection of the data reduction rate. For complex imaging scene, such as land, the nonzero
pixels occupy most of the SAR image. In this case, the sparsity assumption cannot hold and thus the
data reduction rate is very low. However, this does not mean that the CS theory cannot be applied
in the complex scene. The scene can be sparsely represented by time-frequency transform, wavelet
transform or adaptive sparse transform. We can recovery the coefficients of sparse transform with
fewer measurements and then obtain the required SAR image by inverse sparse transform. The needed
measurements is closely related to the number of nonzero coefficients. Therefore, it is very important
to select suitable sparse transform for reducing the measurements.

After the estimation of the backward scattering coefficient vector g, we can obtain high- resolution
SAR images of each channel or sub-aperture. Next, some valuable information can be extracted from
the obtained images of each channel or sub-aperture. For example, InSAR exploits the phase difference
of the SAR images from two closely separated antennas to obtain the height information of the target;
PolSAR extracts polarization characteristic from the SAR images generated by each polarimetric
channel data; wide-angel composite SAR image can be obtained by a nonlinear combination of these
sub-aperture images, and the scattering shapes in the azimuth direction are also extracted, being
helpful for target recognition. It should be noted that since the height, polarization characteristic or
aspect scattering information is closely related with the phase or amplitude among all SAR images
of different channels or sub-apertures, it is important to guarantee that the positions and number of
scatterers in each channel or sub-aperture. However, independent CS processing cannot guarantee
that the dominant scatterers are present in the same pixels in the different recovered high-resolution
images. Besides, the independent channel CS processing cannot make full use of the increase of data
rate to improve the SNR gain.

3.3. Joint CS Processing Method

In order to improve the performance of independent CS processing, in this subsection, a CS-based
method for joint high-resolution imaging and information preservation is proposed. As each channel
or sub-aperture observes the same area, the data in each channel or sub-aperture are strongly related.
According the prior information, the multichannel or multi-aspect signals share the same sparsity
support over all channels or sub-apertures, which means that the position of every scatterer is identical
in all channel or sub-aperture images, but its amplitude may be different. In other words, the sparse
solution has the nonzero elements at the same locations but different coefficients in all channels or
sub-apertures. This makes sense, as the ensemble is jointly sparse. As a result, by concatenating the
coefficient matrices gl of each channel or sub-aperture, a novel minimization sparsity-constraint term
described the joint sparsity characteristic is formulated as:

‖g‖0 = ‖|g1|+ |g2|+ · · ·+ |gl |+ · · ·+ |gL|‖0 (13)
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where ‖g‖0 denotes the mixed norm, which promotes the sparsity and captures the essence nature of
signal ensemble. Then we can reconstruct multichannel or wide-angel SAR images simultaneously by
solving the following minimization problem:

min
gl(l=1,2,··· ,L)

‖g‖0 suject to


‖sCS

1 −ACS
1 g1‖

2
2 ≤ ξ

‖sCS
2 −ACS

2 g2‖
2
2 ≤ ξ

...
‖sCS

L −ACS
L gL‖

2
2 ≤ ξ

(14)

where ξ is chosen according to the channel with lowest noise level to make sure good SAR images can
be obtained in each channel or sub-aperture.

Comparing Equations (12) with (14), the difference between the independent CS processing and
joint CS processing methods lies in the sparsity-constraint term. Independent CS processing aims
to minimize the sparsity-constraint term according to the sparse property of the signal in a single
channel or sub-aperture, but it cannot guarantee the nonzero pixels present on the same positions in the
different recovered high-resolution SAR images. In contrast, exploiting the joint sparsity characteristic
of multichannel or multi-aspect signals, the sparsity-constraint term in the joint CS processing method
minimizes most elements in the same locations from the measurements. As a consequence, the
recovered SAR images in different channels or sub-apertures share the same number and locations of
the scatterers and more valuable scattering information can be preserved during the imaging process.

To solve Equation (14), we propose an improved OMP algorithm to realize joint sparse recovery
of multichannel or multi-aspect target vectors. The algorithm’s steps are as follows:

1. Initialize: Set the iteration counter t = 1. For each channel or sub-aperture index l, initialize the
target vector gl,0 = 0, the support set Λ0 = 0, and the augmented matrix Φl,0 = 0, which will be
composed of the selected vectors ACS

l according to the index set. Let rCS
l,t denote the residual of

the signal sl remaining after the first t iterations, and initialize rCS
l,0 = sCS

l .

2. Find the index λt that solves the easy optimization problem:

λt = argmax
k=1,··· ,PQ

L

∑
l=1

∣∣∣〈rCS
l,t−1, ACS

l,k

〉∣∣∣ (15)

where ACS
l,k is the k-th column vector of the matrix ACS

l .

3. Augment the support set and the matrix of chosen atoms: Λt = Λt−1 ∪ {λt} and Φl,t =
[
Φ ACS

l,λt

]
.

4. Calculate the projection coefficient gl,t onto the span of the augmented matrix Φl,t, using standard
techniques for least-squares problems:

gl,t = argmin
gl

‖sCS
l −Φl,tgl‖2 (l = 1, 2, · · · , L) (16)

5. Renew the residual signal rCS
l,t , i.e.:

rCS
l,t = sCS

l −Φl,tgl,t (l = 1, 2, · · · , L) (17)

6. Check for convergence: If ‖rCS
l,t ‖2

> ε‖sCS
l ‖2 for all l, then increment t and go to Step 2; otherwise,

stop. The parameter ε determines the target error power level allowed for algorithm convergence.

Compared with the standard OMP algorithm when applied in the independent CS processing,
the main difference of the proposed algorithm lies in Step 2. In the standard OMP algorithm, the
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sparsity support index set may be varied in different channels or sub-apertures because the index λt,l
is determined by the lth channel or sub-aperture itself:

λt,l = argmax
k=1,··· ,PQ

∣∣∣〈rCS
l,t−1, ACS

l,k

〉∣∣∣ (l = 1, 2, · · · , L) (18)

As a result, the number or locations of the nonzero elements in the recovered target vectors may
be also varied over different channels or sub-apertures. In contrast, the proposed algorithm selects the
index λt by processing the multichannel or multi-aspect signals jointly. Thus the support set is the
same and the sparse solution has the nonzero elements on the same positions, namely the consistency
of the number and the positions of scatterers in all channel or sub-aperture images. Therefore, the
proposed method effectively overcomes the problem of nonalignment of scatterers in different channels
or sub-apertures brought by the traditional independent CS processing.

The running time of the independent CS processing method using the standard OMP algorithm
is dominated by the step of the index selection, whose total cost is O(LtendNsPQ), where Ns is the
length of the sampled signal and tend is the iteration counter at the end of the algorithm [28]. The
running time of the proposed method matches that of independent CS processing, only the increment
of LtendPQ addition. In practical operation, the increment of the computational complexity can almost
be ignored.

4. Experimental Results and Analysis

4.1. Experimental Results for InSAR

The target model of five metal balls is shown in Figure 3. According to the anechoic chamber
existing condition’s foundation, the InSAR hardware-in-the-loop system is constructed, as shown
in Figure 3. The movement of the scanning frame along a slide guide simulates the flight trajectory
of airborne SAR. Two closely consecutive scanning paths are used for the simulation of two closely
separated antennas in the InSAR system. Figure 4 shows the target model of five metal balls. The test
parameters are listed as follows: the vertical distance between the scanning path and the target is 2 m,
the center frequency is 10 GHz, the baseline length between two scanning paths is 0.02 m; the system
bandwidth is 4 GHz, the step size of the frequency is 40 MHz, the width of the scanning path is 1 m
and there are 51 sampling points.
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Figure 3. Target model of five metal balls. (a) 3-D spatial distribution; and (b) the photo in the anechoic 

chamber. 
Figure 3. Target model of five metal balls. (a) 3-D spatial distribution; and (b) the photo in the
anechoic chamber.



Sensors 2017, 17, 295 10 of 21
Sensors 2017, 17, 295 10 of 21 

 

Controler

Scanning frame 

Antennas 
Vector network analyzer 

Scanning path 1

Scanning path 2

Target 

 

Figure 4. InSAR hardware-in-the-loop system constructed in the anechoic chamber. 

Figures 5 and 6 show comparisons of the imaging results obtained by different methods, when 

the full and partial data is used, respectively. It is apparent that the resolution of 2-D SAR images 

obtained by the conventional filtered back-projection (FBP) method is low because of high sidelobes, 

leading to difficulties in target identification. Moreover, the FBP method cannot reconstruct  

high-quality SAR images when 25% of the full data is used. On the contrary, the CS-based methods 

(including single channel CS and multichannel joint CS methods) can effectively restrain the 

sidelobes and mitigate the blurring effect to obtain the well-focused images. Especially, when 25% of 

the full data is used, the CS-based methods can still guarantee the accuracy of the reconstruction. 

 

   

   
(a) (b) (c) 

Figure 5. Comparison of imaging results by different imaging methods. Images in the first row are 

from the results of channel 1. Images in the second row are from the results of channel 2. (a) FBP 

method; (b) single channel CS method; and (c) multichannel joint CS method.  

Figure 4. InSAR hardware-in-the-loop system constructed in the anechoic chamber.

Figures 5 and 6 show comparisons of the imaging results obtained by different methods, when the
full and partial data is used, respectively. It is apparent that the resolution of 2-D SAR images obtained
by the conventional filtered back-projection (FBP) method is low because of high sidelobes, leading to
difficulties in target identification. Moreover, the FBP method cannot reconstruct high-quality SAR
images when 25% of the full data is used. On the contrary, the CS-based methods (including single
channel CS and multichannel joint CS methods) can effectively restrain the sidelobes and mitigate the
blurring effect to obtain the well-focused images. Especially, when 25% of the full data is used, the
CS-based methods can still guarantee the accuracy of the reconstruction.
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Figure 5. Comparison of imaging results by different imaging methods. Images in the first row are
from the results of channel 1. Images in the second row are from the results of channel 2. (a) FBP
method; (b) single channel CS method; and (c) multichannel joint CS method.
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Figure 6. Comparison of imaging results by different imaging methods using 25% of full data. Images
in the first row are from the results of channel 1. Images in the second row are from the results of
channel 2. (a) FBP method; (b) single channel CS method; and (c) multichannel joint CS method.

It is widely known that, for InSAR, the height information of the target can be estimated from the
phase difference between the SAR images generated by different channels. Thus, it is important to
preserve the cross-channels information. As shown in Tables 1 and 2, the single channel CS independent
processing cannot guarantee that the dominant scatterers are present in the same pixels in the different
generated SAR images.

Table 1. The reconstructed positions of each metal ball by different CS-based methods using full data.

Method Channel Ball 1 Ball 2 Ball 3 Ball 4 Ball 5

Single channel
CS method

Channel 1 (−0.01, 0.09) (0.20, 0.08) (0.11, 0.01) (0.01, −0.09) (0.20, −0.1)
Channel 2 (−0.01, 0.08) (0.20, 0.09) (0.11, 0.00) (0.01, −0.09) (0.20, −0.1)

Multichannel
joint CS method

Channel 1 (−0.01, 0.09) (0.20, 0.09) (0.11, 0.01) (0.01, −0.09) (0.20, −0.1)
Channel 2 (−0.01, 0.09) (0.20, 0.09) (0.11, 0.01) (0.01, −0.09) (0.20, −0.1)

Table 2. The reconstructed positions of each metal ball when 25% of full data is used.

Method Channel Ball 1 Ball 2 Ball 3 Ball 4 Ball 5

Single channel
CS method

Channel 1 (−0.01, 0.08) (0.21, 0.09) (0.12, 0.01) (0.01, −0.10) (0.20, −0.11)
Channel 2 (−0.01, 0.09) (0.20, 0.08) (0.11, 0.01) (0.01, −0.09) (0.20, −0.10)

Multichannel
joint CS method

Channel 1 (−0.01, 0.09) (0.20, 0.08) (0.12, 0.01) (0.01, −0.09) (0.20, −0.1)
Channel 2 (−0.01, 0.09) (0.20, 0.08) (0.12, 0.01) (0.01, −0.09) (0.20, −0.1)

This inconsistency of the positions of the scatterers in different SAR images will lead to the failure
of the height estimation of the target. Figure 7a gives the height estimation of the target when the
full data is used. It is shown that the height information of only two balls can be obtained. And even
worse, when 25% of the full data is used, the positions of five balls are not consistent, which will lead
to the entire failure of the height estimation of the target. However, by exploiting the joint sparsity
property of the multichannel signals, multichannel joint CS method can guarantee the consistency of
the positions of all scatterers in different channels and preserve the cross-channels information, which
is beneficial for the height estimation of scatterers, as shown in Figures 7b and 8. Besides, multichannel
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joint CS processing need fewer samples for reconstruction than single channel CS processing, due to
the usage of the complementation of multichannel signals.
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Figure 8. The height estimation from the generated SAR images by the multichannel joint CS method
when 25% of full data is used.

4.2. Experimental Results for PolSAR

4.2.1. Electromagnetic Simulation Data of Backhoe

To verify the effectiveness of the proposed method when applied for PolSAR, we firstly use the
backhoe data which is provided in the website of https://www.sdms.afrl.af.mil [40]. The data consists
of simulated wideband (7–13 GHz), full polarization, complex backscatter data from a backhoe vehicle
in free space. A three-dimensional CAD model of the backhoe is shown in Figure 9. In this experiment,
we only select full polarization data with the center frequency of 10 GHz, the bandwidth of 500 MHz
and the angular aperture is 5◦.

Figure 10 shows the comparison of full polarization SAR imaging results obtained by different
methods. It is apparent polarization that full polarization SAR images generated by conventional FBP
method are of low resolution and have high sidelobes, leading to difficulty in target identification.
However, results generated by CS methods (both single channel CS and multichannel joint CS methods)
show higher resolution and much less sidelobes. As shown in Figure 10b, the single channel CS
independent processing cannot guarantee that the dominant scatterers are present in the same pixels
among the generated SAR images from different channels, leading to deteriorate the cross-channels
information. In contrast, by exploiting the joint sparsity property of the multichannel signals, the
multichannel joint CS method can realize joint high-resolution imaging and cross-channels information
preservation, effectively improving the recovery accuracy of scatterers, as shown in Figure 10c.

https://www.sdms.afrl.af.mil
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Figure 10. Comparison of imaging results by different imaging methods. (a) Traditional filtered
back-projection method; (b) single channel CS method; and (c) multichannel joint CS method.

Next, the performance of the proposed method at varying noise levels and with different sparse
samples will be discussed. In order to show the performance of the proposed method in the presence
of noise, SNRs ranging from −10 to 10 dB are tested with 50 trials carried out at each SNR level. In a
similar way, different sparsely sampled data are tested with 50 trials for each sampled data, so as to
test the performance of the proposed method when sparsely sampled data are used. For each SNR
and sampled data, the mean square error (MSE) of the amplitude for each channel is calculated and
depicted in Figure 11. It can be observed in Figure 11 that when the SNR and the sampling ratio
increases, the MSE of the amplitude for each channel quickly decreases; multichannel joint CS method
can reconstruct full polarization SAR images with fewer measurements and have stronger suppression
capability than the single channel CS method.
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4.2.2. Real Measured Data in the Anechoic Chamber

Experimental results are presented with the usage of real data acquired in the anechoic
chamber to demonstrate the validity of the proposed method. As shown in Figure 12, the PolSAR
hardware-in-the-loop system consists of a scanning frame, a vector network analyzer, four wideband
antennas, and the scene including three trees. The movement of the scanning frame along a slide guide
simulates the flight trajectory of airborne SAR. During the data acquisition, four antennas are employed
with two transmitting horizontal (H) and vertical (V) polarization waves, and the other two receiving H
and V polarization returns, which is shown in Figure 13a. It should be noted that due to the hardware
limitation, the polarimetric measurement is not simultaneous, which means that the polarization
waveform is alternately transmitted between H and V polarization, that is, first H polarization,
then V polarization, etc. When the H polarization waveform is transmitted, the echoes of HH and
HV polarization channels can be obtained simultaneously. When the V polarization waveform is
transmitted, the echoes of VH and VV polarization channels can be obtained simultaneously. The whole
observed scene in the anechoic chamber is shown in Figure 13b. Significant system parameters are
given in Table 3.

Figure 14 shows the comparison of imaging results in four polarization channels obtained by
different methods. It is apparent in Figure 14 that the SAR images obtained by conventional FBP
method are of low resolution and have high sidelobes, which is not rich enough for further SAR image
interpretation. SAR images generated by CS-based imaging methods (both single channel CS and
multichannel joint CS methods) show a much higher resolution with much less sidelobes. By observing
the SAR images in the second row in Figure 14 generated by single channel CS method, the number
and positions of scatterers are not aligned in different channels. As a result, it is not easy to acquire
the corresponding polarimetric scattering matrix of each scatterer and polarization information of
some scatterers may be lost. While in results generated by multichannel joint CS method depicted in
the third row in Figure 14, the number and positions of all scatterers in all channels are consistent;
thus, the corresponding polarization information of each scatterer can be obtained. In order to show
the advantage of multichannel joint CS method, we select some the strongest scatterers in the region
marked by the dash squares in the second and third rows in Figure 14. The coordinates of the marked
scatterers in the second row are changing in different channels, and some scatterers existed in one
channel cannot be constructed in other channels. While in the third row, all scatterers are aligned, and
only their amplitudes are different. Furthermore, the approximate shape of three trees is marked by
the dash circles in the second and third rows in Figure 14. Compared with the SAR images in the
second row, the SAR images in the third row are more close to the real scene, which is more beneficial
for target recognition.
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Table 3. System parameters. 

Parameter Value 

Carrier Frequency 10 GHz 

System Bandwidth 1 GHz 

Frequency Step 12.5 MHz 

Number of Transmitted Frequencies 81 
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Table 3. System parameters.

Parameter Value

Carrier Frequency 10 GHz
System Bandwidth 1 GHz

Frequency Step 12.5 MHz
Number of Transmitted Frequencies 81

Scanning Length 3 m
Scanning Interval 15 mm

Measuring distance 5 m
Look-down angle 20◦

Next, in the CS framework, we randomly select samples with sparse frequencies and scanning
locations. Figure 15 shows the comparison of imaging results from 50% and 25% of the full data by
two CS-based methods. As is shown in Figure 15, compared with the single channel CS method, the
imaging performance of multichannel joint CS method has a smaller influence when the sampled
data decreases. It means that multichannel joint CS method can obtain focused SAR images with
fewer measurements, which will be beneficial for further reducing sampled data of the SAR system.
Besides, multichannel joint CS method still preserves the cross-channels information, guaranteeing the
consistency of the number and positions of scatterers.
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4.3. Experimental Results for Wide-Angle SAR

To verify the effectiveness of the proposed method when applied for wide-angle SAR composite
image formation, we also use the backhoe data which is provided in the website of https://www.
sdms.afrl.af.mil [40]. The CAD model of the backhoe is given in Figure 16a. In this experiment, we
only select VV polarization data with the frequency bandwidth of 1 GHz around the center frequency
of 10 GHz, the whole angular aperture of 65◦. The reconstruction grid is chosen such that one
121 × 121 spatial image is reconstructed every 5◦. Thus, there are total of 25 jointly reconstructed
images corresponding to 25 consecutive, overlapping viewing aspects. Note that these images are
plotted in dB scale, by first thresholding small values to zero at the same threshold level for both joint
and independent CS reconstructions. The composite image results show the backhoe’s reflectivity
in much finer detail when compared to results of FBP method applied to the full aperture data. The
composite image by traditional FBP method is of low resolution and has high sidelobes due to only
small sub-aperture. However, the composite image by the CS-based method, including independent
and joint CS processing methods, show a much higher resolution with much less sidelobes. Besides,
spatial support of the composite image by joint CS processing method is much smaller and only the
dominant features are reconstructed. Although independent CS reconstructions also identify dominant
features, some false scatterers appear in the reconstructed image.
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Figure 16. Comparison of imaging results by different imaging methods. (a) The backhoe CAD
model; (b) FBP method applied on the full aperture of 65◦; and composite images of (c) FBP method;
(d) independent CS reconstruction and (e) joint CS reconstruction of 22 images each corresponding to a
sub-aperture of 5◦.

Figure 17 shows the magnitudes of the backhoe’s spatial reflectivity when viewed from several
reconstruction angles. Independent and joint CS processing methods produce better focused imagery,
whereas the images reconstructed by the FBP method have noticeable sidelobes which is not beneficial
for target identification. Independent CS reconstruction yields more magnitude responses, while joint
CS reconstruction produces images with more compact spatial support.

In Figure 18 we present reconstructed scattering shapes as a function of azimuth for a set of
sample pixels. As expected, the target aspect scattering behavior has limited persistence. The fine
detail provided in these plots allows for a scatterter feature extraction. For example, scatterers such as
flat, metal plates have glint anisotropy that is very thin in azimuth, whereas flag and metal poles act as
isotropic point scatters. Note that joint CS processing typically produces smooth scattering shapes,
whereas independent CS processing reconstructs shapes that are jittery.

https://www.sdms.afrl.af.mil
https://www.sdms.afrl.af.mil
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Figure 17. Three method’s reconstructed SAR images each of 5◦ width with maximum number of
measurements. Columns left to right correspond to images centered at −7.5◦, 2.5◦, 15◦, 27.5◦ degrees
azimuth. Rows correspond to FBP method (top row), independent CS processing (middle row) and
joint CS processing (bottom row).
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5. Conclusions 

Based on CS theory, a novel multichannel and wide-angle SAR joint high-resolution imaging 

and information preservation method is proposed in this paper. By using the joint sparsity of the 

signal ensemble, compressive sampling in the range and azimuth directions, and improved OMP 

algorithm to solve the joint sparse recovery problem, the proposed method can use fewer 

measurements to realize high-resolution imaging and preserve the cross-channels or cross-sub-

apertures information during the image formation, which is beneficial for the extraction of some 

valuable scattering information and reducing the data storage cost. Finally, experimental data 

processing results are used for verifying the validity of the proposed method.  

Although a point-like target model is applied, which is reasonable according to the experimental 

data results, it may be an issue in imaging a complex target with extended scatterers. In these cases, 

the scattering response cannot be well described by the point-like target model, and thus, the sparsity 

assumption may not hold. Future work will focus on SAR imaging in a more complex scene. 
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5. Conclusions

Based on CS theory, a novel multichannel and wide-angle SAR joint high-resolution imaging and
information preservation method is proposed in this paper. By using the joint sparsity of the signal
ensemble, compressive sampling in the range and azimuth directions, and improved OMP algorithm
to solve the joint sparse recovery problem, the proposed method can use fewer measurements to realize
high-resolution imaging and preserve the cross-channels or cross-sub-apertures information during
the image formation, which is beneficial for the extraction of some valuable scattering information and
reducing the data storage cost. Finally, experimental data processing results are used for verifying the
validity of the proposed method.

Although a point-like target model is applied, which is reasonable according to the experimental
data results, it may be an issue in imaging a complex target with extended scatterers. In these cases,
the scattering response cannot be well described by the point-like target model, and thus, the sparsity
assumption may not hold. Future work will focus on SAR imaging in a more complex scene.
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