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Abstract: The integration of ad hoc device-to-device (D2D) communications and open-access small
cells can result in a networking paradigm called hybrid the ad hoc network, which is particularly
promising in delivering delay-tolerant data. The capacity-delay performance of hybrid ad hoc
networks has been studied extensively under a popular framework called scaling law analysis.
These studies, however, do not take into account aspects of interference accumulation and queueing
delay and, therefore, may lead to over-optimistic results. Moreover, focusing on the average measures,
existing works fail to give finer-grained insights into the distribution of delays. This paper proposes
an alternative analytical framework based on queueing theoretic models and physical interference
models. We apply this framework to study the capacity-delay performance of a collaborative cellular
D2D network with coverage sensing and two-hop relay. The new framework allows us to fully
characterize the delay distribution in the transform domain and pinpoint the impacts of coverage
sensing, user and base station densities, transmit power, user mobility and packet size on the
capacity-delay trade-off. We show that under the condition of queueing equilibrium, the maximum
throughput capacity per device saturates to an upper bound of 0.7239 λb/λu bits/s/Hz, where λb
and λu are the densities of base stations and mobile users, respectively.

Keywords: capacity-delay trade-off; ad hoc network; device-to-device

1. Introduction

Exploitation of the spatial domain is a primary way to address the challenge of exponential
capacity demand in cellular communication networks [1]. Small cells [2] and device-to-device (D2D)
communications [3,4] are both effective solutions to enhance the cellular network capacity by increasing
the spatial reuse factor of the limited spectrum. An alternative approach to address the exploding
traffic challenge is to exploit the traffic delay domain. This is motivated by the fact that a large
portion of mobile data traffic is consumed by content delivery, which is non-real-time in nature.
Unlike real-time services that have strict delay constraints, content delivery services have a greater
flexibility to be manipulated in the delay domain (e.g., by proactive content pushing) [5,6]. It has been
shown that relaxed delay constraints can be traded for capacity. This drives an emerging research field
of content-centric mobile communications, which aim to find capacity-efficient solutions for massive
content delivery [7–9].

The integration of ad hoc D2D communications and open-access small cells can result in
a fundamental networking paradigm called the hybrid ad hoc network, which is a promising
paradigm for future mobile communication networks. The objective of this paper is to investigate the
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fundamental trade-off between capacity and delay in such hybrid ad hoc networks. The capacity study
of cellular D2D networks can take the reference from the extensive literature on the capacity of wireless
ad hoc networks. Most existing works in this field have adopted a popular information-theoretic
framework called scaling law analysis. Gupta and Kumar first proposed this framework and showed
that the per-node transport capacity of arbitrary static ad hoc networks scales as 1/

√
n [10], where n is

the number of nodes in the network. This result suggests that the capacity of each node diminishes
as n goes large. Subsequent works on static ad hoc networks, such as [11–14], all lead to similar
pessimistic results.

Based on an important insight that mobility can be exploited to enhance capacity at the expense of
increased delay, Gorssglauser and Tse [15] showed that in mobile ad hoc networks, a constant per node
throughput can be achieved with a two-hop relaying scheme. Several subsequent works have studied
the amount of delays required to achieve a level of capacity for various mobility models, such as i.i.d.
mobility [16], random walk [17–19], Brownian motion [20] and Levy walk [21,22]. The delay required
for constant per node throughput has been shown to scale as fast as the network size.

Apart from mobility, it has been shown that adding infrastructure (e.g., base stations (BSs)) to
pure ad hoc networks, resulting in the so-called hybrid wireless networks, can bring significant benefits
in terms of capacity and delay. The capacity of hybrid networks with static nodes has been studied
in [23–28]. It was shown that capacity increases linearly with the number of BSs, given that the number
of BSs grows faster than

√
n [28]. In [29], it is shown that a constant delay can be achieved. The capacity

scaling law of hybrid networks with mobile nodes is studied in [30], where some mobility-dependent
extra gains on the capacity are shown. The study of capacity-delay trade-off using the “scaling
law” analysis has attracted much research attention in recent years. Research has been extended to
address various aspects, such as motion-cast [31,32], multi-cast [33–36], converge-cast [37], group and
correlated mobility [38–43], cognitive radio [44,45], etc.

Despite the enormous success and popularity of the “scaling law” framework, this framework
also has some limitations. First, for a tractable analysis, the “protocol model” [10] is usually assumed
to describe the communication and interfering range of a transmitter. This model, however, does not
take into account accumulated interference, which can become significant in dense networks. Second,
the delays incurred by buffering and queueing are commonly neglected for simplicity, resulting in
potentially under-estimated delays. For example, consider a mobile node with a large amount of
buffered data and a short time opportunity to access a BS. It is likely that some buffered data cannot be
delivered in the first access opportunity and should wait for the next chance. As a result, queueing
delays are coupled with mobility-related delays, which can potentially lead to a significant increase of
the overall delay. It should be noted that the delay we considered in this paper is the fundamental delay
caused by ideal (i.e., infinite-buffer) queueing at the physical layer. This delay is different from other
studies that considered specific medium access control (MAC) layer functions, such as retransmission
schemes [46,47]. Third, previous studies have mostly focused on the average measures, e.g., the mean
delays. Such an average measure can be misleading in the case of long-tail distributions, in which the
mean is biased by infrequent incidents of very large values. Because long-tail delay distributions are
common in communication networks, it is very desirable to gain finer-grained insights into the exact
distribution of delays.

To address the above limitations, this paper proposes an alternative analytical framework based
on queueing theoretic models and physical interference models. Although both models have been
used extensively for the performance study of wireless networks, the effort to unify both models
in a coherent framework is still rare. Our previous conference paper [48] was an early attempt to
propose a unified framework for the performance analysis of hybrid ad hoc networks. The basic
idea is to capture the stochastic phenomenon of user mobility and coverage outage using queueing
dynamics. However, the work was still incomplete and does not consider the issue of multi-user
access. This paper further extends and refines the unified framework and provides comprehensive
analysis. Specifically, new issues, including multi-user access, capacity limit and power and rate
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optimization, are addressed in this paper. The new framework allows us to fully characterize the
delay distribution in the transform domain and pinpoint the impacts of user and BS densities, transmit
power, user mobility and packet size on the uplink capacity-delay trade-off. We reach a conclusion
that the maximum throughput capacity per user is bounded by 0.7239 λb/λu bits/s/Hz, where λb and
λu are the densities of base stations and mobile users, respectively.

The remainder of this paper is organized as follows. The system model is described in Section 2.
Section 3 introduces the new analytical framework combining both queueing models and physical
interference models. A detailed characterization of delay distributions and the fundamental limits
of per node capacity throughput are presented in Section 4. In Section 5, we discuss the aspects of
rate and power optimization to achieve the minimum average delay. Finally, numerical results are
presented in Section 6, and conclusions are drawn in Section 7. For the convenience of the readers, the
major parameters defined in this paper are summarized in the table (Table 1) below.

Table 1. List of the main parameters.

System Parameters Protocol Parameters Queueing Parameters

χ Packet arrival rate RI
Transmit rate

in broadcast phase αd
Arrival interval of

original traffic

L Packet size PI
Transmit power

in broadcast phase βd
Transmission time of

original traffic

λu User density RI I
Transmit rate

in deliver phase αe
Arrival interval of

effective traffic

λb BS density PI I
Transmit power
in deliver phase βe

Transmit time of
effective traffic

v User speed pc Coverage probability εe Load of effective traffic

C User capacity demand pa Access probability αo
Arrival interval of
coverage outage

η Path loss exponent N Number of
collaborative users βo

Duration of
coverage outage

φ
Probability of
delay outage FN(n) CDF of N εo Load of coverage outage

2. System Model

We consider a hybrid ad hoc network with small cells and mobile users. We are interested in the
uplink scenario, where mobile users transmit message to the small cell BSs. The small cell BSs are
randomly deployed following two-dimensional homogeneous Poisson point processes (PPPs) with
density λb. We assume that a single dedicated frequency band is used by all small cells to provide
best-effort coverage in the presence of self-interference. Similarly, the mobile users are assumed to
be randomly deployed following a PPP with density λu. Each user has a homogeneous throughput
capacity demand of C bits/s. More specifically, we assume that each user has an incoming traffic
stream with fixed packet size L. It is assumed that all users have identical and random mobility
patterns, so that they randomly move in and out of the small cell coverage areas from time to time.
The average speed of a user is denoted by v. The duration when a user is not in coverage is called
coverage outage.

2.1. User Collaboration Protocol

As illustrated in Figure 1, we consider a user collaboration scheme with two-hop decode and
forward relay. This simple scheme was frequently assumed in the literature and has been shown to
achieve the optimal scaling in mobile ad hoc networks [15]. Our study focuses on the uplink access
scenario, which includes two phases: broadcast phase and deliver phase.
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• In the broadcast phase, original packets on a device are broadcast in the D2D band with a constant
rate RI and constant power PI. Nearby users who can successfully decode the packet will store
the packet. Each packet is broadcast only once from its original user.

• In the deliver phase, the original traffic and traffic received from other users during the broadcast
phase are buffered in a queue and wait to be transmitted to a BS. A transmission to the BS
starts only when a packet carrier falls within the coverage of a small cell. The packets are
transmitted following a first-come-first-out (FIFO) policy until the buffer empties or a coverage
outage occurs. The transmit power and rate used to communicate with the BSs are denoted as
PII and RII, respectively. Once the transmission of the first copy of a packet starts, a signaling is
performed so that all other copies of the same packet will be dropped [15]. In cases that a packet
transmission is interrupted by a coverage outage, the transmission will be resumed to transmit
the rest of the packet once the user moves into coverage again. In other words, we assume
a preemptive-resume queueing policy, noting that our results can be easily extended for a similar
preemptive-repeat policy.

The frequency bands used for D2D communications and small cell access are different to avoid
interference. Without loss of generality, we assume that both frequency bands have the same
normalized bandwidth of one.

Figure 1. System model of the hybrid ad hoc network with user collaboration and coverage sensing.

2.2. Interference Model

Whether a user is within the coverage of a small cell transmitter is determined by its
received signal-to-noise-and-interference ratio (SINR). Unlike “protocol models” [10] that use two
idealistic circles to represent the transmit range and interfering range of a transmitter, in this paper,
we consider the physical interference model, which considers the accumulation of interference from
multiple transmitters. Consider a random field of non-collaborative transmitters distributed as a
two-dimensional PPP process and transmitting with identical power P; the receive SINR at a typical
(randomly chosen) location is given by:

γ =
Ph

PI + 1
(1)

where P is the transmit power normalized to the Gaussian noise power, I is the accumulated
interference normalized to P, h is the channel gain given by h = gd−η , d is a random variable
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(RV) denoting the distance between the active user and the inactive user, η is the path loss exponent
and the RV g ∼ exp(1) follows an exponential distribution with unit mean to represent the power gain
of Rayleigh fading channels. The accumulated interference I is given by:

I = ∑
i

gid
−η
i , (i = 1, 2, ......∞) (2)

where i is the index of interfering active users, di is the distance from the inactive user to the i-th
interferer and gi ∼ exp(1) are RVs to account for Rayleigh fading in the interference channels.
According to the spatial PPP model, the PDF of d is given by [49]:

f ′d(x) = e−λπx2
2πλx, x ∈ (0, ∞) (3)

where λ is the spatial density of transmitters. In the context of wireless networks, the above PDF
could result in an unrealistic calculation of the path loss when the common path loss model is applied.
When d ∈ (0, 1), we have d−α > 1, implying that the receive power becomes greater than the total
transmit power, which is unrealistic. A practical approach to reduce this inaccuracy is to limit the
range of d as d ∈ [1, ∞). This leads to a slightly modified PDF given by:

fd(x) = eλπe−λπx2
2πλx, x ∈ (1, ∞). (4)

Numerical results show that the difference between (3) and (4) becomes significant when the
transmitter density becomes higher than 0.1 users/m2. Consider a typical receiver on the plane;
the received SINR is an RV. Following a similar procedure in [50], but applying the modified PDF of d
given by (4), the complementary CDF (CCDF) of SINR, given the path loss exponent η = 4, can be
derived as:

F̃γ(x; λ, P) = πλeπλ
∫ ∞

1
e−ay−by2

dy (5)

=
π3/2λeλπ

√
b

e
a2
4b Q

(√
2b +

a√
2b

)
(6)

where:
a = λπ

[
1 +
√

x arctan(
√

x)
]

(7)

and b = x/P. In Equation (6), Q(·) denotes the Q-function. Given that λ < 0.1 users/m2, which suits
most practical scenarios, Equation (6) can be well approximated by:

F̃∗γ(x; λ, P) ≈ π
3
2 λa√

b
e

a2√
2b Q

(
a√
2b

)
(8)

In the case of P→ ∞, Equation (8) can be further simplified to [50]:

F̃lim
γ (x) = lim

P→∞
Fγ(x; λ, P) =

1
1 +
√

x arctan(
√

x)
. (9)

2.3. Remarks on System Parameters

Summarizing the above system description, two types of parameters can be distinguished.
The first type is the system parameters, including the user packet arrival rate χ, packet size L,
user density λu, base station density λb and user speed v. These are given parameters that cannot be
optimized by protocol design. We note that the capacity per user is given by C = χL. The second
type is the protocol parameters, including power parameters PI and PII and rate parameters RI and RII.
These parameters can be optimized by protocol designs.
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Based on the above system description, our research objective is to gain theoretical insights into
the following questions: (1) How is the distribution of packet delay related to the system and protocol
parameters? (2) Given the system parameters, how can protocol parameters be optimized for delay
performance? (3) Is there a fundamental limit of per node throughput capacity C? (4) Given optimized
protocol parameters, what is the trade-off between capacity and delay? How does this trade-off change
with different system parameters? Before addressing these questions, a new analytical framework is
introduced to transform the above system model into a mathematically-tractable queueing model.

The following notations regarding an RV will be applied throughout the text. Given an RV
denoted as α, we will use ᾱ to denote its mean, α̂ to denote its second moment, fα(t) to denote its
probability density function (PDF), Fα(t) to denote its cumulative distribution function (CDF), F̃α(t) to
denote its complementary CDF and Lα(s) to denote its Laplace transform. The Laplace transform of
an RV is given by:

Lα(s) = E(esα) =
∫ ∞

0−
estdFα(t) (10)

where E(·) denotes expectation.

3. A Queueing Model-Based Analytical Framework

Our analytical framework is based on a queueing model that characterizes the behavior of data
buffering, collaborative packet delivery and random processes of coverage outage. This section will
explain how parameters of the queueing model can be derived from the various system parameters
and protocol parameters introduced in the previous section.

3.1. A Queueing Model

Consider the packet transmission process in a typical device, the delays incurred in different
phases can be described by the queueing model illustrated in Figure 2.

Figure 2. Queueing model representation of the hybrid ad hoc network.

3.1.1. Queueing in the Broadcast Phase

In the broadcast phase, original traffic is buffered in a device before it can be broadcast. The queue
is characterized by two RVs αd and βd, which represent the random packet arrival interval and
transmission time of packets, respectively. Under the assumption of fixed packet size and constant
broadcast rate, βd becomes a constant given by βd = L/RI. Define the load parameter εd = β̄d/ᾱd;
this parameter represents the fraction of time during which a device is active in broadcasting.

The delays incurred in this queueing process include waiting time wI and completion time zI.
The former is defined as the duration from the arrival of a packet till the start of its transmission.
The latter is defined as the duration from the start of a packet’s transmission to the end of the transmission.
Define sojourn time as sI = wI + zI. This indicates the total time a packet spent in a queue.
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The number of users that can successfully receive the packet from a broadcasting user is a discrete
RV denoted by N. The probability mess function (PMF) of N is denoted by fN(n). After the broadcast,
we call a packet belonging to type-n traffic if there are n copies of the packet in the system, i.e.,
the packet has been successfully broadcast to n− 1 more users.

3.1.2. Effective Traffic

Packets coming from the original traffic and packets received from other users via broadcast
are buffered in a queue before they can be delivered to the BS. These packets, however, may be
dropped if one of their copies gets transmitted first from other packet carriers. A rigid representation
of the actual queueing process requires a complicated model involving queueing network, which is
analytically intractable.

To simplify the analysis, we define “effective traffic” of a device as packets that eventually get
transmitted from the device. Because users are homogeneous, the effective traffic load of a user should
be the same as the original traffic load. After the broadcast phase, the average type-n traffic received
by a user is given by n fN(n)/αd. Because there are n copies undergoing the independent queueing
process on different users, the probability that a type-n packet gets transmitted from a particular user
is 1/n. Therefore, the effective type-n traffic delivered from a user becomes fN(n)/αd. Summing up
all of the traffic types for n ranging from one to ∞, it can be easily shown that the overall effective
traffic load of a device equals 1/αd, i.e., ∑∞

n=1 fN(n)/αd = 1/αd. Because non-effective traffic packets
are dropped before transmission as if they have never arrived on a device, only effective traffic will
contribute to the actual queueing delays.

3.1.3. Queueing in the Deliver Phase

A preemptive-resume priority queueing model is used to describe the queueing behavior in the
deliver phase. This model assumes two classes of independent traffic. The first class represents the
coverage outage process, while the second class represents the effective traffic. The first class has
absolute priority over the second class. This means that once a coverage outage occurs, the current
transmission is stopped and should wait till the next coverage opportunity.

The effective traffic is characterized by two random RVs αe and βe. The former characterizes the
arrival intervals of effective traffic packets, while the latter characterizes the uninterrupted transmission
time of a packet. The outage process is characterized by αo and βo. The former represents the random
duration between the arrivals of two outages, while the latter describes the random duration of
an outage. Define load parameters εe = β̄e/ᾱe and εo = β̄o/ᾱo. The combined load of the two classes
of traffic is εII = εe + εo, and a stable queue requires εII < 1.

Delays incurred in this phase include waiting time wII and completion time zII. We note that the
completion time zII is not the same as the transmission time βe. The former should take into account
cases in which the transmission of a packet is interrupted by a coverage outage, so that the time taken
to complete the transmission of a packet is prolonged by random coverage outages. The sojourn time
in Phase II is sII = wII + zII.

3.2. Analysis of Queueing Parameters

So far, we have introduced the seven RVs that characterize our queueing model: αd, βd, αe, βe, αo,
βo and N. We will subsequently show how these RVs are related to the various system and protocol
parameters introduced in Section 2. A summary of the relationships among various parameters is
illustrated in Figure 3.
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Figure 3. Relationships among system parameters, protocol parameters and queueing parameters.

3.2.1. Assumptions

To facilitate a tractable analysis, we assume that αe and αo follow exponential distributions.
In other words, Poisson arrivals are assumed for the effective traffic and the coverage outage processes.
The Poisson assumption of αe is a common practice in traffic engineering. The Poisson assumption
of αo is natural with PPP distributed BSs, as will be explained later in Section 3.2.2. We note that no
particular distribution is assumed for αd to justify the Poisson assumption of αe.

Because our system model assumes a fixed packet size and a constant broadcast rate, we have
a deterministic βd ≡ L/RI. Our framework makes no particular assumptions on βe and βo, i.e.,
both can follow general distributions. This gives our model the flexibility to represent and differentiate
a wide range of practical systems. By varying the distributions of βe, we can account for different
policies and behaviors of open access small cells. Similarly, by varying the distributions of βo, we can
account for different user mobility patterns.

It is easy to see that the mean inter-arrival times of the original and effective traffic are both
given by:

ᾱd = ᾱe = L/C. (11)

Moreover, the mean transmission times of the original and effective traffic are given by:

β̄d = L/RI (12)

and:
β̄e = L/RII (13)

respectively.

3.2.2. The Coverage Outage Process

The coverage outage process is fully characterized by RVs αo and βo. Here, we will show how
their mean values ᾱo and β̄o are inherently related to the system parameters.

Let us first consider ᾱo. As shown in Figure 4, we assume that each user has a coverage sensing
area represented by a circle, the diameter of which is given by Ω. When a user moves with speed v
for a short period of time t, the movement trace can be regarded as a straight line. The sensing area
covered by the mobile user during t is vtΩ, and new BSs may appear within this area. We assume that
the user will attempt to handover to a newly appearing BS in the coverage sensing area, and an outage
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event occurs during a handover. Therefore, the rate of outage arrival is the same as the rate of BS
arrival in the coverage sensing area. Because BSs follow a PPP distribution on the plane, it follows that:

ᾱo =
1

λbvΩ
. (14)

Now, we consider β̄o. As mentioned previously, we have εo = β̄o/ᾱo; this parameter can be
understood as the fraction of time that a user falls out of coverage. Parameter εo depends on both
the spatial coverage of the uplink and multi-user competition for access. We can write εo = 1− pc pa,
where pc is the probability that a user falls within coverage, and pa is the probability that the user
is granted access among multiple users within the same cell. Coverage areas are defined as areas
in which a receiver can receive a data rate higher than RII in the presence of inter-cell interference.
Because only one user is active in transmission in a cell, based on the interference models described in
Section 2.2, we have pc = F̃χ(2RII − 1; λb, PI I), where function F̃χ(x) is the interference complementary
cumulative distribution function (CCDF) defined in Equation (6). Moreover, because all users have
equal access to the BS, the multi-user access results in pa = λb/λu in an average sense (we assume that
λu > λb always holds). It follows that:

εo = 1− λb
λu

F̃χ(2RII − 1; λb, PI I). (15)

Figure 4. Coverage sensing area of a mobile user.

3.2.3. Number of Packet Copies N

All original traffic is broadcast in Phase I from its user with identical power PI and broadcast rate
RI. The broadcast is slotted with slot length L/RI, where L is the fixed packet length. In each slot, the
broadcasting users are called active users, while the rest are called inactive users. The time fraction that
a user is active in broadcasting equals εd = β̄d/ᾱd. The density of active users is therefore given by:

λa = λuεd (16)

and the density of inactive users is λw = λu − λa.
We assume that each inactive user is associated with the nearest active user and listens to its

broadcast signal. Let M denote the number of associated inactive user per active user; the PMF of M is
given by [51]:

fM(n) =
3.53.5

Γ(3.5)n!

Γ(n + 3.5)(λw
λa
)n

(λw
λa

+ 3.5)n+3.5
(17)

where Γ(·) denotes the Gammafunction and (·)! denotes factorial.
For each active user, the number of inactive users that can successfully receive its broadcast in

each time slot is an RV denoted by N′. The number of copies of a packet after a broadcast is denoted
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by N, and we have N = N′ + 1. An inactive user can successfully receive a packet only if it can receive
Phase I broadcasting with an SINR higher than χ = 2RI − 1. The probability of successful packet
reception can be calculated as Fγ(χ; λa, PI). Because the transmitter is assumed to follow an ergodic
PPP process, the SINR can be treated as spatially ergodic. It follows that N′ ∼ B(M, Fγ(χ; λa, PI)), i.e.,
N′ follows a binomial distribution with parameters M and p = Fγ(χ; λa, PI). Since M is an RV, the
PMF of N′ can be obtained by taking the expectation over M, i.e.,

fN′(n) =
∞

∑
m=0

fM(n)Cn
m pn(1− p)m−1 (n ≥ 0) (18)

where Cn
m = m!/n!. Finally, the PMF of the random number of copies of a packet in the system is

given by:
fN(n) = fN′(n− 1) (n ≥ 1). (19)

4. Capacity Limits and Delay Analysis

4.1. Capacity Limits

Consider the priority queue in the deliver phase; the combined load of two classes of traffic is
given by:

εII = εe + εo (20)

where εe = C/RII and εo is defined in Equation (15). A stable queue requires εII < 1; it follows that:

C <
λb
λu

RII

Fγ (2RII−1; λb, PII)
. (21)

Given BS density λb and power input PII, the capacity C can be optimized over RII, i.e.,

C∗(λb, PII) = max
RII

λb
λu

RII

Fγ (2RII−1; λb, PII)
. (22)

Numerical results show that C appears convex over RII under various parameter settings.
Therefore, C∗(λb, PII) can be calculated by effective numerical methods. Furthermore, it is easy
to see that C∗ is a monotonically-increasing function of PII. From a theoretical point of view, we are
interested in the fundamental capacity limit Clim defined as:

Clim = lim
PII→∞

C∗(λb, PII). (23)

Substitute Equations (9) and (22) into Equation (23), we get:

Clim = max
x

λb
λu

x
1 +
√

2x − 1 arctan(1/
√

2x − 1)
. (24)

It can be shown that Clim is a convex function of x. Numerical evaluation can be performed to
give Clim = 0.7239 λb/λu bits/s/Hz, which shows a constant scaling with λb/λu. We note that our
conclusion conforms with the conclusions obtained via scaling law analysis [28], which predicts that
the capacity can grow linearly with λb/λu. Our model refines the result by obtaining the exact scaling
constant as 0.7239. In Figure 5, the optimal capacity C∗ is illustrated as a function of PII with varying λb
based on Equation (22). It is observed that C∗ increases initially with increasing PII or λb, but eventually
reaches the upper bound Clim.
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Figure 5. Maximum capacity per device as a function of transmit power PII with varying infrastructure
density λb (λb/λu =1).

4.2. Delay Distributions

This subsection aims to obtain the exact distribution of the four delay parameters wI, zI, wII and zII,
from which the total delay can be obtained as:

D = wI + zI + wII + zII (25)

The PDF of D can be numerically calculated as the convolution of the PDFs of each component.

4.2.1. Phase I Delays wI and zI

Because we have assumed a fixed packet size and a fixed broadcast rate RI, it is obvious that:

zI ≡ β̄d ≡
L
RI

. (26)

The queueing process in Phase I forms a G/D/1, queue and the exact distribution of wI is generally
unavailable. In the special case that αd follows exponential distributions, the queueing process in
Phase I becomes an M/D/1queue, and we have [52]:

FwI (t) = (1− ᾱd)
K

∑
n=0

αd(n− t)n

n!
e−αd(n−t) (27)

where K = btc is the largest integer smaller than t. The average waiting time is given by [52]:

w̄I =
1
2

εd
1− εd

β̄d. (28)

These results of an M/D/1 queue can serve as a reasonable estimate for the actual delay of the
G/D/1 queue under practical settings. We note that under practical settings, the Phase II delays are
much greater than Phase I delays, i.e., wII + zII >> wI + zI. Therefore, our subsequent focus is on
obtaining the exact distributions of wII and zII.
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4.2.2. Phase II Completion Time zII

In Phase II, we have an M/G/1 priority queue with two classes of traffic. The first-class of traffic is
coverage outage, while the second-class of traffic is effective traffic. We are interested in the completion
time of the second class of traffic. The Laplace transform of zII is given by [52]:

LzII (s) = Lβe [K (s)] (29)

where Lβe(·) is the Laplace transform of βe and:

K (s) = s +
1− G (s)

ᾱo
. (30)

Here, G(s) is the solution with the smallest absolute value that satisfies the following equation:

x− Lβo

(
s +

1− x
ᾱo

)
= 0 (31)

where Lβo (·) is the Laplace transform of βo. From (29)–(31), the Laplace transform LzII(s) can be
obtained. The exact PDF of zII can then be numerically calculated using standard methods of Laplace
inversion. Finally, the first and second moment of zII can be evaluated analytically as [52]:

z̄II =
βe

1− εo
(32)

and:

ẑII =
β̂o

(1− εo)2 + β̂o
β̄e

β̄o

ε̂o

(1− εo)3 (33)

respectively.

4.2.3. Discussions on βo

We have so far assumed a general distribution for the outage duration βo. This distribution affects
the solution of Equation (31). We will subsequently discuss two special distributions for βo.

The first distribution to consider is the exponential distribution. This memoryless distribution
is a natural choice for βo when small cell BSs are randomly located as a PPP and users have
coverage-independent mobility patterns. Given βo ∼ exp

(
1/βo

)
, its Laplace transform can be

evaluated as:
LE

βo
(s) =

1
1 + sβ̄o

. (34)

It follows that Equation (31) can be solved explicitly to give:

G (s) =

(
1 + εo + sβ̄o

)
−
√(

1 + εo + sβ̄o
)2 − 4εo

2εo
(35)

Another useful distribution we consider is the Gamma distribution. The Gamma distribution can
provide more flexibility when characterizing βo for a variety of practical scenarios. Given βo ∼ Γ (k, θ),
the PDF of βo is given by:

fβo (t) =
1
θk

1
Γ (k)

tk−1e−
t
θ (36)

where k and θ are the shape and scale parameters, respectively. Under the Gamma distribution, the
Laplace transform of βo is given by:

LG
βo
(s) = (1 + θs)−k (37)
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It follows that when k is an integer or a rational fraction, Equation (31) yields a polynomial form.
Therefore, function G(s) can be easily solved using existing root-finding algorithms for polynomials.

4.2.4. Phase II Waiting Time wII

The waiting time wII of a packet depends on its traffic type, i.e., the number of packet copies in the
system. We denote the waiting time of a type-n traffic as wn

II. Let us first consider w1
II, whose Laplace

transform is given by [52]:

Lw1
II
(s) = (1− εII) ᾱe

K (s)
Lβe [K (s)] + ᾱes− 1

(38)

where K(s) is defined in Equation (30). It is possible that the packet arrives to see an empty buffer.
Therefore, the CDF function has a non-zero value at 0+, which is given by [52]:

Fw1
II
(t = 0+) = 1− εII. (39)

Clearly, the CDF of the virtual waiting time depends on the characteristics of the effective traffic
and coverage outage process.

In Figure 6, the CDF of w1
II is illustrated with varying values of εo, which denotes the fraction

of areas without coverage. Similar to the definition of the well-known “outage capacity” in fading
channels, we can define “outage delay” as the delay that grantees certain outage. For example, a 10%
outage delay is the delay t10 that satisfies FwII(t10) = 0.9. From Figure 6, a nonlinear relationship is
observed between εo and outage delays. Taking the 10% outage delay for example, when εo takes
values of 0.1, 0.2, 0.3 and 0.4, the corresponding 10% outage delay is roughly 1 s, 7 s, 17 s and 43 s,
respectively. Therefore, the delay performance degrades quickly with increasing coverage outage.
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Figure 6. CDF of waiting time wII with varying coverage outage fraction εo when the coverage outage
duration βo follows the exponential and Gamma distribution (εo increases from 0.1–0.7 with steps of
0.1, k = 2, N = 1, ᾱo = 20, εe = 0.2, ᾱe = 1).

Another aspect we investigate in Figure 6 is how the CDF of w1
II is influenced by different

distributions of βo. Two types of distributions are compared: one is the exponential distribution,
the other the Gamma distribution with k = 2, which is also an Erlang distribution. The former
distribution corresponds to a purely random network, while the latter can represent networks that are
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planned with certain regularities. For the purpose of fair comparison, the two types of distributions
are set to have the same mean β̄o. It is observed that the Erlang distribution gives slightly better
performance than the exponential distribution. From this, we postulate that the delay performance
will improve if the small cell network is not entirely random, but exhibits certain regularities.

Now, consider the waiting time of a type-n traffic packet. Because there are now n copies
undergoing independent queueing processes, the actual waiting time wn

II is the minimum of the n
queues. The delay CDF of a type-n traffic packet can then be evaluated as:

Fwn
II
(t; n) = 1−

[
1− Fw1

II
(t)
]n

. (40)

Further consider n as an RV denoted by N and apply the law of total probability; the CDF of the
waiting time of an arbitrary packet is given by:

FwII(t) =
∞

∑
1

fN(n)
(

1−
[
1− Fw1

II
(t)
]N
)

(41)

where fN(n) is the PDF of N given by (19).
In Figure 7, the CDF of wN

II is illustrated with varying values of N according to Equation (40).
User collaboration is shown to be effective in reducing delays. Compare Figure 7 with Figure 6;
we observe that the performance given by N = 5 and εo = 0.6 is comparable to the performance given
by N = 1 and εo = 0.2. In other words, if a packet is successfully broadcast to four other users, the
coverage requirement can be relaxed about two times in this case ((1− 0.2)÷ (1− 0.6) = 2). On the
other hand, Figure 7 also shows that the benefits of increasing N gradually diminishes as N goes large.
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Figure 7. CDF of waiting time wII with varying number of collaborating devices N when the service
outage duration βo follows the exponential and Gamma distribution (N increases from 1–5 with steps
of one, k = 2, εo = 0.6, ᾱo = 20, εe = 0.2, ᾱe = 1).

5. Rate and Power Optimization

In the previous section, we have established the delay distribution subject to protocol parameters
and system parameters. From the practical perspective of system design and optimization, it is
desirable to understand how the protocol parameters (RI, RII, PI and PII) can be properly chosen to
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give an optimized capacity-delay performance. Without loss of generality, our subsequent analysis is
restricted to the case where both βe and βo follow exponential distributions.

5.1. Heuristic Optimization of RI

Under natural conditions, the waiting time wII dominates the delay. Therefore, the primary target
of delay minimization is to minimize wII. According to Figure 7, increasing the number of packet copies
is shown to be very effective in reducing delays. Therefore, a simple heuristics for the optimization of
RI is to maximize the mean number of packet copies N̄. It turns out a simple closed-form estimate
exists to give N̄ = J̄q, where:

J̄ = (λu − λa)/λa = RI/C− 1 (42)

denotes the ratio of inactive users and active users in Phase I, λa = λuC/RI, and:

q = Fγ

(
2RI − 1; λa, PI

)
(43)

denotes the probability that an inactive user can successfully receive a packet. Because increasing
RI will increase J̄, but reduce q, such a tension requires an optimization over RI. The optimization
problem of RI can be formulated as follows: given C, λu and PI,

R∗I = arg max
x

( x
C
− 1
)

Fγ

(
2x − 1;

λuC
x

, PI

)
x > 0. (44)

Figure 8 shows N̄ as a function of RI . The above optimization problem is shown to have a simple
structure with a single peak value, which can be easily obtained via numerical methods.
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Figure 8. The average number of collaborating devices N̄ as a function of broadcast rate RI with
varying transmit power PI and capacity demand C (λu = 10−4).

5.2. Heuristic Optimization of RII

The total delay is dominated by the waiting time wII, which depends largely on the waiting
time of Type-1 traffic w1

II. A simple heuristic to optimize RII is therefore to minimize the mean of w1
II

given by:

w̄1
II =

1
2(1− εo)(1− εII)

(
2β̄2

e
ᾱe

+
2β̄2

o
ᾱo

)
(45)
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in the case that βe and βo both follow exponential distributions. Increasing RII will reduce the Phase II
transmission time (once in coverage), but at the cost of reduced probability to fall within coverage.
This tension leads to an optimization problem as follows: given C, PII, L, v and λb,

R∗II = arg max
RII

w̄II (46)

In Figure 9, the mean waiting time w̄1
II is shown as a function of average delivery rate RII with

varying transmit power PII and capacity demand C. The objective function appears to be convex, and
the optimal value can be easily obtained via numerical methods.
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Figure 9. The mean waiting time w̄1
II as a function of average delivery rate RII with varying transmit

power PII and capacity demand C (λb = 10−6, L = 1, v = 1).

5.3. Heuristic Optimization of Power PI

Unlike the optimizations over RI and RII that aim to balance between conflicting effects, increasing
PI is always beneficial, but with diminishing returns in terms of capacity and delay. Our heuristic
approach to the optimization of PI is based on the following idea: when PI reaches a threshold,
further increasing PI is not helpful as Phase I broadcasting becomes interference limited. Therefore,
we want to have the minimum PI that can achieve φ percent of the best performance given by PI → ∞.
As mentioned previously, the probability for an inactive user to successfully receive a packet is Fγ(χ).
This can be used as a convenient performance indicator of the broadcasting performance.

The optimization of PI can now be formulated as follows:

P∗I = arg min
P

F∗γ(χ; λa, P)
Flim

γ (χ; λa, ∞)
> φ, φ ∈ (0, 1) (47)

where χ = 2RI − 1, λa = λuεd and functions F∗γ(·) and Flim
γ (·) are defined in Equations (8) and (9),

respectively.
At relatively high values of PI, the Q-function appearing in Equation (8) can be well approximated

by a lower bound given by:

Q(x) '
x2

√
2π(1 + x2)

e−x2/2. (48)
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Substituting Equations (8), (9) and (48) into Equation (47), we get:

P∗I ≈
φ

1− φ

2χ

(πλa)2[1 +
√

χ arctan(
√

χ)]2
. (49)

Equation (49) gives a closed-form formula to directly calculate P∗I from system parameters.

5.4. Heuristic Optimization of Power PII

The idea for the optimization of PII is similar to that of PI, only that the objective function is
now Clim. As shown in Figure 5, increasing PI is always beneficial to the capacity until the capacity
approaches a constant limit. The optimization problem can be formulated as:

P∗II = arg min
P

C∗(λb, P)
Clim

≥ φ (0 < φ < 1) (50)

where C∗(λb, P) and Clim are defined in Equations (22) and (24), respectively. Obviously, given λb,
P∗II can be easily obtained from Figure 5 by drawing a horizontal line at C = φ ∗ Clim = 0.7329φ to
intersect with the various curves.

6. Numerical Results and Discussions

In this section, numerical results are shown to illustrate the capacity-delay trade-off with varying
system parameters. We aim to shed light on the following questions: What is the trade-off between
capacity and delay? How does this trade-off change with different system parameters? We note that
two different metrics for the delay performance can be considered: the mean delay and the outage
delay. Due to page limits, our discussions are limited to the mean delay.

The procedure of our numerical evaluation is as follows: (1) given system parameters (C, L, λu,
λb, and v) and power parameters (PI and PII), calculate the optimal rate parameter RI and RII according
to Equations (44) and (46), respectively; (2) given all of the above parameters, calculate the PDFs of wII

and zII based on Section 4; (3) calculate the PDF of the accumulated delay D and evaluate its mean
value D̄. Without loss of generality, we set λb = 10−5 and Ω = 100 in all cases.

Figure 10 shows the impact of user density λu and power PI on the capacity-delay trade-off.
The trade-off is shown to be insensitive to the user density. This is because the capacity limit scales
with 0.7239λb/λu. When capacity approaches this limit, the delay shows an exponential growth to
infinity. The value of PI is also shown to have a significant impact on the delay performance. The case of
PI = 200 dB represents the extreme case of infinite power. The capacity-delay trade-off at PI = 200 dB
indicates the performance upper bound we can get from user collaboration.

Figure 11 shows the impact of user speed v on the capacity-delay trade-off, for cases with and
without user collaboration. We set PI and PII to very large values to shed light on to the fundamental
performance limits. The trade-off is shown to be sensitive to the speed. For a ten-fold increase of
the speed, the delay is shown to reduce by about 90%. In other words, an inversely proportional
relationship is observed between speed and mean delay. The benefit of user collaboration (i.e., relay) is
shown to be significant, especially when the movement speed is low. This suggests that in practice,
allowing D2D communications between low speed and high speed users will effectively reduce the
delays of low speed users.

Figure 12 shows the impact of packet size L on the capacity-delay trade-off. In practice, it is
desirable to have a larger packet size to reduce overhead. However, it is observed that increasing L
leads to slightly increased delays. This suggests that the packet size should also be optimized carefully
in practice. It is interesting to see that the delay becomes larger when the value of C approaches zero.
This is because the heuristic algorithms for optimizing protocol parameters are sub-optimal for very
small values of C. This shows some limitations of the heuristic algorithm in Section 5.
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Figure 10. Mean delay D̄ as a function of capacity per device C with varying transmit power PI and
user density λu (L = 1, PII = ∞, λb = 10−5, v = 1).
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Figure 11. Mean delay D̄ as a function of capacity per device C with varying user mobile speed v
(L = 1, PI = ∞, PII = ∞, λb = 10−5, arbitrary λu).

While all of the above numerical results are based on the mean delay, it is also important to
investigate the trade-off performance in terms of the outage delay. In practice, a small fraction
of packets with large delays is allowed to be dropped by the queue; hence, the outage delay is
particularly useful when the delay has long-tail distributions. Given a random delay D and its CDF
FD(x), the outage delay Do(φ) is defined as the delay value that gives FD(Do) = 1− φ, where φ

is the outage threshold. In Figure 13, we show the capacity-delay trade-off based on outage delay.
As expected, we see that the outage delay increases in an exponential fashion when the capacity per
user approaches the limit. Moreover, it is observed that the delay reduces with increasing outage
probability φ. Finally, we note that being able to pinpoint the delay distribution and study the outage
delay performance is a key merit of the analytical framework proposed in this paper. Our analytical
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framework can potentially be extended beyond the scenario of cellular communications and applied
to other networking paradigms, such as multi-hop sensor networks [53–55].
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Figure 12. Mean delay D̄ as a function of capacity per device C with varying packet size L (PI = ∞,
PII = ∞, λb = 10−5, arbitrary λu, v = 1).
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Figure 13. Outage delay D(φ) as a function of capacity per device C with varying outage threshold φ

(PI = ∞, PII = ∞, λb = 10−5, arbitrary λu, L = 1, v = 1).

7. Conclusions

This paper has studied the uplink capacity-delay trade-off of large-scale hybrid wireless networks
with a two-hop broadcast-and-forward relaying scheme. A queueing theoretic framework has been
established to evaluate the exact distribution of the delays. The impacts of transmission rates,
transmission power, user density, BSs density and packet size on the capacity-delay trade-off have
been thoroughly investigated. Heuristic power and rate control algorithms have been proposed for



Sensors 2017, 17, 232 20 of 22

performance optimization. Using a different and independent model, we reach the same conclusion
with existing literature that per-user capacity scales with BS-user density ratio. However, our model
is able to give an exact scaling coefficient as 0.7239 in the interference limiting scenario. Numerical
results suggest that mobility and user collaboration are effective means to reduce the mean and outage
packet delay.
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