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Abstract: This paper introduces an alternative approach to the camber angle measurement for vehicle
wheel alignment. Instead of current commercial approaches that apply computation vision techniques,
this study aims at realizing a micro-control-unit (MCU)-based camber inspection system with a 3-axis
accelerometer. We analyze the precision of the inspection system for the axis misalignments of the
accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the
camber inspection system imperfectly. The calibrations that can amend these axis misalignments
between the camber inspection system and the accelerometer are also originally proposed since
misalignments will usually happen in fabrications of the inspection systems. During camber angle
measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be
perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle
measurements. The results show that the proposed approach is applicable with a precision of±0.015◦

and therefore facilitates the camber measurement process without downgrading the precision by
employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles
can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi.

Keywords: accelerometer; camber angle; coordinate transformation; wheel alignment

1. Introduction

Vehicle safety and quality are crucial to both manufacturing and maintenance in the automotive
industry. Vehicle wheel alignments, including correct inspections and adjustments of wheel
characteristic angles, are required [1]. Vehicle wheel alignment becomes essential since the wheel
camber angle affects steering controllability and stability, while the wheel toe angle is related to fuel
efficiency, tire lifespan, and driving comfort [2]. Misalignments of wheels may effectuate rapid and
irregular tire wear. In addition, they may decrease the capability of the vehicle’s handling and safety.
The camber angle is defined as the angle between the normal vector of the tire plane and that of
the vertical plane viewed from the front of a vehicle. The camber angle has a major influence on
the cornering force and on the road handling of the vehicle [3] and therefore plays one of the most
significant roles in vehicle handling and safety. In recent decades, technique development for camber
angle measurements has received a great amount of attention and has seen tremendous improvement.
In brief, measurement techniques moved from mechanical and electromechanical inspection devices
to the so-called vision-based systems (2D and 3D). The precision of the measurements by the former
technique, which is labor-intensive and time-consuming, has been gross. The latter has improved
the precision of the inspections. In general, the precision for camber angle measurements is about
±0.02◦ in commercial applications. Furferi et al. have proposed an approach to designing and
assessing a machine vision-based system for automatic vehicle wheel alignment [4]. This approach
can provide the camber angle without a highly precise application of structured targets on the
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wheels. Padegaonkar et al. also addressed an idea that implements a contactless inspection of
wheel characteristic angles using a 3D stereo-vision technique in order to increase the precision [5].
Baek et al. have utilized point clouds from the range image stream generated by the Microsoft Kinect
system, which is equipped with a consumer-grade depth-sensing camera [6].

Figure 1 shows a typical computer vision-based inspection system for wheel alignments.
Vision-based systems utilize images captured by video cameras and the image process algorithm
to obtain main wheel angles. The target boards have to be mounted on the wheels before applying
the system as the vehicle balances on the platform [7,8]. The vehicle must move on the platform for
a certain distance while the system operates. Vision-based systems still have some drawbacks although
the measurement procedure and the precision have improved. For instance, moving the vehicle on the
platform may lead to hazardous conditions. Moreover, measurements take more time when mounting
the target boards on the wheels since the mounting procedure, with extremely stable connections,
requires a greater amount of attention if more precise results during the movement and rotation of the
wheels are desired.
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Figure 1. A typical computer vision-based inspection system for wheel alignments.

We propose an approach to performing camber angle measurements based on a micro-control
unit (MCU). We employed two main components: the MCU and the 3-axis accelerometer.
The MCU-based approach makes use of the 3-axis accelerometer to acquire gravity, and applies
the coordinate transformation between the camber inspection system and the vehicle. In this approach,
perfect alignment for the x-axis or the z-axis of the camber inspection system and that of the wheel is not
necessary since the misalignment angle for the camber inspection system can be compensated by the
proposed approach autonomously. Furthermore, the axis misalignment of the accelerometer can also
be redressed by an appropriate calibration procedure to increase measurement precision. This paper
also analyzes the precision of the inspection system for the axis misalignments of the accelerometer.
Two typical authentic camber angle measurements were achieved. The results show that the precision
of the MCU-based system is not less than that of the vision-based systems, but the MCU-based system
is much cheaper, safer, and more easily operated compared with the vision-based system.

This paper defines the 3-D components in a Cartesian Coordinate C as follows: xC
yC
zC
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matrix according to the vector
(

xC yC zC

)T

C
. C can be vehicles, wheels, the accelerometer, or the

camber inspection system in this paper.

2. The Coordinate Transformation between Vehicle and Camber Inspection System

The camber inspection system can sense the local gravity (not always equal to 1 g = 9.8 m/s2) in
the camber inspection system coordinate (Coordinate S), while the local gravity is only in downward
of the vehicle coordinate (Coordinate V). The coordinate transformation between Coordinates V and S
will facilitate computations for the camber measurement since the local gravity is the same vector with
different representations according to Coordinates V and S. Figure 2 shows Coordinate V, where x-, y-,
and z-axes of Coordinate V are defined as forward, rightward, and downward, respectively. The x-, y-,
and z-axes of Coordinate S aligned with the main axes of the system are shown in Figure 3. The Euler
angles between Coordinates V and S including pitch and yaw angles are necessary in coordinate
transformations. The camber angle is definitely the pitch angle, θ. In addition, the yaw angle, ψ,
is the misaligned angle between the x-axis of Coordinate S and the wheel coordinate (Coordinate W).
The pitch angle and the yaw angle are rotated by the x-axis of Coordinate V and by the y-axis of
Coordinate W, respectively. Intuitively, the origins of Coordinates V, W, and S are the same. An object,
e.g., the gravity, can be in different coordinates. That is, xV

yV
zV


V

=

 xW
yW
zW


W

or [ →
i V

→
j V

→
k V

] xV
yV
zV

 =
[ →

i W
→
j W

→
k W

] xW
yW
zW

.
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According to the definition of the coordinates in Figure 2, the transformation between Coordinates
V and W is as follows:  xV

yV
zV

 =

 1 0 0
0 cos θ − sin θ

0 sin θ cos θ


 xW

yW
zW

. (1)

Similarly, from the definition in Figure 3, the coordinate transformation between the Coordinates
W and S can be  xW

yW
zW

 =

 cos ψ 0 sin ψ

0 1 0
− sin ψ 0 cos ψ


 xS

yS
zS

 (2)

where θ and ψ are the angle rotated from Coordinate V to Coordinate W and the angle rotated from
Coordinate W to Coordinate S, respectively. Substituting Equation (2) into Equation (1), the coordinate
transformation between Coordinates V and S become xV

yV
zV

 =

 cos ψ 0 sin ψ

sin θ sin ψ cos θ − sin θ cos ψ

− cos θ sin ψ sin θ cos θ cos ψ


 xS

yS
zS

. (3)

3. Camber Angle Inspection and Error Analysis

3.1. Camber Angle Inspection

The local gravity is only the acceleration sensed by the accelerometer. It is along the z-axis of
Coordinate V when the vehicle is steady on the horizontal platform during camber angle measurements,

i.e.,
→
a = g

→
k V . The accelerometer can acquire the acceleration

→
a = ax

→
i S + ay

→
j S + az

→
k S, where ax, ay,

and az are the accelerations of the x, y, and z components in Coordinate S, respectively. In this case, 0
0
g


V

=

 ax

ay

az


S

Equation (3) yields

ψ = − tan−1 ax

az
(4)

and
θ = tan−1 ay

az cos ψ− ax sin ψ
. (5)

Substituting Equation (4) into Equation (5), the camber angle becomes

θ = tan−1 ay√
a2

x + a2
z

. (6)

From the proposed approach, the camber angle measurement is independent of the misaligned
angle, ψ, between Coordinate S and Coordinate W. Moreover, the misaligned angle can be evaluated
from Equation (4). The camber angle, θ, of a wheel can be directly evaluated from Equation (6), as the
accelerations sensed from the accelerometer are ready, whether the x-axis of Coordinate S and that
of Coordinate W are perfectly aligned in the same direction or not. That is, the proposed camber
angle measurement approach will allow technicians to easily operate camber angle measurements by
the MCU-based system, without additional technical training. However, in application, this study
suggests that the x-axis of Coordinate S may be close to that of Coordinate W due to the computational
accuracy from the MCU, even though perfect alignment is not necessary in Equation (6).
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3.2. Calibrations for the Misaligned Axes between the Camber Inspection System and the Accelerometer

The axis misalignments between the camber inspection system and the accelerometer will usually
happen in fabrications of MCU-based camber inspection systems. The misalignments will deteriorate
the precisions of the camber angle inspections. The calibrations for these misalignments become
indispensable. The calibrations are the coordinate transformation between them distinctly. Let xk,i, yk,i,
and zk,i denote the measured values from the accelerometer, where k, which can be x, y, or z, is the
index for the k-axis calibration of the system; i, ranging from 1 to N, is the index of the i-th set data; N is
the total number of measured data. xk, yk, and zk denote the optimal estimated values respectively for
xk,i, yk,i, and zk,i of N data with the least square performance constrained by the average gravity. Thus,
the performance index is

J =
N

∑
i=1

(xk − xk,i)
2 +

N

∑
i=1

(yk − yk,i)
2 +

N

∑
i=1

(zk − zk,i)
2 (7)

with the average gravity constraint

g(xk, yk, zk) = x2
k + y2

k + z2
k −

(
N
∑

i=1

√
x2

k,i + y2
k,i + z2

k,i

)2

N2 = 0. (8)

From Equations (7) and (8), it is a constrained optimization problem, and the Lagrange function
can be as follows:

L(xk, yk, zk, λk) =
N
∑

i=1
(xk − xk,i)

2 +
N
∑

i=1
(yk − yk,i)

2 +
N
∑

i=1
(zk − zk,i)

2

+λk(x2
k + y2

k + z2
k −

(
N
∑

i=1

√
x2

k,i+y2
k,i+z2

k,i

)2

N2 )

(9)

where λk is the Lagrange multiplier. The optimality conditions of Equation (9) are ∂L
∂xk

= 0, ∂L
∂yk

= 0,
∂L
∂zk

= 0, and ∂L
∂λk

= 0; i.e.,

xk =

N
∑

i=1
xk,i

N + λk
(10)

yk =

N
∑

i=1
yk,i

N + λk
(11)

and

zk =

N
∑

i=1
zk,i

N + λk
. (12)

Substituting Equations (10)–(12) into Equation (8), we obtain

λk = N


√(

N
∑

i=1
xk,i

)2

+

(
N
∑

i=1
yk,i

)2

+

(
N
∑

i=1
zk,i

)2

N
∑

i=1

√
x2

k,i + y2
k,i + z2

k,i

− 1

. (13)

According to Equation (13),
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xk =

N
∑

i=1
xk,i

N

N
∑

i=1

√
x2

k,i + y2
k,i + z2

k,i√(
N
∑

i=1
xk,i

)2

+

(
N
∑

i=1
yk,i

)2

+

(
N
∑

i=1
zk,i

)2
(14)

yk =

N
∑

i=1
yk,i

N

N
∑

i=1

√
x2

k,i + y2
k,i + z2

k,i√(
N
∑

i=1
xk,i

)2

+

(
N
∑

i=1
yk,i

)2

+

(
N
∑

i=1
zk,i

)2
(15)

and

zk =

N
∑

i=1
zk,i

N

N
∑

i=1

√
x2

k,i + y2
k,i + z2

k,i√(
N
∑

i=1
xk,i

)2

+

(
N
∑

i=1
yk,i

)2

+

(
N
∑

i=1
zk,i

)2
. (16)

For instance, during x-axis calibration of the camber inspection system, the x-axis directs to the
ground vertically while the system leans on a vertical plane, as shown in Figure 4. The measured data
of the 3-axis acceleration from the accelerometer can be collected sequentially. From Equations (14)–(16),
it yields  1

0
0


S

=

 xx

yx

zx


A

(17)

where A denotes the accelerometer (Coordinate A), xx = xx√
x2

x+y2
x+z2

x
, yx =

yx√
x2

x+y2
x+z2

x
,

and zx = zx√
x2

x+y2
x+z2

x
. The z-axis calibration of the system can follow the same procedure; i.e.,

 0
0
1


S

=

 xz

yz

zz


A

. (18)

Since the x-axis and z-axis are on the vertical plane, they can be calibrated for the sake of the back
plane of the camber inspection system. xxxz + yxyz + zxzz = 0 (the inner product operation results
from Equations (17) and (18)) if the calibrations of the x-axis and z-axis are fulfilled. Thus, 0

1
0


S

=

 xy

yy

zy


A

where
(

xy yy zy

)T

A
=
(

xz yz zz

)T

A
×
(

xx yx zx

)T

A
. Consequently, if

 ax

ay

az


S

=

 aa
x

aa
y

aa
z


A

then  ax

ay

az

 =

 xx xy xz

yx yy yz

zx zy zz


−1 aa

x
aa

y
aa

z

. (19)
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That is, aa
x, aa

y, and aa
z, which can be transformed respectively to the corresponding accelerations

of the camber inspection system, are the measured data from the accelerometer. Accordingly,
the precise calibrations can eliminate the effects of the misalignment for the axes of the system
and the accelerometer. Furthermore, the camber angle can be measured from Equation (6) with the
raw measured data by the accelerometer coordinate transformed in Equation (19).
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3.3. Measuring Error Analysis

The measuring error is one of the most significant issues in camber angle measurements. The error
analysis can facilitate dissecting the effects on all possible attitudes of the equipped accelerometer in
the camber inspection system. Furthermore, the results can provide suggestions for better attitudes to
improve the precision of the camber inspection system. It becomes crucial for the proposed approach.
From Equation (6), the differentiation of the camber angle, dθ, can be as follows:

dθ =
1√

a2
x + a2

y + a2
z

(− sin θ sin ψdax + cos θday − sin θ cos ψdaz) (20)

where dax, day, and daz are the resolutions of the accelerometer for x-, y-, and z-axes, respectively.
The magnitude of the acceleration sensed from the camber inspection system is equal to the local
gravity approximate to 1 g in most cases; i.e.,

a2
x + a2

y + a2
z
∼= g2.

Thus, Equation (20) turns to

dθ ∼=
1
g
(− sin θ sin ψdax + cos θday − sin θ cos ψdaz). (21)

In the ill conditions of the accelerometer measurements in which all the signs of the right terms in
Equation (21) are the same, Equation (21) becomes

|dθ| ∼=
1
g
(|sin θ sin ψdax|+

∣∣cos θday
∣∣+ |sin θ cos ψdaz|) (22)
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since all the terms on the right side of Equation (21) are in the same sign possibly. Equation (22)
elucidates that the camber measuring error highly depends on the resolutions of all accelerometer axes.
From Equation (22), the minimal measuring error in the ill condition is equal to the ratio of day and the
gravity as θ = 0◦; i.e.,

min
θ,ψ
|dθ| =

∣∣day
∣∣

g
. (23)

In general, the 3-axis resolutions of an accelerometer are not the same. Equation (23) can be
construed as implying that, to reduce the measuring error, the best resolution axis of an accelerometer
should be aligned close to the y-axis of Coordinate S. In addition, the measuring error in Equation (22)
also depends on θ (the camber angle) and ψ (the misaligned angle), or the attitude of Coordinate S
related to Coordinate V. Based on Equation (22), Figure 5 sketches the camber angle measuring errors
for different θ and ψ values in the case of dax = day = daz = ± 4mg (g is the acceleration of gravity) in
the ill conditions of the accelerometer measurements, or the same signs of the terms on the right side
of Equation (21).
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From Equation (23), the minimal measuring error approximates to 0.2292◦ (0.0040 rad) as θ = 0◦.
The camber angle is around 0, i.e., θ ∼= 0◦, in authentic measurements. For instance, the error will
become 0.2393◦ as θ = 2◦ and ψ = 20◦ in the ill conditions, although the effect is not veritably
significant in camber angle measurements. In addition, based on Equation (22), we also suggest that
the x-axis of Coordinate S should be close to that of Coordinate W to obtain an improved measurement
of the camber angle since the error depends on the misaligned angle, ψ, as θ 6= 0◦. These types of
errors will happen not only in the measurement process but also in the installation of the accelerometer,
with misalignments between the axes of the camber inspection system and those of the accelerometer.
Technically, an operator can easily install an accelerometer in the MCU-based camber inspection system
with ψ ≤ 20◦.

4. Authentic Camber Angle Inspections with Precision Improvement

We mainly employed the MCU and the 3-axis accelerometer to realize the proposed approach.
The accelerometer acquires the gravity in three axes while the MCU calculates the camber angle by the
proposed approach. Figure 6 shows the function block diagram of the MCU-based camber inspection
system. The type numbers of the MCU, the accelerometer, the bluetooth module, the liquid crystal
display module (LCM), and the UART chip are STC12C5A60S2, ADXL345, HC-05, LCM1602 IIC,
and HIN232, respectively. This paper implements the MCU-based camber inspection system, as shown
in Figure 7, for the pilot study and the verifications of the proposed approach.
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The measuring error analysis suggests that the axes of the accelerometer aligned to the axes of the
camber inspection system can meliorate inspection precision. The theoretic minimal measuring error
of the camber inspection system is more than 0.2292◦ in ill conditions for the specified resolutions,
or dax = day = daz = ± 4mg, of the accelerometer without signal filtering. The precision of the
commercial vision-based system is about 0.02◦. The precision of the realized camber inspection system
is not available for camber angle measurements without filtering, although in most cases the measuring
errors are within 0.2◦. The calibrations for at least the x- and z-axes is essential for increasing the
precision of the camber inspection system due to the misalignments between the axes of the system and
those of the accelerometer as fabrications of the systems. According to the many authentic calibration
experiments, we empirically suggest that, for better precision, the total number of measured data is
more than 50 as calibrating for each axis.

During an authentic camber angle inspection, for instance, Figure 8 shows the raw measured
data of a front-right wheel from a vehicle with a camber angle of −0.9000◦ (−0◦54′) evaluated by
the vision-based system as shown in Figure 9. The evaluated camber angles are available if the
standard deviations of constant number data are within a specified value, e.g., 0.005◦. The deviation
calculations are feasible since the update rate of the proposed camber inspection system is about
350 measurements/s. Let N be the number of data, Ci be the i-th evaluated camber angle, C be the
mean of the N evaluated camber angles, and δ be the standard deviation of these N evaluated camber
angles. The following definition is formed:

C =
1
N

N

∑
i=1

Ci

δ =

√√√√ 1
N

N

∑
i=1

(Ci − C)2

For a normal distribution, the possibility of the measuring error is about 99.7% within an absolute
error of 0.015◦ if the deviation of the data is 0.005◦, although the distribution of the raw data from
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the accelerometer may not be a normal distribution. Furthermore, this algorithm is intuitive to
implement in MCU. The evaluated camber angle is available if the deviation satisfies the specified
value. Otherwise, the evaluated camber angle is not in a settled condition and is unavailable. Figure 10
shows the result of the evaluated camber angle in an authentic camber angle inspection with a specified
deviation of 0.005◦. The evaluated camber angle data are shown in Figure 11, which shows that the
sequential data are smoother than those in Figure 8. In addition, the final evaluated camber angle
converges to −0.9015◦ (∼= −00◦54′) within 1200 data, in around 4 s. The different camber measured
between the MCU-based system and the vision-based system approximates to 0.0015◦. This illustrates
that the MCU-based camber inspection system is available for camber angle measurements. Figure 12
shows the results for another authentic camber angle inspection in which the camber angle is −0.8034◦

(∼= −00◦49′) and −0.8000◦ (−00◦48′) evaluated respectively by the MCU-based system and the
vision-based system. The difference measured between the MCU-based system and the vision-based
system is usually within ±0.005◦. Accordingly, the MCU-based camber inspection system is applicable
in the vehicle wheel alignment process.
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5. Conclusions

This paper has proposed a feasible approach to camber angle inspections for vehicle wheel
alignments. The accurate alignment of the x-axis for Coordinate S and Coordinate V is not imperative
since the proposed approach compensates for this misaligned angle. This approach will facilitate
operations during camber angle measurements of wheels. The proposed approach can directly
evaluate the camber angle in Equation (6) with the accelerations in Coordinate S. In addition, it can be
implemented with an MCU.

Precision is one of the most significant issues if an inspection system can be applied in commercial
camber angle measurements. Here, we analyzed the measuring errors for different attitudes between
the camber inspection system and the accelerometer. The result shows that it is better to install the
axes of the accelerometer aligned instead of those of the camber inspection system. We propose
a procedure for calibrating misaligned axes between a camber inspection system and an accelerometer
since 3-axis accelerometers cannot normally be installed in exact positions in fabrications of the systems.
Calibrations prevent the precision from contaminating the misaligned axes and make the camber
inspection system realizable. Furthermore, a signal filter can reduce the sensor noise from camber
angle measurements. The total precision is about ±0.005◦ for an accelerometer with a sensitivity of
4mg in x-, y-, and z-axes. Theoretically, the possibility of precision within ±0.015◦ is 99.7% for a normal
distribution. The precision is sufficient for the commercial requirement of ±0.02◦. The proposed
approach is not only feasible but implementable. Two authentic camber angle inspections verify
the proposed approach. In addition, the measured data of the camber angle can be transmitted via
mediums such as RS232, Bluetooth, and Wi-Fi.
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The proposed approach can easily extend to the level gauge since the level gauge has the same
mathematical approach, except for the inclinations of different axes. The inspections of another wheel
characteristic angle, or toe angle, are also important in wheel alignments. Future studies will focus on
the development of the MCU-based toe inspection systems, which will complete measurements for
wheel alignments. The reliability of the calibrations for the camber measurement system, which makes
the camber measurements more precise and more reliable, is also a significant issue for future studies.
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The following abbreviations are used in this manuscript:

MCU micro-control unit
RS232 EIA-RS-232 (Electronic Industry Association Recommended Standard #232)
Wi-Fi wireless fidelity
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