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Abstract: Chinese liquors are internationally well-known fermentative alcoholic beverages. They 

have unique flavors attributable to the use of various bacteria and fungi, raw materials, and 

production processes. Developing a novel, rapid, and reliable method to identify multiple Chinese 

liquors is of positive significance. This paper presents a pattern recognition system for classifying 

ten brands of Chinese liquors based on multidimensional scaling (MDS) and support vector 

machine (SVM) algorithms in a quartz crystal microbalance (QCM)-based electronic nose (e-nose) 

we designed. We evaluated the comprehensive performance of the MDS-SVM classifier that 

predicted all ten brands of Chinese liquors individually. The prediction accuracy (98.3%) showed 

superior performance of the MDS-SVM classifier over the back-propagation artificial neural 

network (BP-ANN) classifier (93.3%) and moving average-linear discriminant analysis (MA-LDA) 

classifier (87.6%). The MDS-SVM classifier has reasonable reliability, good fitting and prediction 

(generalization) performance in classification of the Chinese liquors. Taking both application of the 

e-nose and validation of the MDS-SVM classifier into account, we have thus created a useful method 

for the classification of multiple Chinese liquors. 

Keywords: Chinese liquor classification; Multidimensional scaling (MDS); Support Vector Machine 

(SVM); QCM-based e-nose 

 

1. Introduction 

Chinese liquor is one of the oldest distillates in the world, dating back thousands of years [1]. 

Some four million kiloliters of Chinese liquor are consumed annually, worth 500 billion Chinese Yuan 

(equivalent to US$80 billion) [2]. As famous drinks, Chinese liquors are usually fermented from 

grains for several months or years. The fresh fermented liquors are then distilled and aged for a long 

time to enhance the bouquet. The different brewing processes (fermentation, distillation, and aging) 

lead to the formation of a diverse set of components in Chinese liquor products, e.g., over  

1600 compounds for Xifeng liquor, over 1800 compounds for Moutai liquor, and over  

1900 compounds for Fen liquor. Chinese liquors from different plants have unique flavors 

attributable to the use of various bacteria and fungi, raw materials, and production processes [3]. 

Therefore, different brands of Chinese liquors display remarkable differences in flavor. The flavors 

of Chinese liquors are traditionally classified into five groups: namely strong-flavor, mixed-flavor, 

fen-flavor, moutai-flavor, and special-flavor. In particular, strong-flavor and mixed-flavor are the  

most common. 

Chinese liquors labelled with false information not only harm the interests of consumers, but 

also damage producers’ interests [4]. The traditional and most commonly used method for the 

classification of Chinese liquors is by professional sommeliers, but accuracy and objectivity cannot 

always be ensured because sommeliers’ judgement can affected by their health condition, emotions, 
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and the environment. Other methods for the analysis and classification of Chinese liquors are 

chemistry-based methods such as gas chromatography, mass spectrometry, and gas 

chromatography-mass spectrometry [5–8]. These methods are highly reliable because they use a 

complete component-by-component approach. However, their shortcomings include high cost, being 

time-consuming, and low capability for in situ and online measurements [9]. Overall, developinga 

novel, rapid and reliable method to identify multiple Chinese liquors is of positive significance. 

A quartz crystal microbalance (QCM)-based electronic nose (e-nose) has been successfully 

utilized to detect characteristics of Chinese liquors by imitating the human senses using sensor arrays 

and a pattern recognition system [10]. The use of an excellent pattern recognition algorithm in the 

pattern recognition system is a key component for improving the performance of QCM-based  

e-noses. Shaffer et al. [11] summarized six qualities of the ideal pattern recognition algorithm for an 

e-nose: it should have high accuracy, low memory requirements, and be fast, simple to train, robust 

to outliers, and produce a measure of uncertainty.  

Unfortunately, until now, no pattern recognition algorithm is able to fully meet all of these 

requirements. In an attempt to determine the optimal classifier, several researchers have performed 

studies comparing pattern recognition algorithms as well as specific applications. Peng et al. [12] 

presented discriminant models of Chinese Tongshan kaoliang liquor using principal component 

analysis (PCA) and discriminant factor analysis (DFA), and realized a correct prediction classification 

rate of 93%.  

Our group has reported the design and application of a novel and simple QCM-based  

e-nose [13,14] for quickly and easily summarizing Chinese liquor characteristics. We identified three 

types of Chinese liquors on the basis of the Moving AverageLinear Discriminant Analysis (MA-LDA) 

algorithm, which had a prediction accuracy of 98%, and five types of Chinese liquors by means of the 

Principle Components AnalysisBack Propagation Neutral Network (PCA-BPNN) algorithm, which 

had a prediction accuracy of 93.3%. Additionally, Zhang et al. [15] used PCA incorporated with 

discriminant analysis (PCA-DA), a back propagation artificial neural network (BP-ANN), and 

learning vector quantization (LVQ) for the recognition of five Chinese liquors; the recognition 

accuracies of PCA-DA, BP-ANN, and LVQ were 76.8, 71.4, and 89.3%, respectively. Jing et al. [9] 

studied the classification of seven Chinese liquors by using BP-ANN, LDA, and a multi-linear 

classifier; the classification rates were 97.22, 98.75, and 100%, respectively. Lastly, Ema et al. [16] 

presented an odor-sensing system to identify eleven brands of liquors using six QCM resonators with 

different coating materials and neural network pattern recognition. However, the prediction accuracy 

of this system was only 88%. 

In this paper, we present the used in a QCM-based e-nose we have designed of an algorithm 

based on Multidimensional Scaling (MDS) and Support Vector Machine (SVM). Performance was 

assessed through classifying ten brands of Chinese liquor samples. 

2. Experiments and Methods 

2.1. Chinese Liquor Samples 

A total of ten experimental samples, corresponding to ten Chinese liquor brands, were obtained 

from the China National Research Institute of Food & Fermentation Industries (Beijing, China). The 

samples differed in main raw materials, fermentation starter, fermentation duration, aging duration, 

flavor type and geographic origin. All samples were produced in 2011, and had equivalent proofs. 

The Chinese liquors included in the study are listed in Table 1 (all data is from the database of China 

Alcoholic Drinks Association). 
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Table 1. Details of the Chinese liquors used in our experiments. 

No. Liquors Main Raw Materials 
Fermentation 

Starter 

Fermentation 

Duration 

Aging 

Durati

on 

Proof Date Flavor Type Place of Origin 

1 Fen Liquor Sorghum Daqu† 28 days 1 years 106 2011 Fen-flavor 
Xinghua in Shanxi 

Province 

2 GuoJiao1573 Sorghum, rice Daqu 365 days 5 years 106 2011 Strong-flavor 
Luzhou in Sichuan 

Province 

3 Jiannanchun Rice, Sorghum Daqu 90 days 2 years 106 2011 Strong-flavor 
Mianyang in Sichuan 

Province 

4 Jiugui Liquor 
Sorghum, rice, 

glutinous rice, maize 
Xiaoqu‡ 50 days 3 years 106 2011 Mixed-flavor 

Jishou in Hunan 

Province 

5 Kouzi Cellar 
Sorghum, wheat, 

rice, pea 
Daqu 35 days 2 years 106 2011 Mixed-flavor 

Suixi in Anhui 

Province 

6 Moutai 
Sorghum, wheat, 

rice, 
Daqu 210 days 3 years 106 2011 Moutai-flavor 

Maotai in Guizhou 

Province 

7 NiuLanshan Sorghum, wheat Daqu 30 days 1 year 106 2011 Strong-flavor Beijing  

8 Shuijingfang 

Sorghum, wheat, 

maize, glutinous rice, 

rice, 

Daqu 180 days 2 years 106 2011 Strong-flavor 
Chengdu in Sichuan 

Province 

9 Wuliangye 

Sorghum, rice, 

glutinous rice,wheat, 

maize 

Daqu 70 days 3 years 106 2011 Strong-flavor 
Yibin city in Sichuan 

Province 

10 XifengLiquor Sorghum, wheat Daqu 18 days 2 years 106 2011 Special-flavour Baoji in Shanxi 

Province †Daqu is a type of grain, qu, which is made from raw wheat, barley, and/or peas [17]. 
‡Compared to daqu, xiaoquis a small starter, which is made from rice or rice bran [18]. 
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2.2. QCM-Based Sensor 

Figure 1a shows an individual QCM-based sensor; Figure 1b,c presents its structure, which had 

thin coatings symmetrically adhered on both sides of an AT-cut quartz piezoelectric crystal plate 

resonator; Figure 1d shows the diameter of the sensor. The diameter of the sensor was d = 8 mm and 

its thickness was  = 0.17 mm. 

  

(a) (b) 

 

 

(c) (d) 

Figure 1. (a) Photo of the sensor; (b) structure chart of the sensor; (c) schematic diagram of the sensor; 

(d) diameter drawing of the sensor. 

The AT-cut quartz piezoelectric crystal plateresonator is an electromechanical converter that can 

present resonant frequency signals based on the QCM principle [19], as illustrated by  

Equation (1): 

m
A

f
f

qq




2

02  
(1) 

where, f0 is the resonant frequency (Hz), f is the frequency change (Hz), m is the mass change(g), 

A is the piezoelectrically active crystal area (cm2), q is the density of quartz (q = 2.643 g/cm3), and μq 

is the shear modulus of quartz for AT-cut crystalquartz (μq = 2.947  1011 gcm−1s−2). 

The thin coatings were analyte-sensitive with adsorption-desorption properties. QCMs measure 

the mass per unit area by measuring the change in resonator frequency of the sensor, which is 

disturbed by the addition or removal of mass deposited at the sensor surface. Sensor properties 

(selectivity, sensitivity, regenerability, cumulability) can be adjusted within wide limits by an 

appropriate choice of thin coating. 

The thin coatings were prepared by electron beam vapor dispersion (EBVD) equipment [20], as 

shown in Figure 2a. The EBVD equipment contained an electron beam deposition system in the 

vacuum chamber, a control system, and a real-time monitoring system of the thin coating’s thickness 

(Figure 2b). 
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(a) (b) 

Figure 2. (a) Photo of the EBVD equipment; (b) schematic representation of the EBVD technology:  

(i) electron beam deposition system in vacuum chamber; (ii) control system; (iii) coating thickness 

control system. 

2.3. QCM-Based E-Nose 

In this experiment, we used a QCM-based e-nose [14] (designed as shown in Figure 3) to obtain 

Chinese liquors’ characteristic information, i.e., to obtain the resonator frequency signal values 

(RFSVs) of an eight-channel sensor array as raw data. Our e-nose was composed of three main 

components: (i) a gas flow system (containing a thermo-hygrostat system and an air pump), (ii) a 

sensor array system (containing an eight-channel gas sensor array) and (iii) an electronic circuit 

(containing a digital frequency counter) and pattern recognition system (Figure 4). In the gas flow 

system, a flow-controllable air pump was used to generate gas flow. The ambient air was used as the 

carrier gas to deliver the sample odor through the sensor array chamber at a flow rate of 25 mL/s. The 

gas-flow system was controlled by valves to switch between the filter bottle and sample bottle. The 

sensor array system (shown in Figure 5) consisted of eight QCM-based sensors, each of which was 

specially selected to detect the liquor volatiles, as listed in Table 2. The sensors were installed inside 

a chamber (shown in Figure 6), designed to evenly distribute the gas flow through all sensors, which 

was made from Teflon to prevent odor adsorption within the chamber. The electronic circuit 

provided output from the resonators of the eight sensors. Moreover, the data processing and 

visualization were conducted by the pattern recognition system. 

 

Figure 3. Photo of the QCM-based e-nose. 
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Figure 4. Schematic diagram of the QCM-based e-nose. 

  

(a) (b) 

Figure 5. Image of the QCM sensor array. (a) front view; (b) slide view. 

 

Figure 6. Photo of the sensor box. 

Table 2. Composition of the eight sensor coatings in the sensor array. 

Thin Coating Composites Thin Coating Composites 

Coating-1 PVC Coating-5 AgCl 

Coating-2 Polyamide Coating-6 Azithromycin 

Coating-3 Polyethylene (PE) + AgCl Coating-7 CuCl2 + PE 

Coating-4 Polytef Coating-8 CuCl2 + AgCl + PE 
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2.4. Characteristic Information Acquisition by the QCM-Based E-Nose 

We used ten brands of Chinese liquors (shown in Table 1) as samples in our experiments. The 

experiments were conducted in a clean room at a controlled temperature of 25 C. Taking the Fen 

liquor (number 1 in Table 1) as an example, we firstly injected 15 mL of the Fen liquor sample into a 

head space bottle (volume 25 mL). Then, the e-nose was utilized for acquiring characteristic 

information (resonant frequency signal values) of the Fen liquor sample. The RFSVs of the sensor 

array were output 100 times per minute and saved. Experiments lasted for two minutes for each 

sample. The same process was used for the other nine liquor samples. 

A working flow chart of the e-nose can be seen in Figure 7. The dryness index and temperature 

of Chinese liquors’ volatile gas were kept constant through the thermo-hygrostat system, while the 

flow velocity of the volatile gas was kept constant by the air pump. 

 

Figure 7. Working flow chart of the e-nose. 

2.5. Pattern Recognition System 

An algorithm based on a MDS and an SVM was applied to the pattern recognition system in the 

QCM-based e-nose. 

2.5.1. Data Pre-Processing with MDS 

An MDS algorithm [21], which can enhance recognition efficiency and reduce the computational 

burden of the QCM-based e-nose, was used for dimensionality reduction. MDS algorithms take an 

input matrix of dissimilarities between pairs of items and output a coordinate matrix. Min-max 

normalization was utilized to scale the datasets in greater numeric ranges into smaller numeric 

ranges to remove the limitation of data units and order of magnitudes [22]. 

2.5.2. Classification with SVM 

For the classification of pre-processed data, we have applied an SVM algorithm [23]. For 

nonlinear separable classification problems, the SVM applies a kernel function K (vi, vj) to transform 

the original space to a higher-dimensional space, and a hyper plane is constructed in the  

higher-dimensional space to solve problems of nonlinear separable classification in the original  

low-dimensional space. The four most known kernels are commonly used: linear, polynomial, radial 

basis function (RBF), and sigmoid. 

In this work, a RBF kernel function was attempted for classification due to its good 

generalization. The selection of the kernel function parameter affected the precision of the SVM 

significantly. The optimal parameter in the kernel function was set using the particle swarm 

optimization (PSO) method [24]. 

3. Results and Discussion 

3.1. Raw Data of Characteristic Information 

Taking Moutai liquor sample as example, a group of raw data, 8 × 200 RFSVs obtained by  

sensor-1 to sensor-8 (100 RFSVs per min for each sensor), are listed in Table 3. Their distributions are 

displayed in Figure 8. RFSV distributions exhibited unique magnitudes and shapes.  
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Table 3. Group of raw data of the Moutai sample’s characteristic information. 

No 1 2 3 4 5 6 7 … 200 

Sensor-1 9,995,162 9,995,166 9,995,167 9,995,161 9,995,161 9,995,161 9,995,162 … 9,996,184 

Sensor-2 9,996,246 9,996,245 9,996,246 9,996,245 9,996,254 9,996,245 9,996,245 … 9,996,255 

Sensor-3 9,997,116 9,997,116 9,997,120 9,997,124 9,997,116 9,997,115 9,997,120 … 9,997,115 

Sensor-4 9,995,703 9,995,697 9,995,700 9,995,697 9,995,697 9,995,697 9,995,697 … 9,995,698 

Sensor-5 9,995,673 9,995,682 9,995,675 9,995,675 9,995,681 9,995,681 9,995,680 … 9,995,680 

Sensor-6 9,995,896 9,995,896 9,995,896 9,995,896 9,995,906 9,995,896 9,995,896 … 9,995,896 

Sensor-7 9,994,382 9,994,382 9,994,378 9,994,384 9,994,380 9,994,379 9,994,380 … 9,994,384 

Sensor-8 9,993,190 9,993,191 9,993,191 9,993,197 9,993,193 9,993,191 9,993,197 … 9,993,193 

 

Figure 8. Group of raw data of the Moutai sample’s characteristic information from Sensor-1 to 

Sensor-8: (a) Sensor-1; (b) Sensor-2; (c) Sensor-3; (d) Sensor-4; (e) Sensor-5; (f) Sensor-6; (g) Sensor-7; 

(h) Sensor-8. 

Each sensor in the eight-channel sensor array interacted individually with analyte because each 

sensor had a distinct coating. Experiments were conducted eight times, and eight groups of RFSVs 

were obtained. The same process was used for the other nine brands. The dataset, a total of  
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8 × 10 groups of raw data, was utilized to establish the pattern recognition system in the QCM-based 

e-nose for classifying the ten brands of Chinese liquors. 

3.2. Liquor Classification 

3.2.1. Data Pre-Processing Results with MDS  

Each group of raw data, 8 × 200 RFSVs, was constructed into an original sample matrix in  

order by: 

Soriginal = {S1,2,3,......,i}, (10) 

where, the i-th matrix Si is shown Equation (11): 

Si=
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where,   Niii 80,1 , and fim,n represents the n-th RFSV acquired by the sensor m. For each 

matrix Si, MDS algorithm was used to extract a characteristic value from 200 RFSVs in each row for 

dimension reduction. Thus we obtained the characteristic value matrix Ni for each Si: 
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where, cij (j = 1,...,8) represents the characteristic value of sensor j. Then a new sample matrix Snew,  

8 × 80, was obtained as Equation (13): 

 80321 ,...,,, NNNNSnew   (13) 

The distributions of the 80 samples’ characteristic values of the eight sensors are shown in  

Figure 9. Many points clearly overlapped. Thus, it was difficult to classify the ten brands of Chinese 

liquors only on the basis of any two sensors. In the following classification process, we used 

characteristic information from all eight sensors, namely eight characteristic components. 

 

Figure 9. Cont. 
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Figure 9. (a) Distribution of the 80 characteristic values for sensor 1 and sensor 2; (b) the distribution 

of the 80 characteristic values for sensor 3 and sensor 4; (c) distribution of the 80 characteristic values 

for sensor 5 and sensor 6; (d) distribution of the 80 characteristic values for sensor 7 and sensor 8. 

Min-max normalization was employed to normalize the sample matrix Snew. The values for ymin 

and ymax were set to zero and one. For each element in the matrix Snew, y = (x  xmin)/(xmax  xmin) was 

used to calculate the new normalized value. Thus, we obtained a new sample matrix set: 

},......,,,{ 80321 XXXXS  , (14) 

where, S is an 8 × 80 matrix set. Each column represented a set of characteristic information of a 

Chinese liquor sample. 

Taking the first two sensors as an example, their characteristic values and normalized 

characteristic values of the 80 characteristic values are shown in Figure 10. Each asterisk in the figure 

represents a characteristic value, plotted by sample number on the horizontal axis, and plotted by (a) 

characteristic values and (b) the normalized characteristic values on the vertical axis, respectively. 

 
(a) (b) 

Figure 10. Cont. 
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(c) (d) 

Figure 10. (a) Characteristic values the 80 samples for sensor 1; (b) normalized characteristic values 

of the 80 samples for sensor 1. (c) characteristic values the 80 samples for sensor 2; (d) normalized 

characteristic values the 80 samples for sensor 2. 

3.2.2. Classification Results with SVM 

For matrix set S = {X1, X2, X3, …, X80}, the category label was constructed in order as follows: 

Label = [

8

1, ,1,



8

2,,2 ,



8

3,,3 ,



8

4,,4 ,……,



8

9,,9 ,



8

10,,10 ]. (15) 

The labelled S was randomly split into two sections: one was used for training, and the other for 

testing. The SVM algorithm was used to classify the ten brands of Chinese liquor samples. We 

selected the RBF kernel function in the SVM algorithm, and the kernel parameter was optimized 

using the PSO method. To assess the performance of the established classifier, leave-one-out cross-

validation and 5-fold cross-validation [25] were conducted. These cross-validations fully assessed the 

performance of the classification model. 

As shown in Figure 11, for SVM classification with leave-one-out cross-validation, independent 

validations were conducted 80 times. In each independent validation, only one sample was selected 

as the testing set, and the remaining 79 samples were the training set. The average of the 80 SVM 

classifiers’ accuracies was regarded as the final classification accuracy of the SVM method. 

 

Figure 11. Diagram of leave-one-out cross-validation (k-fold cross-validation with k = 80). 

As shown in Figure 12, for SVM classification with 5-fold cross-validation, total samples were 

randomly partitioned into five equally sized subsamples: a single subsample was retained for testing 

the classification model, and the remaining four subsamples were used as the training set. Five 

independent validations were conducted, with each subsample used exactly once as the testing set. 
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The average of the five SVM classifiers’ accuracies was regarded as the final classification accuracy 

of the SVM method. 

 

Figure 12. Diagram of k-fold cross-validation with k = 5. 

Figure 13 shows the classification accuracies of the ten brands of Chinese liquors by the  

leave-one-out cross-validation and 5-fold cross-validation, respectively. Both classification rates of 

our proposed MDS-SVM classifier to the QCM-based e-nose were 96.25% (77/80). Table 4 provides 

further details of these classification results.  

 

Figure 13. Classification accuracies of the ten brands of Chinese liquors by leave-one-out  

cross-validation and 5-fold cross-validation. 

Table 4. Classification results of Chinese liquor samples by leave-one-out cross-validationand 5-fold 

cross-validation. 

No. Liquor Name 

Leave-One-Out Cross-Validation 5-Fold Cross-Validation 

Num. of 

Errors 

Num. of 

Samples 
Accuracy 

Num. of 

Errors 

Num. of 

Samples 
Accuracy 

1 Fen Liquor 0 8 100% 0 8 100% 

2 GuoJiao1573 1 8 87.5% 0 8 100% 

3 Jiannanchun 1 8 87.5% 2 8 75% 

4 Jiugui Liquor 0 8 100% 0 8 100% 

5 Kouzi cellar 0 8 100% 0 8 100% 

6 Moutai 0 8 100% 0 8 100% 

7 Niulanshan 0 8 100% 0 8 100% 

8 Shuijingfang 1 8 87.5% 1 8 87.5% 

9 Wuliangye(liquor) 0 8 100% 0 8 100% 

10 Xifeng Liquor 0 8 100% 0 8 100% 

Total  3 80 96.25% 3 80 96.25% 
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3.3. Test Experiments 

We evaluated the comprehensive performance of the MDS-SVM classifier that predicted all ten 

brands of Chinese liquors individually. The ten brands of Chinese liquors used as samples in our 

experiments, whose details are listed in Table 1, were purchased from the China National Research 

Institute of Food & Fermentation Industries. 

The experiments were conducted in a clean room at a controlled temperature of 25 C. Taking 

the Fen liquor as an example, we firstly injected 15 mL of the Fen liquor sample into ahead space 

bottle (volume 25 mL). Then, the e-nose was utilized for acquiring the RFSVs of the Fen liquor sample. 

Same as Section 2.4—remove one The RFSVs were processed by the proposed MDS-SVM classifier. 

We repeated the experiment with the same brand of Chinese liquor sample 30 times. The same 

processes were conducted for the other nine brands of Chinese liquor samples. 

Table 5 presents the overall accuracy for each brand of the Chinese liquors. In predicting all ten 

samples, the highest performing predictions are obtained for the Fen Liquor, Jiugui Liquor, Kouzi, 

Moutai, Niulanshan, Wuliangye and Xifeng Liquor, with overall accuracies of 100%, while, the 

prediction accuracies of the MDS-SVM classifier on classification of GuoJiao1573, Jiannanchun and 

Shuijingfang are 93.4, 93.4 and 96.7%, respectively. The average predicted accuracy for all ten brands 

is 98.3%. The experiments indicate that the MDS-SVM classifier has reasonable reliability, good fitting 

and prediction (generalization) performance in the classification of the Chinese liquors. 

Table 5. Classification results of the Chinese liquor samples by means of the e-nose and the  

MDS-SVM classifier. 

Actual Brand  

(Liquor Name) 

Mispredicted Brand  

(Liquor Name) 
Num. of Errors Num. of Samples Accuracy 

Fen Liquor - 0 30 100% 

GuoJiao1573 Shuijingfang 2 30 93.4% 

Jiannanchun Shuijingfang / GuoJiao1573 1/1 30 93.4% 

Jiugui Liquor - 0 30 100% 

Kouzi cellar - 0 30 100% 

Moutai - 0 30 100% 

Niulanshan - 0 30 100% 

Shuijingfang Jiannanchun 1 30 96.7% 

Wuliangye - 0 30 100% 

Xifeng Liquor - 0 30 100% 

Total  5 300 98.3% 

3.4. Comparison of Classification Ability  

Table 6 shows the classification ability of the MDS-SVM method we proposed in terms of 

classification accuracy over Principle Components AnalysisBack Propagation neutral network 

(PCA-BPNN) and Moving AverageLinear Discriminant Analysis (MA-LDA). We found that the 

classification accuracy of the proposed classifier was greater than that of PCA-BPNN by 5%, and 

greater than that of LDA by 10.7%. 

Table 6. Comparison of Classification Ability. 

Method Classification Accuracy 

MDS-SVM 98.3% 

PCA-BPNN 93.3% 

MA-LDA 87.6% 
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4. Conclusions 

This paper presented a pattern recognition system for classifying ten brands of Chinese liquors 

based on MDS and SVM algorithms in the QCM-based e-nose we designed. We evaluated the 

comprehensive performance of the MDS-SVM classifier for predicting all ten brands of Chinese 

liquors individually. The prediction accuracy of the MDS-SVM classifier is superior to that of both 

the LDA and BP-ANN classifiers. Numerical experiment results of the classification of the ten brands 

of Chinese liquors showed that our recognition system is a viable solution for liquor classification 

problems. The proposed approach based on MDS and SVM applications has the following properties: 

 Good accuracy at the reasonably small size of samples, 

 Low calibration cost, 

 Objective analysis and comprehensive assessment of Chinese liquors, 

 Good adaptability and prediction (generalization) performance on general working conditions. 

Conclusively, our proposed system may find practical application in Chinese liquors quality 

control and flavor assessment. 
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