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Abstract: In this paper, a self-alignment method for strapdown inertial navigation systems based 

on the q-method is studied. In addition, an improved method based on integrating gravitational 

apparent motion to form apparent velocity is designed, which can reduce the random noises of the 

observation vectors. For further analysis, a novel self-alignment method using a Kalman filter 

based on adaptive filter technology is proposed, which transforms the self-alignment procedure 

into an attitude estimation using the observation vectors. In the proposed method, a linear 

psuedo-measurement equation is adopted by employing the transfer method between the 

quaternion and the observation vectors. Analysis and simulation indicate that the accuracy of the 

self-alignment is improved. Meanwhile, to improve the convergence rate of the proposed method, 

a new method based on parameter recognition and a reconstruction algorithm for apparent 

gravitation is devised, which can reduce the influence of the random noises of the observation 

vectors. Simulations and turntable tests are carried out, and the results indicate that the proposed 

method can acquire sound alignment results with lower standard variances, and can obtain higher 

alignment accuracy and a faster convergence rate. 

Keywords: strapdown inertial navigation system; self-alignment; Kalman filter; parameter 

recognition and reconstruction 

 

1. Introduction 

Initial alignment is a crucial procedure of strapdown inertial navigation systems (SINS), and 

high precision of the initial alignment for SINS is needed to keep the stability of SINS [1–3]. The 

traditional initial alignment can be divided into two major categories: one is the transfer alignment, 

which needs external information from other navigation devices; the other one is self-alignment, 

which can accomplish the initial alignment by using the gravitational attraction and the self-rotation 

of the Earth [4]. Within the frame of the former category, it may be achieved quite simply by the 

direct copying of data from the external navigation system, and more precisely with methods of an 

inertial measurement matching process, but this requires other complex systems and may ignore the 

self-contained advantages of SINS. Thus, the self-alignment method, which is the second category, is 

the hot topic of SINS, and many researchers are devoted to improving the performance of the 

self-alignment. 

Typically, the traditional self-alignment method can be accomplished by two stages, i.e., the 

coarse alignment stage and the fine alignment stage. Within the fine alignment stage, the initial 

attitude of SINS can be acquired more accurately and, furthermore, other information, such as 
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sensor biases and initial velocity, can be estimated simultaneously [5–7]. However, the fine 

alignment stage can be proceeded by the linear Kalman filter only when the error state model is 

confined to a small misalignment angle, which can be provided by the coarse stage. With the coarse 

alignment, the rough attitude of the vehicle can be acquired. In the coarse alignment stage, it is 

assumed that the position of the vehicle is well known. Then, the Earth’s rotation and gravity can be 

computed accurately, and the estimation of the initial attitude can be acquired by comparing the 

computed rotation rates and gravity to the sensed and rated acceleration. Due to the significance of 

the coarse alignment, the performance of fine alignment can be improved by excellent coarse 

alignment. Thus, if there is a method which can be better implemented than the traditional coarse 

alignment in terms of convergence rate, alignment accuracy, and stability of the alignment results, it 

will be a novel self-alignment which can be applied in some emergency situations, since the fine 

alignment always needs 20 to 30 min, sometimes more. This is what this paper focuses on. 

Many methods have been devised to improve the performance of the self-alignment method, 

and the common method was dual-vector attitude determination based on the gravitational 

apparent motion in the inertial frame [8–14]. As is well known, the swaying motion of the Earth is 

composed of two distinct elements: first, the true inertial swaying caused by the motion of the body 

frame relative to the inertial frame; and second, the apparent angular rate caused by the self-rotation 

of the Earth. Based on the properties of the swaying motion, Lian and Yan [8,9] proposed a method 

based on the dual-vector attitude determination, and because the acceleration measured by the 

inertial measurement unit (IMU) axes contains random noises, which contaminate the observation 

vectors, the alignment time was prolonged and the alignment accuracy was decreased. To address 

these issues, a reconstruction algorithm for the observation vectors was proposed in [10–12]. By 

adopting the reconstructed observation vectors, the random noises were effectively suppressed. 

Therefore, the performance of the self-alignment was improved. In [13], a similar self-alignment 

based on a fixed integral sliding method was investigated. Lu et al. [14] extended the method in [13] 

to the optimal parameter self-alignment. However, the above dual-vector attitude determination 

method is not a recursive algorithm, and it is a single-point attitude determination algorithm; that is, 

it utilizes the observation vectors obtained at two time points and uses them, and only them, to 

determine the attitude at one time point. With this method, the information contained in the past 

measurements is lost. In order to take full advantage of all of the observation vectors, a quaternion 

self-alignment method based on the q-method was developed in [15], which utilized the filter 

quaternion estimation (QUEST) method to process the observation vectors recursively [16]. 

Meanwhile, the optimal initial attitude could be calculated by the attitude-quaternion which was 

extracted by the Newton iteration algorithm from the constructed K-matrix [17]. Compared with the 

dual-vector attitude determination method, the convergence rate and stability of the self-alignment 

based on the q-method was improved [18–20]. However, the quaternion self-alignment also 

contained the random noises in the observation vectors, and these defects, which are not beneficial 

to the self-alignment, have contaminated the observation vectors. In order to denoise the observation 

vectors and ensure high computational efficiency, a new quaternion self-alignment method using 

apparent velocity has been designed in this paper; it was inspired by [21]. Since the integration 

process averages the measurements over a period of time, the effect of the random noises is reduced 

and, hence, a stable attitude estimate is obtained. In this paper, this improved scheme is considered 

as a comparison method for the more advanced self-alignment method. 

According to the minimal-variance theory [22], none of the aforementioned self-alignment 

methods are optimal. Hinging on the previous results about the quaternion Kalman filter with 

pseudo-measurements, a Kalman filter is developed, along with a computationally simpler adaptive 

filtering theory [23,24]. Furthermore, the Kalman filtering approach yields, by design, sequential 

quaternion estimations that are minimum-variance and allows for the estimation of parameters 

other than attitude in a straightforward manner [22]. In this work, we develop a novel quaternion 

self-alignment method. Firstly, the present work introduces a linearized quaternion observation 

model, and the measurement noise is state-dependent. Nevertheless, the state-dependence of the 

measurement model induces modeling errors, which will cause filtering divergence. Then, a Kalman 
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filter is designed to deal with the special measurement noises, which is based on adaptive filtering 

technology. A nice feature of the quaternion self-alignment is that the estimated quaternion is 

constant, and the computed observation vector has slow-varying characteristics. Therefore, a 

parameter recognition and observation vector reconstruction algorithm is designed to improve the 

convergence rate in this work. According to the brute-force normalization of the estimated 

quaternion, the stability of the filter is improved. Lastly, the performance of this novel self-alignment 

is firstly checked under the nominal simulated conditions of noise and initial errors, and then the 

on-line turntable tests are designed to verify the stability and accuracy of the proposed method. 

In the following section we will give the principles of the quaternion self-alignment method 

based on the q-method, and an improved method based on apparent velocity is designed. In 

addition, the merits and demerits are also analyzed with simulations. Next, we will describe the 

novel quaternion self-alignment based on the Kalman filter in detail, and a simulation is designed to 

evaluate the algorithm. In Section 4, an improved algorithm based on the novel quaternion 

self-alignment is developed, and the merits of the methods are analyzed with simulations. Turntable 

tests are carried out to verify the effectiveness of this novel algorithm in Section 5. Finally, the major 

contributions of this paper are summarized in Section 6. 

2. General Quaternion Self-Alignment 

The definitions of the coordinate frames used in this paper are described in Appendix A. It is 

well-known that the acceleration measured by inertial measurement unit (IMU) axes (b-frame) is 

composed of the true inertial acceleration of the vehicle caused by the motion of the b-frame relative 

to the i-frame and the apparent acceleration caused by the gravitational attraction of the Earth. The 

former element can be compensated by external sensors, such as the Doppler velocity log (DVL) and 

the global positioning system (GPS), and the apparent acceleration in the b0-frame, which is named 

the observation vector, can be calculated by the acceleration measurements and the gyroscope 

measurements. That is how the true inertial acceleration is compensated. Taking advantage of the 

known position, the true gravity in the n0-frame, which is named the reference vector, can be 

obtained accurately. In this section, general quaternion self-alignment using the q-method is 

investigated, and the filter QUEST technology is designed to realize the recursive algorithm. In order 

to improve the stability of general quaternion self-alignment, an improved method based on 

apparent velocity technology is designed. 

2.1. Mechanism of General Quaternion Self-Alignment 

With the rules of quaternion multiplication, the attitude quaternion   
     from the b-frame to 

the n-frame can be expressed as: 

  
        

        
     

      (1) 

where    
        is the unknown initial attitude quaternion, and the symbol   used hereafter 

represents the quaternion product. According to the quaternion kinematic equations, the 

time-varying quaternion can be updated as:  

 
   
      

 

 
  
         

  

   
      

 

 
  
         

 

  (2) 

where   
        

                ,    
       is the rotational rates measured in the b-frame with 

respect to the i-frame, and it can be acquired from the gyroscope directly;    
       indicates the 

rotational rates measured in the n-frame, and its theoretical expression is defined as: 

   
     

     
  (3) 

where    
       is the Earth’s rotation rate with respect to the inertial frame, and    

       

denotes the angular rate of the navigation frame with respect to the Earth’s frame. All of the 

aforementioned parameters can be calculated by the outputs of the GPS. All of the quantities above 
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are functions of time, and, if not stated, their time dependences are omitted for brevity in the 

following description. 

It is noted that the attitude quaternions   
      and   

      can be calculated by Equation (2). If 

the initial attitude-quaternion    
   is calculated, self-alignment can be accomplished.  

The apparent velocity update equation in the n-frame is known as: 

            
     

         (4) 

where            
  denotes the specific force vector, which is described by the n-frame. 

Further,             .           is the local gravity. 

Because quaternion multiplication can be used in place of matrix multiplication to transform a 

three-component vector from the b-frame to the n-frame, then: 

     
           

     
 
 (5) 

where   denotes the conjugate operation of a quaternion, and    can be measured by the 

accelerometer. 

Substituting Equations (1) and (5) into Equation (4) yields: 

  
         

   
 
    

     
             

     
             

         
     (6) 

Defining the reference vector and observation vector as: 

 
    

             
     

             
     

    
         

   
 

  (7) 

Equation (6) can be rewritten as the observation vectors–based measurement model for    
   as: 

       
     (8) 

Figure 1 shows the quaternion self-alignment mechanism based on the observation vectors; the 

frame in red represents the n-frame and the frame in black represents the b-frame. In the 

self-alignment process, the observation vectors   and reference vectors   can be calculated over a 

period of sampling time, and the quaternion    
   can be computed in real time. With the known 

time-varying quaternions   
      and   

     , which can be obtained by Equation (2), the attitude 

quaternion   
     of the b-frame with respect to the n-frame can be calculated by Equation (1). In the 

following subsection, the traditional method for calculating quaternion    
   is introduced. 
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Figure 1. The general quaternion self-alignment mechanism based on observation vectors. 
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2.2. Attitude Determination Based on the  -Method 

According to the q-method, the observation vectors and reference vectors must be normalized, 

respectively, to keep the normalization characteristic of the constructed K-matrix [25]; it has: 

 

   
  
    

   
  
    

  (9) 

where         and         are the normalized reference vectors and the normalized 

observation vectors, respectively. The subscript   is the discretization scale coefficient. 

The normalized K-matrix is defined as follows: 

    
    

 

         
  (10) 

where: 

 
   

   

 
     

 

 
    

          

        
         

    

  (11) 

where         is an arbitrary vector,       denotes the trace operation,      denotes the 

cross-product matrix. It was shown that    
   of unity length and    satisfies the equation [26]: 

     
  

 
        

  
 
 (12) 

where the subscript   of    
  

 
 denotes the    -step calculation. It is well-known that      is the 

maximum eigenvalue of    and    
  

 
 is the eigenvector which corresponds to     . 

2.3. An Improved Algorithm for General Quaternion Self-Alignment 

In Equation (11), it can be found that there is more effective observation information in the 

 -matrix during the alignment process. Due to the sensitivity of the filter QUEST to random noise, 

the stability of the results must be poor if the accelerometer measurements are used to construct the 

observation vector straightforwardly. In order to improve the stability of the alignment results, an 

improved algorithm based on apparent velocity is designed. 

According to Equation (8): 

             
          

 

 

 

 

 (13) 

The discrete form of the continuous integration is given by: 

 
 
 

 
         

 

 

          

 

   

        
 

 

          

 

   

  (14) 

where           and           are both set to zero at start-up, because the extracted attitude 

quaternion between two frames is only related to the directions of the two vectors, and it has no 

relation to their location when the attitude determination algorithm is used. Then, the new 

observation vectors      and reference vectors      can be acquired by Equation (14), and the 

attitude quaternion    
      at start-up can be recalculated by the filter QUEST method. 

2.4. Simulation Test 

In this subsection, a simulation test is designed to validate the performance of the general 

quaternion self-alignment. The whole self-alignment process lasted for 600 s, and the geographic 

latitude and longitude of the vehicle were        and        . During the simulation test, the 
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vehicle (taking the ship as an example) was assumed to be static but with swinging motions. The 

swaying rule is               , where   and   are the amplitude and frequency of the 

swaying, while   and   denote the initial phase and swaying center, respectively. The swaying 

parameters of this simulation are defined in Table 1: 

Table 1. Swinging parameters. 

 Pitch Roll Yaw 

Amplitude (°) 10 12 6 

Frequency (Hz) 0.2 0.125 0.15 

Initial phase (°) 0 0 0 

Swaying center (°) 0 0 0 

With these ideal motions in Table 1, the truth measurement of the gyroscope and accelerometer 

can be simulated by the back-stepping of the SINS solution. When the errors in Table 2 are added 

into those ideal measurement data, the real inertial sensor outputs can be generated, and the 

sampling rate of the inertial sensors was 100 Hz in this test. At the same time, those ideal motions 

can be used as a reference to evaluate the accuracy of the alignment, and the difference between 

those ideal motions and the alignment results are defined as alignment errors in this paper. 

Table 2. Sensor errors. 

 
Gyro Noise (   ) Accelerometer Noise (µg) 

Constant Random Constant Random 

x-axis 0.05 0.05 500 500 

y-axis 0.05 0.05 500 500 

z-axis 0.05 0.05 500 500 

For clarity, we define the general quaternion self-alignment method based on Equation (7) as 

Scheme 1, and we define Equation (14) as Scheme 2. The alignment results are recorded 

continuously, and the errors of the alignment results are calculated and saved as text as well. The 

alignment errors are shown in Figure 2, and the statistics of the alignment errors are listed in Table 3. 

The errors of pitch, roll, and yaw are denoted as Figure 2a–c, respectively, and in each subplot the 

red dashed line indicates the results of Scheme 1 and the solid blue line indicates the results of 

Scheme 2. In Table 3, the mean and standard deviation of the alignment errors have been listed every 

100 s during the whole alignment time. 

The curves in Figure 2a,b indicate that the two schemes have similar horizontal alignment 

errors and the same convergence rate, and reached a steady value in the former 100 s. From the 

statistical results in Table 3, the pitch error was under 0.03° and the roll error was within −0.03° in the 

two schemes. Additionally, the standard deviation was around 0.002°, which indicates that the 

stability of the horizontal alignment results of the two methods was equivalent. However, the yaw 

error in Figure 2c shows that the noise property of Scheme 1 was obvious, while the sound 

characteristic of Scheme 2 was stable. The standard deviation of yaw errors of Scheme 2 shows that 

the value was around 0.005° after 300 s. In the contrast, the standard deviation of the yaw of Scheme 

1 in Table 3 did not reach the stable value during the whole alignment. That is, the convergence 

property of Scheme 2 was better than that of Scheme 1. 
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Figure 2. Curves of self-alignment errors. 

Table 3. Statistics for alignment errors (°). 

Time(s) 1–100 101–200 201–300 301–400 401–500 501–600 

Scheme 1 

Pitch 
Mean 0.0287 0.0286 0.0279 0.0275 0.0272 0.0279 

Std 0.0023 0.0020 0.0020 0.0020 0.0019 0.0019 

Roll 
Mean −0.0284 −0.0274 −0.0272 −0.0266 −0.0259 −0.0250 

Std 0.0025 0.0022 0.0021 0.0021 0.0021 0.0022 

Yaw 
Mean 0.1254 0.3161 0.2955 0.2404 0.2044 0.1918 

Std 6.7385 0.0411 0.0252 0.0137 0.0106 0.0049 

Scheme 2 

Pitch 
Mean 0.0301 0.0296 0.0283 0.0272 0.0264 0.0271 

Std 0.0024 0.0020 0.0020 0.0020 0.0019 0.0019 

Roll 
Mean −0.0281 −0.0271 −0.0265 −0.0256 −0.0246 −0.0233 

Std 0.0028 0.0022 0.0021 0.0021 0.0021 0.0022 

Yaw 
Mean −1.6399 0.1368 0.2546 0.2611 0.2469 0.2307 

Std 4.1810 0.0752 0.0114 0.0050 0.0059 0.0051 

Notice that in Table 3, although the stability of Scheme 2 was improved, the constant bias of the 

accelerometer was accumulating during the integral operation. It can be seen that this error 

contaminates the final results of the self-alignment, and it affects the directional deviation of Scheme 

2. The defects of the above two schemes reduce the performance of general quaternion 

self-alignment. According to the aforementioned analysis, the two schemes were all suboptimal. To 

improve the performance of general quaternion self-alignment, a novel method based on Kalman 

filtering technology is proposed in the next section. 

3. Self-Alignment Based on a Kalman Filter 

In this section, a Kalman filter based on minimum variance theory is designed for quaternion 

self-alignment, and the quaternion pseudo-measurement model is also investigated. By the adaptive 

filtering technology, the state-dependent noises in observation vector are attenuated. Since    
   is a 

constant quantity, the process equation of the filter is noise-free, and the algorithm is developed as 

follows. 
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3.1. The Quaternion Pseudo-Measurement Model 

It is assumed that the pair of 3 × 1 unit column-vector    and    are obtained at the time 

instant  , and they are related by the quaternion of rotation    
   as follows: 

      
          

     (15) 

Post-multiplying Equation (15) by    
   leads to the following equation: 

        
      

      (16) 

where      and       are used to denote the linear mappings from      to     : 

                   
   (17) 

where: 

 
 
 

 
        

    
 

       
 

        
    

 

        
 

  (18) 

This equation, which is linear with respect to the quaternion    
  , is the model equation of an 

error-free quaternion measurement [22]. 

In the real system, the observation vectors are the outputs of the inertial sensors which contain 

unknown noises. In this work, the measurement models of the accelerometer and gyroscope are 

defined by: 

             (19a) 

             (19b) 

where          is the actual output of the accelerometer;         and        , respectively, 

denote the constant bias and random noise;          is the actual value of the angular velocity of 

the b-frame with respect to the i-frame;         and         denote the constant bias and 

random noises in the IMU axes. 

Substituting Equations (19a) and (19b) into Equation (7), we rewrite the normalized equation as: 

         
          (20) 

where          is the normalized noise. 

Due to: 

           (21) 

From Equations (16) and (21), a modified Equation (17) is given by: 

                    
            

   (22) 

Equation (22) describes a quaternion pseudo-measurement model at time instant  . Unlike the 

general attitude determination model [22], it is a linear function of the attitude quaternion, and the 

noise term in Equation (22) is an additive quaternion-dependent vector. 

3.2. Kalman Filter 

It is well known that the linear Kalman filter is an optimal globally-convergent state estimator 

for the linear state-space model with white noises. However, it becomes suboptimal if the statistics of 

the measurement noises are unknown, and this is the case of the aforementioned 

pseudo-measurement model, where the noise vector is quaternion-dependent. The adequate 

approach for on-line enhancement of the Kalman filter performance is adaptive filtering. The 

approach presented herein is inspired by [23,24], which is an adaptive-like Kalman filter, and it can 

cover the state-space model with the correlated noises by an adaptive filter. Using the quaternion 
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pseudo-measurement model, the filtering model for quaternion self-alignment based on the Kalman 

filter is given by: 

 
   
  

 
    

  
   

       
  

 
   

  (23) 

where    
  

 
      denotes the estimated initial quaternion at time instant  ;                  

denote the sensitive matrix of the measurement model;              
  

 
 is the 

quaternion-dependent noise. 

The Kalman filter is summarized as follows: 

            
  

 
 (24) 

        
 

   
         

      (25) 

         
        

        
   (26) 

    
  

   
     

  
 
          (27) 

                   
           

  (28) 

where           is an estimate of a covariance of the filtering measurement noise based on     

data pairs, and the term      is the object function for the measurement residual process. Due to the 

pseudo-measurement model, the ideal measurement is vector  ; thus,      is the opposite vector of 

a priori state estimation. According to the Kalman filtering process, we can find that the filtering 

process destroyed the normalization of the estimated quaternion, which lowered the convergence 

rate of the Kalman filter. To overcome the problem, we adopt the brute-force normalization method 

to keep the validity of the estimated quaternion in this paper [27]. 

3.3. Simulation Test 

In this section, a simulation test for the novel quaternion self-alignment method is designed, 

and it is defined as Scheme 3. For comparative purposes, the simulation test is conducted with the 

same conditions described in Section 2.4. 

Without a loss of generality, the initial attitude quaternion for the Kalman filter was     
  

 
 

                              , and the corresponding error attitude at start-up was   

              , the adaptive measurement noise was                         , and the initial 

estimation error covariance matrix was                                 . 

The simulation time was 600 s, and the results compared with the Schemes 1 and 2 are shown in 

Figure 3a–c, indicating the errors of pitch, roll, and yaw, respectively. To show the results clearly, we 

use the red dashed line to represent the results of Scheme 1, the blue line to represent the results of 

Scheme 2, and the cyan dashed, dotted line to represent the results of Scheme 3. In the interest of 

brevity, the statistics for the alignment errors of Schemes 2 and 3 are listed in Table 4, and the 

statistical results of Scheme 1 are consistent with Table 3. 

In Figure 3a,b, we can find that the horizontal alignment results of Scheme 3 show a similar 

accuracy after 300 s compared with the other two methods, and there are no accumulated errors in 

Scheme 3. According to the partial enlarged views of Figure 3c, the accuracy of Scheme 3 has an 

advantage over the other two methods in the final results of self-alignment, which is also proved by 

the statistics for the alignment errors in Table 4. As can be seen in Table 4, when the alignment time 

lasted for 600 s, the alignment error of the yaw of Scheme 3 was 0.0658°, while the alignment errors 

of yaw of Schemes 1 and 2 were 0.1911° and 0.2002°. It can be found that the alignment errors of yaw 

of Scheme 3 were lower than those of Schemes 1 and 2, and the adaptive filter was optimal for the 

state-dependent measured model. 
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Figure 3. Curves of self-alignment errors. 

Table 4. Statistics for alignment errors (°). 

Time(s) 1–100 101–200 201–300 301–400 401–500 501–600 

Scheme 2 

Pitch 
Mean 0.0309 0.0299 0.0300 0.0295 0.0281 0.0268 

Std 0.0028 0.0019 0.0018 0.0018 0.0019 0.0017 

Roll 
Mean −0.0284 −0.0265 −0.0242 −0.0239 −0.0248 −0.0230 

Std 0.0026 0.0024 0.0024 0.0022 0.0022 0.0021 

Yaw 
Mean −2.8787 −0.1752 0.0612 0.1564 0.1917 0.2002 

Std 7.8888 0.1344 0.0403 0.0166 0.0069 0.0035 

Scheme 3 

Pitch 
Mean 0.0255 0. 0239 0.0280 0.0293 0.0279 0.0285 

Std 0.6458 0.0031 0.0022 0.0020 0.0021 0.0021 

Roll 
Mean −0.0255 −0.0275 −0.0265 −0.0271 −0.0279 −0.0263 

Std 0.1561 0.0019 0.0021 0.0022 0.0022 0.0022 

Yaw 
Mean 13.7246 1.6706 0.3349 0.0955 0.1714 0.0658 

Std 8.3981 0.9930 0.1704 0.0335 0.0201 0.0496 

With comparing the results of the Scheme 3 to the other two methods, although the accuracy of 

the novel quaternion self-alignment method was improved, the convergence rate was poor because 

of the random noise which was incorporated into the observation vector, and the stability of the 

proposed method was also poor. In addition, the statistics for the yaw error in Table 4 indicated that 

the standard deviation of Scheme 3 was greater than that of Scheme 2. These defects weaken the 

practical performance of the new method. To address these shortcomings, the parameter recognition 

and vector reconstruction algorithm are investigated for novel quaternion self-alignment, and the 

method is illustrated in detail in the next section. 

4. Improvement to the Observation Vectors 

In this section, we drive the reconstructed observation vectors to improve the convergence rate 

of the estimation of the novel quaternion self-alignment method based on a Kalman filter. Making 

use of the slow-varying characteristic of the observation vectors, the random noise of the observation 

vector is restrained, and the reconstructed vectors contain the gravitational apparent motion 
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information. This superior characteristic is contributory for extracting the effective information from 

the observation vectors, and it makes the algorithm practical. 

4.1. The Model of Parameter Recognition 

According to Equations (6) and (7), the theoretical expression of the gravitational apparent 

motion on the swaying base is given by: 

     
     

     
        

       
         

     (29) 

where the quaternion of rotation    
   indicates the orientation of the b0-frame relative to the 

e0-frame,   
   is the attitude quaternion from the e-frame to the e0-frame,   

  represents the attitude 

quaternion due to the rotation of the e-frame relative to the n-frame,          . 

In Equation (29), it can be found that only   
   is the time-varying quaternion, and thus 

Equation (29) can be rewritten as: 

   

         
         
         

  
                    

                   
   

  

         
         
         

  
 
 
 
  (30) 

where     and                      indicate the constant values, and they are the elements of the 

direction cosin matrices which consists of    
   and   

 . It can be found that the theoretical 

observation vector is relative to the rotation of the Earth, and it is a slow-varying vector.  

With the matrix operation, the simplified form of Equation (29) can be given by: 

   

         
         
         

  
         

         

 

  (31) 

where    indicates the actual value of the observation, and    denotes the measurement noise. 

According to the above Equation (31), the noise-free ideal observation vector can be obtained. 

However, as the result of the constant parameter     is unknown, it is difficult to calculate the 

observation vector with Equation (31) directly. Thanks to the parameter recognition technology, the 

unknown constant parameter     can be estimated by the recursive least squares algorithm. In this 

work, the parameter recognition model of the observation vectors is given by: 

 
       

                    
  (32) 

where                                   
 . Due to the slow rotation rate of the Earth and the 

shorter duration process of the self-alignment, the observation vectors are the slow-varying 

parameters. Therefore, we can remove the random noise by the recursive least squares technology, 

which is computationally efficient. The detailed statement of this method is analyzed in the next 

subsection. 

4.2. The Observation Vector Reconstructed Algorithm 

According to the aforementioned parameter recognition model, the on-line estimation 

algorithm based on the recursive least squares algorithm (RLS) is adopted to avoid large data 

storage and heavy computation. Due to the independent properties of the three elements of the 

observation vector, we can take the recognition for the z-axis as an example, and the parameter 

recognition model Equation (32) can be rewritten as: 

 
           

            
               

  (33) 

where                   ,         indicates the z-axis element of the measured observation 

vectors. 

With the previous development, the RLS algorithm for parameter recognition is summarized as 

follows: 
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   (34) 

Based on the aforementioned analysis, the optimal constant parameters         can be estimated. 

According to the similar approach, we can obtain the other estimated parameters         and        . 

Making use of the estimated parameters      , the new observation vectors can be reconstructed by: 

                (35) 

For more clarity, the proposed self-alignment algorithm using the reconstructed observation 

vectors is listed in Table 5: 

Table 5. Self-alignment algorithm based on reconstructed observation vectors. 

Initialization k = 1,   
     

            . 

Step 1: k = k + 1; 

Step 2: Update   
      and   

      by Equation (2); 

Step 3: Compute     and by   Equation (7); 
Step 4: Compute     by Equations (33)–(35); 

Step 5: Compute     and    by normalizing     and  ; 

Step 6: Compute     
  

 
 by Kalman Filter (see Equations (23)–(28)); 

Step 7: Obtain the attitude matrix at current time (see (1)); 

Step 8: Go to Step 1 until the end. 

4.3. Simulation Test 

In this subsection, the simulation test is described for self-alignment based on a Kalman filter, 

where the improved measurements are used to construct the observation vectors, and the new 

method is defined as Scheme 4. For the purpose of comparison, swinging parameters and sensor 

errors are shown in Tables 1 and 2, respectively. The sampling rate of the outputs of the inertial 

sensors was 100 Hz. In addition, the filtering initialization of the Kalman filter was set to the same 

parameters shown in Section 3.3. The initial parameters for RLS were defined as:         , 

                          ,           , where        . 

The self-alignment process lasted for 600 s. The comparison between the calculated and 

reconstructed gravitational apparent motion is shown in Figure 4, and the alignment errors 

compared with Schemes 1–3 are shown in Figure 5. In Figure 4, the cyan dashed dotted line denotes 

the noised observation vector and the black curves denote reconstructed vectors, and Figure 4a–c 

denote the x-axis, y-axis, and z-axis, respectively. Figure 5a–c denote the alignment errors of the 

pitch, roll, and yaw. In order to show this clearly, the red dashed line represents the results of 

Scheme 1, the blue dotted line represents the results of Scheme 2, the cyan dashed, dotted line 

represents the results of Scheme 3, and the black line represents the results of Scheme 4. Table 4 lists 

the statistical results of Schemes 3 and 4; the statistical results of Schemes 1 and 2 are equivalent with 

those shown in Table 1, which can be used as the comparable results. 

Figure 4 reveals that the observation vectors are slowly varying, and the varying trends are 

consistent with the rotation rate of the Earth. It shows that the random noises of the observation 

vectors of Scheme 4 have been eliminated effectively, and the useful information is retained, which 

contributes to the fast convergence rate. 

The horizontal alignment errors, which are shown in Figure 5a,b revealed that the accuracy and 

convergence rate of the four schemes are equivalent. The main priority of Scheme 4 is the 

performance of the yaw alignment results. In Figure 5c, we can see that Scheme 4 has a faster 

convergence rate than the other three schemes, and it possesses more stable characteristics after  

200 s. 
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Figure 4. Comparison between calculated and reconstructed gravitational apparent motion. 

 

Figure 5. Curves of alignment errors. 

Table 6 shows the statistical results of Schemes 3 and 4, and the statistical results of Schemes 1 

and 2 are equivalent to those shown in Table 3. In Table 6, the statistical results show that Scheme 4 

has the same stability as Scheme 2 and the same accuracy as Scheme 3 at the end of the 

self-alignment. The standard deviation of the yaw error of the Scheme 4 was less than 0.004°, and the 

error of the yaw was around 0.12° when the self-alignment lasted for 200 s, while the standard 

deviation of the yaw error of Scheme 3 was larger than 0.01°. Thus, we can conclude that the 

convergence rate and stability of Scheme 4 are obviously improved. However, it can be found that 

the error mean of the yaw of Scheme 3 was 0.0706° at the end of the self-alignment; thus, the error 

caused by Scheme 3 was smaller than that caused by Scheme 4, which was not an expected result. 
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This is because the error of the yaw of Scheme 3 did not converge to a stable value, and the error 

fluctuated, so the error may be smaller at an interval. 

The simulation test showed the superior performance of Scheme 4, but the simulated data was 

generated in an ideal situation, and the errors of the inertial sensors were assumed as white noise, 

which is not consistent with the real system. In order to verify the practical application and the 

performance of the adaptive filter for the complicated noises of the inertial sensors, the turntable test 

is undertaken in the next section. 

Table 6. Statistics for alignment errors (°). 

Time(s) 1–100 101–200 201–300 301–400 401–500 501–600 

Scheme 3 

Pitch 
Mean 0.0274 0.0272 0.0289 0.0293 0.0282 0.0284 

Std 0.2474 0.0024 0.0020 0.0020 0.0020 0.0021 

Roll 
Mean −0.0255 −0.0275 −0.0265 −0.0271 −0.0279 −0.0263 

Std 0.1561 0.0019 0.0021 0.0022 0.0022 0.0022 

Yaw 
Mean 5.6506 0.4862 0.1323 0.0835 0.1377 0.0706 

Std 4.8208 0.3485 0.0534 0.0233 0.0141 0.0321 

Scheme 4 

Pitch 
Mean 0.0313 0. 0270 0. 0291 0.0299 0.0295 0.0288 

Std 0.2474 0.0022 0.0020 0.0018 0.0019 0.0017 

Roll 
Mean −0.0265 −0.0276 −0.0266 −0.0271 −0.0279 −0.0263 

Std 0.1350 0.0021 0.0021 0.0022 0.0022 0.0022 

Yaw 
Mean −0.3631 0.3812 0.1238 0.1249 0.1252 0.1263 

Std 4.0402 0.2066 0.0039 0.0037 0.0038 0.0035 

5. Turntable Test 

For the turntable test, the equipment was installed as shown in Figure 6; the rate controlling 

accuracy of the turntable of this work was ±0.0005°/s, and the angle controlling accuracy was ± 

0.0001°. Additionally, the angle information could be provided via the serial communication port as 

a response to the external time-synchronization signal. In this test, the inner, intermediate, and outer 

frames were used to simulate the vehicle’s roll, pitch, and yaw, respectively. The SINS used in this 

test is a navigation-grade SINS, in which there are flexible gyros and quartz accelerometers, and the 

precision of the inertial sensors is listed in Table 7. According to [28], the sensor’s coupling 

coincident scale factors, installing error, system error, and the variables of the fiber-optic gyro 

related to the gravity can be calculated exactly and compensated by a calibration test. Thus, if the test 

is executed after the calibration test with the same startup of the SINS, the above-mentioned 

existence errors of SINS can be ignored. 

Truntable

SINS

Outer frameIntermediate frame

Inner frame

 

Figure 6. Turntable and SINS. 
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Table 7. Sensor parameters. 

Gyroscope 

Constant bias              Nonlinearity of scale factor            

Repetitiveness of 

constant bias 
             

Repetitiveness of scale 

factor 
           

Random walk            Measuring range 
     

        

Accelerometer 

Measuring range          Bias          

Threshold          
Temperature coefficient of 

bias 

          

           

Repetitiveness of scale 

factor 

    

           
Repetitiveness of bias 

    

           

Temperature coefficient 

of Scale factor 

          
Bandwidth        

           

The construction of the turntable test is shown in Figure 7. As can be seen in Figure 7, when the 

time-synchronization signal was generated, the current attitude angle data of the turntable was sent 

to the navigation computer via the serial port. Meanwhile, the current IMU outputs were collected, 

and the alignment results were acquired by the embedded algorithm. All effective data was stored 

by the navigation computer at 200 Hz, which is the frequency of the trigger signal for the turntable 

and the update frequency of the IMU outputs. Meanwhile, the alignment solution was carried out 

and saved at every sampling interval. 

Time-synchronization 

signal generator

Serial data

Turntable

SINS

Net data

 

Figure 7. Construction of the turntable test. 

The swaying parameters of the turntable were still set as in Table 1, and the angular rates and 

the actual attitude angles are shown in Figure 8. The calculated and reconstructed gravitational 

apparent motion of the turntable tests are shown in Figure 9, and the alignment errors are depicted 

in Figure 10. 

In Figure 9, the cyan dashed dotted line represents the observation vectors of Scheme 3 and the 

black line represents the reconstructed observation vectors, and Figure 9a–c denote the apparent 

gravitation of the x-axis, y-axis, and z-axis, respectively. It is obvious that the computed measured 

observation vector was slowly changing along with the alignment process, and this is coincident 

with the above analysis. Due to this characteristic of the observation vector, the reconstructed 

observation vector was estimated by the RLS method. It can be found that the random noises in the 

observation vector were eliminated effectively, which will be helpful to speed up the alignment 

process. 
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(a) (b) 

Figure 8. (a) Curves of the measured angular rates; (b) Curves of the actual attitude angles. 

 

Figure 9. Comparison between calculated and reconstructed gravitational apparent motion. 

The results of the turntable tests are shown in Figure 10a–c, indicating the errors of the pitch, 

roll, and yaw, respectively. Due to the swaying motion of the turntable, the alignment results were 

oscillating with small amplitude. In Figure 10a,b, the error of the pitch and the roll of the four 

schemes converge rapidly, which is coincident with the results of the simulation test in Section 4.3. 

The error of the yaw in Figure 10c shows that Scheme 4 had a better performance than the other 

three schemes in terms of the convergence rate and alignment accuracy, and the stability of the 

alignment results of Scheme 4 was better than that of the others. 
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Figure 10. Curves of alignment errors. 

Table 8 shows the statistics for the alignment errors of Schemes 3 and 4. It is shown that the 

errors of the pitch and roll of Schemes 3 and 4 were reduced to less than 0.015° in 100 s, and the 

standard deviation of the level angles was below 0.01° in 100 s. The error of the yaw of Scheme 3 was 

reduced to less than 0.1° in 400 s, and the standard deviation was reduced to less than 0.02° in 400 s. 

In comparison, the yaw error of Scheme 4 was reduced to less than 0.1° in 200 s and the standard 

deviation was reduced to less than 0.02° in 200 s. These features validate the correctness of the 

aforementioned analysis and implemented algorithms, and they showed the sound performance of 

Scheme 4 in practice. 

Table 8. Statistics for alignment errors (°). 

Time(s) 1–100 101–200 201–300 301–400 401–500 501–600 

Scheme 3 

Pitch 
Mean 0.0049 0.0096 0.0129 0.0137 0.0139 0.0141 

Std 0.1363 0.0097 0.0095 0.0093 0.0092 0.0089 

Roll 
Mean −0.0119 −0.0135 −0.0138 −0.0138 −0.0139 −0.0139 

Std 0.0429 0.0080 0.0081 0.0078 0.0079 0.0075 

Yaw 
Mean 21.373 2.6712 0.3510 0.1004 0.0556 0.0496 

Std 16.5760 1.7737 0.1599 0.0281 0.0133 0.0120 

Scheme 4 

Pitch 
Mean 0.0139 0.0139 0.0138 0.0140 0.0141 0.0144 

Std 0.1362 0.0096 0.0095 0.0093 0.0092 0.0089 

Roll 
Mean −0.0128 −0.0134 −0.0136 −0.0137 −0.0139 −0.0140 

Std 0.0429 0.0081 0.0081 0.0078 0.0079 0.0075 

Yaw 
Mean 5.9610 0.0040 0.0466 0.0586 0.0585 0.0588 

Std 11.4950 0.0748 0.0139 0.0124 0.0122 0.0124 
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6. Conclusions 

This paper studied the general quaternion self-alignment method based on the q-method 

principle, and an improved algorithm based on the velocity apparent motion was designed. 

However, the analysis and simulation indicated that: (1) in the general quaternion self-alignment 

method, the alignment accuracy and convergence rate are easily affected by the random noise of the 

inertial sensors; and (2) although the random noises are eliminated effectively by the improved 

algorithm, using the apparent velocity motion, the alignment result drifts because of the cumulative 

effect of the constant drift of the inertial sensors. 

Based on general quaternion self-alignment, an improved method adopting the optimal 

estimation theory was investigated, in which a quaternion pseudo-measurement model with the 

state-dependent noises was established. A Kalman filter with adaptive filter characteristics was 

studied, and parameter recognition and observation vector reconstruction technology were adopted 

in the proposed method. Simulations and turntable tests indicated that the alignment accuracy and 

convergence rate of the yaw were improved. The algorithms proposed in this paper could be useful 

in many applications which require aligning SINS on the swaying base, such as when mooring ships. 

In future works, we will further test the algorithms on moving vehicles and try to handle them with 

large-motion maneuvers. 
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Appendix A 

The coordinate frames used in this paper are defined as follows: 

1. n-frame: Orthogonal reference frame aligned with east–north–up(ENU) geodetic axes; 

2. n0-frame: Orthogonal reference frame non-rotating relative to the i-frame, which is formed by 

fixing the frame n at start-up in the inertial space; 

3. b-frame: Orthogonal reference frame aligned with inertial measurement unit (IMU) axes; 

4. b0-frame: Orthogonal reference frame non-rotating relative to the i-frame, which is formed by 

fixing the frame b at start-up in the inertial space; 

5. e-frame: Earth-centered Earth-fixed (ECEF) orthogonal reference frame; 

6. e0-frame: Orthogonal reference frame non-rotating relative to the i-frame, which is formed by 

fixing the frame e at start-up in the inertial space; and 

7. i-frame: Earth-centered initially-fixed orthogonal reference frame. 
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