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Abstract: The incorporation of cognitive radio (CR) capability in wireless sensor networks yields
a promising network paradigm known as CR sensor networks (CRSNs), which is able to provide
spectrum efficient data communication. However, due to the high energy consumption results from
spectrum sensing, as well as subsequent data transmission, the energy supply for the conventional
sensor nodes powered by batteries is regarded as a severe bottleneck for sustainable operation.
The energy harvesting technique, which gathers energy from the ambient environment, is regarded
as a promising solution to perpetually power-up energy-limited devices with a continual source
of energy. Therefore, applying the energy harvesting (EH) technique in CRSNs is able to facilitate
the self-sustainability of the energy-limited sensors. The primary concern of this study is to design
sensing-transmission policies to minimize the long-term outage probability of EH-powered CR sensor
nodes. We formulate this problem as an infinite-horizon discounted Markov decision process and
propose an ε-optimal sensing-transmission (ST) policy through using the value iteration algorithm.
ε is the error bound between the ST policy and the optimal policy, which can be pre-defined according
to the actual need. Moreover, for a special case that the signal-to-noise (SNR) power ratio is sufficiently
high, we present an efficient transmission (ET) policy and prove that the ET policy achieves the
same performance with the ST policy. Finally, extensive simulations are conducted to evaluate the
performance of the proposed policies and the impaction of various network parameters.
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1. Introduction

During the last decade, bandwidth demand for the limited spectrum has been greatly increasing
due to the explosive growth of wireless services. The current static frequency allocation schemes, with
a severe underutilization of the licensed spectrum over vast temporal and geographic expanses [1],
cannot support numerous emerging wireless services. This motivates the concept of cognitive radio
(CR) [2–4], which has been envisioned as an intelligent and promising approach to alleviate the
problem of spectrum utilization inefficiency. In CR networks (CRNs), unlicensed secondary users
(SUs) opportunistically access the spectrum dedicated to some licensed primary users (PUs) without
interfering with the PU operation [5]. Through enabling the CR users to dynamically access the
available bands in the licensed spectrum, spectrum efficiency can be improved significantly.

The wireless sensor network (WSN), which is capable of performing event monitoring and data
gathering, has been applied to various fields, including environment monitoring, military surveillance,
smart homes and other industrial applications [6,7]. Currently, most WSNs work in the license-free
band and are expected to suffer from heavy interference caused by other applications sharing the
same spectrum. It is therefore imperative to employ CR in WSNs to exploit the dynamic spectrum
access techniques, hence giving birth to the CR sensor networks (CRSNs) [8,9]. In CRSNs, in order
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to guarantee the quality-of-service (QoS) of primary users, it is indispensable for CR sensor nodes
to sense the licensed spectrum to ensure that the spectrum is free of primary activities before data
transmission. The exclusive operation of spectrum sensing along with subsequent data transmission
results in high energy consumption in CRSNs, which traditionally operate powered by batteries.
Consequently, one of the looming challenges that threatens the successful deployment of CRSNs is the
energy efficiency [6,10].

Energy harvesting (EH) technology, which is used to replenish energy from various energy
sources, such as solar, wind and thermal, has been flagged as one of the effective approaches
for improving the energy efficiency with more eco-friendliness [11]. Compared with traditional
communication devices powered by batteries, EH-enabled devices could scavenge unlimited energy
from the ambient environment energy sources, which enable them to operate continuously without
battery replacement [6]. This self-sustainable feature is very important because in many situations,
periodically replacing or recharging batteries may be inconvenient or even impossible due to various
physical restrictions [12]. Besides, powering wireless networks with renewable energy source could
also significantly reduce the harmful effects to the environment caused by fossil-based energy.
Furthermore, energy harvesting systems can be built inexpensively in small dimensions, which
could be a significant advantage in the manufacturing of small communication devices, such as sensor
nodes [13]. Recently, apart from traditional energy sources (e.g., solar, wind, thermal), the ambient
radio signal is also regarded as a helpful optional source, which can be consistently available regardless
of the time and location in urban areas [14]. In light of the above advanced features, applying EH in
CRSNs to improve energy efficiency has become increasingly eye-catching recently [10,15–17].

In this paper, we consider a time-slotted EH CR sensor network, where the secondary sensor node
(also called SU) with a finite-capacity battery has no fixed energy supply and is powered exclusively by
energy harvested from the ambient environment. There are multiple tradeoffs involved in the design
of the parameters to achieve the optimal system performance of the SU. First, due to the existence
of sensing errors, with a longer time allocated for channel sensing, the SU can acquire the status of
a licensed spectrum with higher accuracy, such that the performance of the SU may be improved.
However, in the slotted operating mode, with more time allocated for channel sensing, less time
remains for data transmission, leading to possible performance reduction. Besides, as the amount of
transmitting power used upon transmission will affect both the performance and energy consumption,
a crucial challenge lies in adaptively tuning the transmission power levels according to the energy
replenishment process, as well as channel variation. An overly conservative power allocation may
limit the performance by failing to take full advantage of harvested energy, while an overly aggressive
allocation of power may cause the energy in the battery to run out and affect the performance of
the future time slots. Additionally, different from traditional CR systems with a fixed power supply,
the energy consumption on the channel sensing is non-negligible in EH CRSNs; therefore, the problem
of designing parameters, which should jointly consider the energy consumption of channel sensing
and data transmission, as well as the dynamic battery replenishment process, becomes even more
complicated than the traditional CR systems.

The objective of this paper is to minimize the long-term outage probability of the secondary sensor
node by adapting the sensing time and the transmit power to the system states, including the battery
energy, channel fading and the arrival energy by harvesting. The main contributions of this work are
summarized as follows:

1. Considering the status of primary channels, the diversity of channel conditions, the energy
replenishment process, as well as the imperfection of spectrum sensing, we investigate the joint
optimization of channel sensing and adaptive transmit power allocation to minimize the SU’s
long-term outage probability. The above design problem is formulated as a discounted Markov
decision process (MDP).

2. We theoretically prove the existence of an optimal stationary deterministic policy and obtain
the ε-optimal sensing-transmission (ST) policy, which specifies the allocation of sensing time
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and transmission power through using the value iteration in the MDP. Moreover, an interesting
structural property regarding the optimal transmission policy is obtained. It is proven that the
optimal long-term outage probability is non-increasing with the amount of the available energy
in the battery.

3. For a special case where the signal-to-noise (SNR) power ratio is sufficiently high, we propose
an efficient transmission (ET) policy with reduced computational complexity. It is theoretically
proven that the efficient transmission policy achieves the same performance as the proposed
sensing-transmission policy when the SNR is sufficiently high, which has also been validated
through computer simulations.

4. We provide extensive simulation results to compare the performance of the sensing-transmission
policy and the efficient transmission policy with that of a benchmark policy. It is shown that the
proposed sensing-transmission policy achieves significant gains with respect to the benchmark
policy, and both the sensing-transmission and the efficient transmission policies converge to the
same value in high SNR regions. In addition, the impacts of various system parameters on the
performance of proposed policies are also investigated.

The rest of the paper is organized as follows. The related work is reviewed in Section 2.
The network model and the related assumptions are presented in Section 3. We formulate the outage
probability minimization problem as an MDP in Section 4. The proposed policies and the related
theorems are illustrated in Section 5. The performance and characteristics of the proposed policies are
evaluated through numerical results in Section 6. Finally, we conclude this paper in Section 7.

2. Related Work

In the literature, the topic of energy harvesting and cognitive radio receive increasing attention.
Three groups of existing works are most related. First, the CR technique has received significant
attention during the past few years [18–22]. In [18], the authors focus on designing a database access
strategy that allows the SUs to jointly consider the requirements of the existing rules, as well as the
maximization of the expected communication opportunities through on-demand database access.
The optimal strategy introduced in [18], which is computationally unfeasible with the brute-force
approach, can be solved by the efficient algorithm proposed in [19]. In [19], by proving that the optimal
strategy has a threshold structure, an efficient algorithm is introduced by exploiting the threshold
property. In [20], the authors investigate the achievable throughput of an unlicensed sensor network
operating over the TV white space spectrum. The achievable throughput is analytically derived as a
function of the channel ordering. Additionally, the closed-form expression of the maximum expected
throughput is illustrated. The work in [21] studies the problem of coexistence interference among
multiple secondary networks without the secondary cooperation. Under a reasonable assumption,
a computationally-efficient algorithm for finding the optimal strategy is presented. The work in [22]
develops robust power control strategies for cognitive radios in the case of sensing delay and model
parameter uncertainty. A robust power control framework that optimizes the worst-case system
performance is proposed. All of the problems considered in the above works are formulated as Markov
decision process problems, and the technical contributions are very important and valuable. However,
due to the unique features of the EH CRSNs, such as the dynamic energy replenishment process,
which stipulates a new design constraint on energy usage in the time axis, there is a need to revisit
resource allocation policies so that the energy expenditure can efficiently adapt to the dynamics of
energy arrivals.

Second, the energy harvesting technique has been widely studied in wireless communication
systems [23–30]. The works in [23–26] consider the point-to-point wireless communications. In [23],
through optimizing the time sequence of transmit powers, the authors focus on maximizing the
throughput by a deadline and minimizing the transmission completion time. For the offline policy,
a directional water-filling algorithm is introduced to find the optimal power allocation. For the
online policy, dynamic programming is applied to solve the optimal power allocation. In [24],
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the authors consider the problem of energy allocation over a finite horizon to maximize the throughput.
A water-filling energy allocation where the water-level follows a staircase function is introduced.
The work in [25] studies the problem of energy allocation for sensing and transmission to maximize
the throughput in an energy harvesting wireless sensor network. The problem studied in [25]
considers the finite horizon case, which is extended in [26] to an infinite-horizon case. In [26],
the authors study the energy allocation for sensing and transmission for an energy harvesting
sensor node. An optimal energy allocation algorithm and an optimal transmission energy allocation
algorithm are introduced. The works in [27,28] consider the problem of hybrid energy supply. In [27],
the authors investigate the minimization of the power consumption stemming from the constant energy
source for transmitting a given number of data packets. In [28], for a hybrid energy supply system
employing a save-then-transmit protocol, the authors explore the transmission scheduling problem.
In [29], the authors study the transmission power allocation strategy to achieve the energy-efficient
transmission. The harvest-use technique is adopted, which means that the harvested energy cannot
be stored and must be used immediately. In [30], for a solar-powered wireless sensor network,
the authors present an optimal transmission policy based on a data-driven approach. However, due to
the distinctive operation of cognitive radio, such as spectrum sensing, spectrum management, etc.,
directly applying the strategies mentioned above to EH CRSNs can be ineffective or inefficient.

Third, much recent research has been tightly focused on CR systems powered by energy
harvesting. The work in [11] focuses on an energy harvesting cognitive radio network with the
save-then-transmit protocol; the authors mainly investigate the joint optimization of saving factor,
sensing duration, sensing threshold and fusion rules to maximize the achievable throughput. In [31],
for a single-user multi-channel setting, jointly considering probabilistic arrival energy, channel
conditions and the probability of PU’s occupation, the authors propose a channel selection criterion.
In [32], jointly considering the battery replenish process and the secondary belief regarding the primary
activities, the authors introduce an energy allocation for sensing and transmission to maximize the
long-term throughput. Different from [32], a suboptimal energy allocation algorithm that allocates
energy in an online approach is introduced in [33]. In [34], in order to maximize the throughput,
the authors derive an optimal sensing strategy through optimizing the access probabilities of idle
channels and busy channels. In [35], a joint design of the spectrum sensing and detection threshold
to maximize the long-term throughput is studied. Furthermore, the upper bound of the achievable
throughput is derived as a function of the energy arrival rate, the statistical behavior of the primary
network traffic and the detection threshold in [36]. In [10], the authors propose a spectrum and
energy-efficient heterogeneous cognitive radio sensor network (HCRSNs), where EH-enabled spectrum
sensors cooperatively detect the status of the licensed channels, while the data sensors transmit data to
the sink. Compared with these works, the salient feature of this paper is that, according to the current
knowledge of the battery state, channel fading, as well as the arrival energy based on EH, we jointly
optimize the action of channel sensing and transmission power allocation for an energy harvesting
cognitive sensor node, to minimize the long-term outage probability.

3. Network Model

3.1. Primary Network Model

We consider a primary network where a primary user (PU) owns the usage right of a channel
with bandwidth B. The PU is assumed to employ synchronous slotted communication with a time slot
duration T. The primary traffic is modeled as a two-state time-homogeneous random process, in which
the channel randomly switches its state between idle and occupied, as assumed in [34]. Let θt represent
the status of the channel in time slot t, with θt = 0 or 1 indicating that the channel is occupied or idle,
respectively. The probability that the channel is occupied by the PU is denoted as po , Pr(θt = 0).
Correspondingly, the idle probability of the channel is defined as pi , Pr(θt = 1) = 1− po. It is
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assumed that po and pi are available for the secondary users based on the long-term spectrum
measurements [35].

3.2. Secondary Network Model

3.2.1. Energy Model and Opportunistic Spectrum Access

We consider a point-to-point communication link between two secondary sensor nodes, which are
also referred to as secondary users (SUs). An EH-enabled SU opportunistically accesses the primary
channel to convey data to its receiver. The EH SU is powered exclusively by energy harvested from
the ambient environment (e.g., solar, wind, thermal, ambient radio power) and stores the energy
in a rechargeable battery with finite energy storage capacity. A correlated time process following
a first-order discrete-time Markovian model is adopted for modeling the energy arrivals [26,37].
According to the harvest-store-use model, the harvested energy in the current time slot can only be
used in the next time slot.

Since the PU has priority in utilizing the channel, in order to opportunistically use the channel,
the SU has to perform real-time monitoring of the channel to avoid collisions with the PU. Thus,
for each time slot, the overall transmission process consists of two phases, namely the channel
acquisition phase and the transmission phase. The allocation of time durations for the two phases is
illustrated in Figure 1, where the channel acquisition phase and the transmission phase consume αt

and 1− αt fractions of one time slot, respectively, and αt is referred to as spectrum sensing overhead
for time slot t, which can be altered to optimize the performance of the system. For the channel
acquisition phase, the SU senses the status of the spectrum with αtT time through the energy detection
technique [38]. As the complexity is roughly linear in sensing duration, we can assume that the energy
consumption es for sensing is proportional to αtT with a constant sensing power ps [32], namely:

es(αt) = αtTps. (1)
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Figure 1. The allocation of time durations: channel acquisition phase versus transmission phase.

If the channel is sensed to be idle, the SU starts data transmission using energy stemming from
the battery. Let Pt be the transmit power of SU, then the energy consumption for the transmission
phase can be expressed as:

e1
d(αt, Pt) = (1− αt)TPt. (2)

If the channel is sensed to be occupied, the SU stays in the idle state with a constant idle power
pc, which is considerably less than the transmit power [39]; therefore, the energy consumption for the
data transmission phase is:

e0
d(αt) = (1− αt)Tpc. (3)

3.2.2. Spectrum Sensing and Transmission Data Rate

During the channel acquisition phase mentioned above, the SU acquires the status of the channel
by performing a binary hypothesis test to determine between idleH0 (i.e., θt = 1) and occupiedH1
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(i.e., θt = 0). Due to the existence of sensing errors, the reliability of spectrum sensing is evaluated
by two indicators, namely the false alarm probability Pf and the detection probability Pd, which are
defined as follows:

Pf = Pr{θ̂t = 0 | θt = 1}, (4)

Pd = Pr{θ̂t = 0 | θt = 0}, (5)

where θ̂t is the binary decision on the primary channel, with θ̂t = 0 or 1 representing that the primary
channel is determined to be occupied or idle, respectively. Considering ensuring sufficient protection
to the PU, the SU should satisfy a target detection probability P̄d on the primary channel. Regarding
the complex-valued primary signal and circularly symmetric complex Gaussian (CSCG) noise case,
the probability of a false alarm is given by [40]:

Pf (αt) = Q(
√

2β + 1Q−1(P̄d) +
√

αtT fsβ), (6)

where β is the received signal-to-noise ratio (SNR) of the primary signal at SU and fs is the sampling
frequency. The function Q(·) is Q(x) = (1/

√
2π)

∫ ∞
x exp(−t2/2)dt.

For time slot t, after acquiring the status of the channel, the SU performs channel estimation to
obtain the channel condition. Specifically, the SU will send pilot signals to the receiver and acquires
the channel power gain, denoted as γt, through an error-free and dedicated feedback channel [31].
Since the above channel estimation takes a very short time and limited power, we assume the time and
energy consumed in the channel estimation are negligible compared to the sensing time, and hence,
we ignore it in our analysis (For example, if PUs are TV bands where each channel occupies 6 MHz in
the case of the IEEE802.22 wireless regional area network (WRAN), the typical sensing time is about a
few milliseconds, which will result in thousands of samples [40]. However, for channel estimation,
a few pilot symbols would be enough. For example, in IEEE802.11a, only four pilot symbols are used
for channel estimation [41]), similar to [42,43]. Then, the transmission data rate of the SU is:

r(αt, Pt, γt) = (1− αt) log(1 +
Ptγt

N0
), (7)

where N0 is the destination noise power. The coefficient 1− αt is due to the fact that only a 1− αt

fraction of a time slot is utilized for the SU’s data transmission phase. If, on the other hand, the channel
is sensed to be occupied, the sensor node abstains from transmission and stays idle for the rest of the
time slot; thus, the transmission data rate r(αt, Pt, γt) is zero.

The overall objective of this paper is to design optimal policies by jointly considering the sensing
overhead and the transmit power allocation, to minimize the long-term outage probability of the
EH-enabled cognitive sensor nodes. In the following section, we will exhibit the procedure of
formulating the problem of outage probability minimization as an Markov decision process in detail.

4. Problem Formulation

In this section, we formulate the problem of long-term outage probability minimization as an MDP.
The MDP model is mainly composed of decision epochs, states, actions, state transition probabilities
and rewards. The decision epoch is time slot t ∈ T = {0, 1, 2, · · · }. The state of the system is denoted
as s = (b, g, h), where b indicates the battery energy state, g indicates the channel state and h indicates
the state of arrival energy based on EH. We assume that b, g and h take discrete values from discrete
finite set B = {0, 1, 2, · · · , NB − 1}, G = {0, 1, 2, · · ·NG − 1} andH = {0, 1, 2, · · ·NH − 1}, respectively.
Thus, the state space can be expressed as S = B × G ×H, where × denotes the Cartesian product.
We assume the battery is quantized in units of eu, which can be referred to as one unit of energy
quantum . Additionally, we denote the battery energy State 0 corresponds to the energy B0 , d pcT

eu
eeu,

which is the energy consumption when the SU stays in the idle state within the entire time slot, and for
battery state b ∈ B\{0}, the total energy in the battery is B0 + beu. As for the arrival energy, if the
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arrival energy state is h ∈ H, then the actually arrival energy is Qheu, where Qh ∈ N. It should be
noted that as the channel state and arrival energy state can only be acquired casually, at the beginning
of time slot t, the SU only attains the exact channel state and the arrival energy state of the previous
time slot. Therefore, the system state for time slot t can be represented as st = (bt, gt−1, ht−1), where
bt ∈ B is the energy state for the current time slot, whereas gt−1 ∈ G and ht−1 ∈ H are the states
of channel and arrival energy of the previous time slot. The evolvement of the arrival energy ht is
assumed to be a first-order discrete-time Markovian model introduced in Section 3.2; hence, in the
following, we will first introduce the update process of the battery energy state bt along with the SU’s
channel capacity. Then, the evolvement of the channel state gt is presented.

First, as to the battery energy state update process, a combination of sensing overhead αt and
transmit power Pt leads to one of the following four possible consequences:

1. Idle detection with probability pi(1− Pf (αt)): the primary channel is idle while the sensing result
is correct. Then, channel capacity:

R = r(αt, Pt, γt) (8)

is gained, and the battery energy state updates as:

bt+1 = min{bbt − es(αt)/eu − e1
d(αt, Pt)/eu + Qhtc, NB − 1}. (9)

2. False alarm with probability piPf (αt): the primary channel is idle while the sensing result is
wrong. The SU abstains from the transmission, and the channel capacity R is zero. The battery
energy state is:

bt+1 = min
{
bbt − es(αt)/eu − e0

d(αt)/eu + Qhtc, NB − 1
}

. (10)

3. Occupied detection with probability po P̄d: the primary channel is occupied while the sensing
result is correct. SU abstains from the transmission, and channel capacity R is zero; the battery
energy state is the same as (10).

4. Misdetection with probability po(1− P̄d): the primary channel is occupied while the sensing
result is wrong. Channel capacity R is zero due to the collision with PU and the battery energy
state updates the same as (9).

Second, we formulate the evolvement of channel states. The channel fading process can be
modeled as a time-homogeneous finite-state Markov chain (FSMC), which has been widely used to
model the block fading channel [44–47]. Specifically, the channel power is quantized using a finite
number of thresholds G = {G0 = 0, G1, G2, · · · , GNG = ∞}, where Gi < Gj when 0 ≤ i < j ≤ NG − 1.
The channel is considered to be in state i, 0 ≤ i ≤ NG − 1, if the instantaneous channel power gain
belongs to the interval [Gi, Gi+1). We consider that the wireless channel fluctuates slowly over time
slots and remains constant within a time slot, as assumed in [48,49]. Hence, the channel state transition
occurs only from the current state to its neighboring states at the beginning of each time slot [30].
Considering the Rayleigh fading channel, the channel state transition probability is determined by [50]:

P(gt+1 = j|gt = i) =



h(Gi+1)

P(g = i)
, j = i + 1, i = 0, ..., NG − 2;

h(Gi)

P(g = i)
, j = i− 1, i = 1, ..., NG − 1;

1− h(Gi)

P(g = i)
− h(Gi+1)

P(g = i)
, j = i, i = 1, ..., NG − 2,

(11)

where P(g = i) is the stationary probability that the channel state is i, and P(g = i) = exp(− Gi
Ga
)−

exp(−Gi+1
Ga

); Ga is the average channel power gain. h(β) =
√

2πβ/Ga fD exp(−β/Ga) is the level
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crossing rate, where fD is the maximum Doppler frequency, normalized by 1/T. The boundary
transition probabilities for channel states are:

P(gt+1 = 0|gt = 0) = 1− P(gt+1 = 1|gt = 0), (12)

P(gt+1=NG−1|gt=NG−1)=1−P(gt+1=NG−2|gt=NG−1). (13)

According to the current system state st = (bt, gt−1, ht−1), we introduce the action set of the SU.
The sensing overhead αt is quantized in units of αu = eu

psT , and the the action set of sensing overhead
can be expressed as follows:

Ast
α =


{0} if bt = 0,

{1, 2, · · · , min{
⌊

psT
eu

⌋
, bt}} otherwise,

(14)

where b·c is the floor function. bt = 0 indicates that the energy level in the battery is so low (the energy
stored in the battery is B0) that the available energy is merely enough to compensate the energy
expenditure when the SU stays in the idle state within the entire time slot. In this case, the SU
stops the sensing, as well as transmission and keeps on harvesting energy. Respecting the constraint
min{

⌊
PsT
eu

⌋
, bt}, the first constraint indicates that the sensing duration should be less than the time

slot T; the second constraint indicates that the energy consumption for sensing should be less than the
available energy bteu. When an action aα ∈ Ast

α is taken, the sensing overhead is aα · αu, the sensing
time is aα · αu · T = aα · eu

Ps
and the energy consumption for sensing is es(aα · αu) = aα · αu · T · Ps = aαeu.

According to the action of sensing overhead, the action set of transmission power is quantized in units
of Pu = eu

(T−aααuT) , and the action set can be expressed as:

A(st ,aα)
p = {0, 1, 2, · · · , bt − aα}. (15)

For an action ap ∈ A(st ,aα)
p , SU will consume apeu energy for data transmission.

Therefore, given a system state st = (bt, gt−1, ht−1), the action set can be represented as:

Ast =
{
(aα, ap)|aα ∈ Ast

α , ap ∈ A(st ,aα)
p

}
. (16)

We use P(st+1|st, a) to denote the system state transition probability, which indicates the
probability that the system will go into state st+1 = (bt+1 = b′, gt = g′, ht = h′) in the case that
the current system state is st = (bt = b, gt = g, ht = h) and SU takes an action a = (aα, ap) ∈ Ast .
The state transition probability can be derived as follows:

P(st+1|st, a) = P(b′, g′, h′|b, g, h, aα, aP)

= P(b′|b, g′, h′, aα, aP)P(g′|g)P(h′|h)
(17)

where:

P(b′|b, g′, h′, aα, aP) =

 1 if b′ = min{bb− aα − IaP>0aP − IaP=0
e0

d(aααu)

eu
+ Qh′c, NB − 1},

0 otherwise,
(18)

since b′ is a certain value, which is determined by b, h′ and action aα, ap. Ix denotes the indicator
function which takes the value of one if x is true, otherwise zero.
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The reward function is defined as the outage probability regarding the system state
st = (bt, gt−1, ht−1) and the corresponding action a = (aα, ap), which is given by [51]:

R(st, a) , Pout(R < Rth)

= pi(1− Pf (aααu))Pr(r(aααu, apPu, γt) < Rth) + piPf (aααu) + po P̄d + po(1− P̄d)

= pi(1− Pf (aααu)) ∑
gt∈G

P(gt|gt−1)Pr(γt < γth|Ggt ≤ γt < Ggt+1)

+ piPf (aααu) + (1− pi),

(19)

where γth = N0
apPu

(2
Rth

1−aααu −1). If γth ≥ Ggt+1, then Pr(γt < γth|Ggt ≤ γt < Ggt+1) = 1; if γth < Ggt ,
then Pr(γt < γth|Ggt ≤ γt < Ggt+1) = 0; otherwise, Pr(γt < γth|Ggt ≤ γt < Ggt+1) =

Pr{Ggt≤γt<γth}
Pr{Ggt≤γt<Ggt+1}

=
exp(−Ggt /Ga)−exp(−γth/Ga)

exp(−Ggt /Ga)−exp(−Ggt+1/Ga)
.

In the following section, we first mainly study the existence of the optimal transmission policy.
Then, the ε-optimal sensing-transmission policy that specifies the actions concerning the sensing
overhead and the transmit power to minimize the long-term outage probability is introduced. Last,
for a special case where the signal-to-noise power ratio is sufficiently high, we introduce an efficient
transmission policy, which achieves the same performance as the ε-optimal sensing-transmission policy.

5. Proposed Transmission Policies

In this section, we focus on deriving policies that specify the actions regarding the sensing
overhead and transmit power, with the goal of minimizing the long-term outage probability. First,
we introduce the concept of the stationary deterministic policy. Second, we prove the convergence and
the existence of the stationary deterministic policy. Then, based on the Bellman equation, we propose
an ε-optimal stationary deterministic policy named the sensing-transmission policy through the value
iteration approach. Last, for the special case where the signal-to-noise (SNR) is sufficiently high,
we introduce an efficient transmission policy.

Denote π(s) = {d0(s0), d1(s1), d2(s2), · · · } as the decision policy that specifies the decision
rules to be used at each time slot, and dt is the decision rule that prescribes a procedure for action
selection in time slot t. A policy is stationary deterministic if dt is deterministic Markovian and
dt = d for all t ∈ T [26]; therefore, the stationary deterministic policy can be represented as
π(s) = {d(s0), d(s1), d(s2), · · · }. For an infinite-horizon MDP, our primary focus will be on the
stationary deterministic policy because the decision rules do not change over time, and they are easiest
to implement and evaluate [52]. We denote the feasible set of stationary deterministic policies as
ΠSD. Given the initial state s0 = (b0, g−1, h−1) and the policy π ∈ ΠSD, the expected discounted
infinite-horizon reward that represents the long-term outage probability is defined to be [52]:

Vπ(s0) = E
{ ∞

∑
t=0

λtR(st, a)|s0, π
}

, st ∈ S , a ∈ Ast , (20)

where Vπ(s0) is the long-term expected reward with respect to the initial state s0, 0 ≤ λ < 1 is the
discount factor, R(st, a) is the reward function defined by (19) and a is the action determined by the
policy π. The alteration of λ brings a wide range of performance characteristics, which can be altered
according to the actual needs.

The objective of the SU is to find the optimal stationary deterministic policy π∗ that minimize the
long-term expected reward defined in (20), that is:

π∗ = min
π∈ΠSD

Vπ(s0). (21)

First, we prove that the long-term expected reward Vπ(s0), where π ∈ ΠSD, is finite.
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Lemma 1. Vπ(s0) is finite, namely |Vπ(s0)| < ∞, where π ∈ ΠSD and s0 ∈ S .

Proof of Lemma 1. In order to prove that the value of |Vπ(s0)| is limited, according to [52], we only
need to prove that sup

a∈As ,s∈S
|R(s, a)| < ∞. As Pr(γt < γth|Ggt ≤ γt < Ggt+1) ≤ 1, P(gt|gt−1) ≤ 1

and G is discrete and finite, we can deduce that ∑gt∈G P(gt|gt−1)Pr(γt < γth|Ggt ≤ γt < Ggt+1) is
finite. Since pi ≤ 1, Pf ≤ 1, it can be derived that |R(s, a)| is limited. Thus, we can conclude that

sup
a∈As ,s∈S

|R(s, a)| < ∞, and therefore, Vπ(s0) is finite.

Lemma 1 indicates that for any initial system state, the value of Vπ(s0) converges to a certain
value. Next, we explain the existence of the optimal stationary deterministic policy π∗.

Theorem 1. There exists an optimal stationary deterministic policy π∗ to minimize the long-term expected
reward displayed in Equation (20).

Proof of Theorem 1. Since the system state S = B × G ×H is discrete and finite and for an arbitrary
s ∈ S , the corresponding action space As is also discrete and finite, thus there exists an optimal
stationary deterministic policy [52].

Given an arbitrary system system s, the optimal long-term expected reward Vπ∗(s) should satisfy
the following Bellman optimality equation:

Vπ∗(s) = min
a∈As

{
R(s, a) + λ ∑

s′∈S
P(s′|s, a)Vπ∗(s′)

}
, s ∈ S . (22)

The first term on the right-hand side of Equation (22) is the immediate reward for the current
time slot, and the second term is the expected total discount future reward if SU chooses action a.
The well-known value iteration approach is then applied to find the ε-optimal stationary deterministic
policy, as shown in Algorithm 1.

Algorithm 1 Sensing-transmission (ST) policy.

1: Set V0(s) = 0 for all s ∈ S , set i = 0, specify ε > 0.
2: For each s ∈ S , calculate the Vi+1(s) according to

Va
i+1(s) =

{
R(s, a) + λ ∑s′∈S P(s′|s, a)Vi(s′)

}
, a ∈ As,

Vi+1(s) = min
a∈As

{
Va

i+1(s)
}

.

3: If ‖Vi+1 −Vi‖ < ε(1− λ)/2λ, go to Step 4. Otherwise, increase i by 1 and go back to Step 2.

4: For each s ∈ S , choose d(s) = arg min
a∈As

{
R(s, a) + λ ∑s′∈S P(s′|s, a)Vi+1(s′)

}
5: Obtain the ε-optimal transmission policy π∗ε = {d, d, · · · }

In Algorithm 1, the SU iteratively finds the optimal policy. Specifically, in Step 1, V0(s) is
initialized to zero for all s ∈ S ; the error bound ε is specified; and set the iteration sequence i to be zero.
In Step 2, we compute the Vi+1(s) for each s ∈ S according to the knowledge of Vi(s). Then, in Step 3,
the SU first estimates whether ‖Vi+1 −Vi‖ < ε(1− λ)/2λ holds, where Vi+1 = {Vi+1(s), ∀s ∈ S},
Vi = {Vi(s), ∀s ∈ S} and ‖Vi+1 −Vi‖ = max

s∈S
|Vi+1(s)−Vi(s)|. If the inequality holds, which means

that the value iteration algorithm has converged, then we proceed to Step 4 to obtain the decision
rule and then formulate the sensing-transmission policy. Otherwise, we need to go back to Step 2 and
continue to perform the iteration. According to Algorithm 1, the SU can pre-compute the policy and
records it in a look-up table. Then, based on the specific system state, the SU can check the look-up
table to find out the corresponding action.
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As to the convergence, Vi(s) computed by Step 2 converges to Vπ∗(s) for all s ∈ S . Once the
inequality condition in Step 3 is satisfied, then the obtained optimal policy ensures that

∥∥Vπ∗ε −Vπ∗
∥∥ < ε,

where Vπ∗ε = {Vπ∗ε (s), ∀s ∈ S} is the long-term expected reward achieved by the ε-optimal
policy obtained in Step 5 of the Algorithm 1. In practice, according to the actual needs, SU
can predefine the value of ε to control the accuracy of convergence. Choosing ε small enough
ensures that the algorithm stops with a policy that is very close to optimal. Next, we introduce
the complexity of Algorithm 1. The complexity of each iteration in the value iteration algorithm is
O(NstateN′stateNaction) [53], where Nstate represents the total number of states in the state space, N′state
indicates the total number of states that the system can possibly transmit to and Naction represents the
total number of actions in the action space. For our MDP problem, the total number of states in state
space S is NB · NG · NH . As the battery state of the next time slot is deterministic and the channel can
only transmit to the neighbor state or remains in its current state, therefore the total possible states the
current system state can transmit to is 3NH . The maximum number of actions regarding the sensing
overhead, as well as the transmit power is (NB + 1)NB/2. Hence, the complexity of each iteration in
Algorithm 1 is O(N3

BN2
H NG).

Next, we study the structural property of the proposed sensing-transmission policy. Regarding
the reward function, we have the following lemma:

Lemma 2. Given a system s, for an arbitrary certain action of aα, the immediate reward R(s, aα, ap) is

non-increasing with ap, namely R(s, aα, ap + 1) ≤ R(s, aα, ap), where aα ∈ As
α, ap and ap + 1 ∈ A(s,aα)

p .

Proof of Lemma 2. First, we prove that for a certain action of aα, Pr(γt < γth(ap)|Gg′ ≤ γt < Gg′+1)

defined in Equation (19) is non-increasing with transmit action ap, namely Pr(γt < γth(ap + 1)|Gg′ ≤
γt < Gg′+1) ≤ Pr(γt < γth(ap)|Gg′ ≤ γt < Gg′+1), where g′ ∈ G. As γth(ap) is decreasing with ap,
we have γth(ap + 1) < γth(ap). If γth(ap) > γth(ap + 1) ≥ Gg′+1, we can derive that Pr(γt < γth(ap +

1)|Gg′ ≤ γt < Gg′+1) = Pr(γt < γth(ap)|Gg′ ≤ γt < Gg′+1) = 1. If Gg′ > γth(ap) > γth(ap + 1), we
can derive that Pr(γt < γth(ap + 1)|Gg′ ≤ γt < Gg′+1) ≤ Pr(γt < γth(ap)|Gg′ ≤ γt < Gg′+1) = 0.
Otherwise, it can be derived that Pr(γt < γth(ap + 1)|Gg′ ≤ γt < Gg′+1) < Pr(γt < γth(ap)|Gg′ ≤
γt < Gg′+1). Therefore, we can conclude that Pr(γt < γth(ap)|Gg′ ≤ γt < Gg′+1) is non-increasing
with transmit action ap.

Next, we calculate the difference between R(s, aα, ap) and R(s, aα, ap + 1):

R(s, aα, ap)− R(s, aα, ap + 1)

= pi(1− Pf (aααu)) ∑
g′∈G

P(g′|g)
[

Pr(γt < γth(ap)|Gg′ ≤ γt < Gg′+1)

− Pr(γt < γth(ap + 1)|Gg′ ≤ γt < Gg′+1)
]
,

(23)

since Pr(γt < γth(ap)|Gg′ ≤ γt < Gg′+1) is non-increasing with ap, we can derive that R(s, aα, ap)−
R(s, aα, ap + 1) ≥ 0, that is R(s, aα, ap + 1) ≤ R(s, aα, ap).

Lemma 3. For any given channel state g ∈ G and arrival energy state h ∈ H, the minimum immediate
reward R(s, a) is non-increasing in battery state b ∈ B. That is, min

a+∈As+

{
R(s+, a+)

}
≤ min

a∈As

{
R(s, a)

}
, where

s+ = {b + 1, g, h}, s = {b, g, h}, ∀b ∈ B\{NB − 1}, g ∈ G, h ∈ H.

Proof of Lemma 3. The action set for s+ can be expressed as As+ =
{
(a+α , a+p )|a+α ∈ As+

α , a+p ∈

A(s+,a+α )
p

}
, and the action set for s can be expressed as As =

{
(aα, ap)|aα ∈ As

α, ap ∈ A(s,aα)
p

}
.

When a+α = aα = w, we can derive that the unit of transmit power eu
T−a+α αuT

= eu
T−aααuT , and A(s+,a+α )

p =



Sensors 2017, 17, 224 12 of 23

{0, 1, 2, · · · , max{b + 1 − w, 0}} ⊇ A(s,aα)
p = {0, 1, 2, · · · , max{b − w, 0}}; according to Lemma 2,

we have min
a+p ∈A(s+ ,a+α )

p

R(s+, w, a+p ) = R(s+, w, b + 1−w), and min
ap∈A(s,aα)

p

R(s, w, ap) = R(s, w, b−w). Since:

R(s+, w, b + 1−w)− R(s, w, b−w)

= pi(1− Pf (aααu)) ∑
g′∈G

P(g′|g)
[

Pr(γt < γth(b + 1−w)|Gg′ ≤ γt < Gg′+1)

− Pr(γt < γth(b−w)|Gg′ ≤ γt < Gg′+1)
]

≤ 0,

(24)

therefore, we have min
a+p ∈A(s+ ,a+α )

p

R(s+, w, a+p ) ≤ min
ap∈A(s,aα)

p

R(s, w, ap).

As min{
⌊

PsT
eu

⌋
, b + 1} ≥ min{

⌊
PsT
eu

⌋
, b}, thus As+

α ⊇ As
α; therefore, we have:

min
a+α ∈As+

α

min
a+p ∈A(s+ ,a+α )

p

R(s+, a+α , a+p ) ≤ min
aα∈As

α

min
ap∈A(s,aα)

p

R(s, aα, ap), (25)

namely min
a+∈As+

{
R(s+, a+)

}
≤ min

a∈As

{
R(s, a)

}
.

Based on Lemma 3, we have following lemma:

Lemma 4. For any given channel state g ∈ G and arrival energy state h ∈ H, we have that Vi(b, g, h) is
non-increasing in the battery state b ∈ B, that is Vi(b + 1, g, h) ≤ Vi(b, g, h) ∀b ∈ B\{NB − 1}.

Proof of Lemma 4. We prove this lemma by the induction. When i = 1, as the initial condition

V0(s) = 0 for all s ∈ S , thus V1(s) = min
a∈As

{
R(s, a)

}
. According to Lemma 3, we have V1(b + 1, g, h) ≤

V1(b, g, h). Assume when i = k, for any given g ∈ G, h ∈ H and ∀b ∈ B\{NB − 1}, Vk(b + 1, g, h) ≤
Vk(b, g, h) holds. When i = k + 1, we use s+ to indicate system state (b + 1, g, h) and use s to indicate

system state (b, g, h). The action sets for s+ and s are As+ =
{
(a+α , a+p )|a+α ∈ As+

α , a+p ∈ A(s+,a+α )
p

}
and As =

{
(aα, ap)|aα ∈ As

α, ap ∈ A(s,aα)
p

}
, respectively. When a+α = aα = w, for arbitrary

a+p = ap = m, we have R(b + 1, g, h, w, m) = R(b, g, h, w, m). Since min{bb + 1 − w − Im>0m −

Im=0
e0

d(wαu)
eu

+Qhc, NB− 1} ≥ min{bb−w− Im>0m− Im=0
e0

d(wαu)
eu

+Qhc, NB− 1}, for any g ∈ G, h ∈ H,
we have that:

Vk(min{bb + 1−w− Im>0m− Im=0
e0

d(wαu)

eu
+ Qhc, NB − 1}, g, h) ≤

Vk(min{bb−w− Im>0m− Im=0
e0

d(wαu)

eu
+ Qhc, NB − 1}, g, h).

(26)



Sensors 2017, 17, 224 13 of 23

Since A(s+,w)
p ⊇ A(s,w)

p , we can deduce that:

min
a+p ∈As+

p

{
R(b + 1, g, h, w, a+p )+

λ ∑
h′∈H

∑
g′∈G

P(h′|h)P(g′|g)Vk(min{bb + 1−w− Ia+p >0a+p − Ia+p =0
e0

d(wαu)

eu
+ Qh′c, NB − 1}, g′, h′)

}
≤ min

ap∈As
p

{
R(b, g, h, w, ap)+

λ ∑
h′∈H

∑
g′∈G

P(h′|h)P(g′|g)Vk(min{bb−w− Iap>0ap − Iap=0
e0

d(wαu)

eu
+ Qh′c, NB − 1}, g′, h′)

}
.

(27)

As As+
α ⊇ As

α, we have:

Vk+1(b + 1, g, h) =

min
a+α ∈As+

α

min
a+p ∈As+

p

{
R(b + 1, g, h, a+α , a+p )+

λ ∑
h′∈H

∑
g′∈G

P(h′|h)P(g′|g)Vk(min{b + 1− a+α − Ia+p >0a+p − Ia+p =0
e0

d(wαu)

eu
+ Qh′ , NB − 1}, g′, h′)

}
≤ min

aα∈As
α

min
ap∈As

p

{
R(b, g, h, aα, ap)+

λ ∑
h′∈H

∑
g′∈G

P(h′|h)P(g′|g)Vk(min{b− aα − Iap>0ap − Iap=0
e0

d(wαu)

eu
+ Qh′ , NB − 1}, g′, h′)

}
= Vk+1(b, g, h).

(28)

According to Lemma 4, we have the following theorem:

Theorem 2. For any given channel state g ∈ G and arrival energy state h ∈ H, the long-term expected
reward achieved by the proposed sensing-transmission policy is non-increasing in the battery state b, that is
Vπ∗ε (b + 1, g, h) ≤ Vπ∗ε (b, g, h), ∀b ∈ B\{NB − 1}.

Proof of Theorem 2. Assume when i = k, the inequality ‖Vk+1 −Vk‖ < ε(1 − λ)/2λ holds.
According to Step 4 in Algorithm 1, Vπ∗ε (s) is actually Vk+2(s). Based on Lemma 3, we can conclude
that Vk+2(b + 1, g, h) ≤ Vk+2(b, g, h), namely Vπ∗ε (b + 1, g, h) ≤ Vπ∗ε (b, g, h), ∀b ∈ B\{NB − 1}.

From Theorem 2, we perceive that the long-term reward Vπ∗ε (s) is non-increasing in the battery
state b. By taking the parameters in Section 6 except as otherwise stated, the reward of the proposed
ε-optimal sensing-access policy is depicted in Figure 2. From Figure 2, we can see that Vπ∗ε (s) is
non-increasing in the direction along the battery state, which validates Theorem 2.
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Figure 2. Long-term expected reward Vπ∗ε (s) with battery energy states and channel states. The arrival
energy state is h = 1, and the number of battery energy states is NB = 10.

Theorem 3. For any given channel state g ∈ G and arrival energy state h ∈ H, the optimal long-term expected
reward achieved by optimal policy π∗ is non-increasing in battery state b, that is Vπ∗(b+ 1, g, h) ≤ Vπ∗(b, g, h),
∀b ∈ B\{NB − 1}.

Proof of Theorem 3. According to Theorem 2, we acquire that the ε-optimal policy is non-increasing
in battery state b; therefore, the optimal long-term expected reward Vπ∗(b, g, h) = limε→0 Vπ∗ε (b, g, h)
is non-increasing in b for any given g and h.

In the following, we consider a special case where the signal-to-noise ratio (SNR) is sufficiently
high. When SNR is sufficiently high, namely N0 → 0, the reward function for the system state
s = (b, g, h) and the corresponding action a = (aα, ap) are degenerated to:

lim
N0→0

R(s, a) =

{
1, ap = 0,

piPf (aααu) + 1− pi, ap ≥ 1, aα ≥ 1.
(29)

For the i-th iteration, denote the long-term expected reward function with respect to action

a = (aα, ap) as V
(aα ,ap)
i . Then, we have the following theorem.

Theorem 4. When the SNR is sufficiently high, for any iteration i, the expected reward with action a = (aα, 1)

is no greater than the expected reward with action a = (aα, ap), where ap ≥ 1. That is, V(aα ,1)
i (s) ≤ V

(aα ,ap)
i (s),

where 1 ≤ ap ∈ A(s,aα)
p .

Proof of Theorem 4. The value difference of the two long-term expected rewards with actions
a = (aα, 1) and a = (aα, ap) can be calculated as:

V(aα ,1)
i+1 (s)−V

(aα ,ap)
i+1 (s)

= piPf (aααu) + 1− pi + λ ∑
h′∈H

∑
g′∈G

P(h′|h)P(g′|g)Vi(b′aα+1, g′, h′)−

piPf (aααu) + 1− pi + λ ∑
h′∈H

∑
g′∈G

P(h′|h)P(g′|g)Vi(b′aα+ap , g′, h′)

= λ ∑
h′∈H

∑
g′∈G

P(h′|h)P(g′|g)[Vi(b′aα+1, g′, h′)−Vi(b′aα+ap , g′, h′)],

(30)
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where b′x = min{b− x + Qh′ , NB − 1}. As b′aα+1 = min{b− aα − 1 + Qh′ , NB − 1} ≥ min{b− aα −
ap + Qh′ , NB − 1} = b′aα+ap , according to Lemma 4, we have Vi(b′aα+1, g′, h′)− Vi(b′aα+ap , g′, h′) ≤ 0;

thus, we can derive V(aα ,1)
i+1 (s)−V

(aα ,ap)
i+1 (s) ≤ 0.

Based on Theorem 4, we can deduce the following theorem:

Theorem 5. When the SNR is sufficiently high, for any iteration i with a certain action of sensing overhead
aα, the action set of transmit power to minimize the expected reward is A(s,aα)

pnew = {0, min{1, b− aα}}, where
aα ∈ As

α, s ∈ S .

Proof of Theorem 5. When b ≤ 1, the available transmit power set is {0} ∈ A(s,aα)
pnew = {0}. When b = 2,

if aα = 1, the available transmit power set is {1} ∈ A(s,aα)
pnew = {0, min{1, 1}} = {0, 1}; otherwise aα = 2;

the available transmit power set is {0} ∈ A(s,aα)
pnew = {0}. When b ≥ 3, we have two cases:

• Case 1: min{
⌊

psT
eu

⌋
, b} = b, then if aα = b, the action set is {0} ∈ A(s,aα)

pnew = {0}; otherwise,

for arbitrary aα ∈ As
α\{b} ≤ b − 1, according to Theorem 4, we have V(aα ,1)

i (s) ≤ V
(aα ,ap)
i (s)

where ap ≥ 1; therefore, the transmit power set to minimize the long-term value V(aα ,1)
i (s) is

{0, 1} = A(s,aα)
pnew = {0, 1}.

• Case 2: min{
⌊

psT
eu

⌋
, b} < b, for arbitrary aα ∈ As

α ≤ b − 1, according to Theorem 4, we have

V(aα ,1)
i (s) ≤ V

(aα ,ap)
i (s) where ap ≥ 1; therefore, the action set to minimize the long-term value

V(aα ,1)
i (s) is {0, 1} = A(s,aα)

pnew = {0, 1}.

Thus, we can derive that the action set to minimize the long-term reward is A(s,aα)
pnew = {0,min{1, b−aα}}.

Based on Theorem (5), we present an efficient transmission policy with reduced computational
complexity, which is suitable for the case that the SNR is sufficiently high, as shown in Algorithm 2.

Algorithm 2 Efficient transmission (ET) policy.

1: Set V0(s) = 0 for all s ∈ S, set i = 0, specify ε > 0.
2: For each s = (b, g, h) ∈ S, formulate the new action space:

As
α =


{0} if bt = 0,

{1,2, · · · ,min{
⌊

psT
eu

⌋
, bt}} otherwise,

A(s,aα)
pnew = {0,min{1, b− aα}},
Asnew =

{
(aα, ap)|aα ∈ As

α, ap ∈ A(s,aα)
pnew

}
,

Calculate the Vi+1(s) according to

Va
i+1(s) =

{
R(s, a)+λ ∑s′∈S P(s′|s, a)Vi(s′)

}
, a ∈ Asnew ,

Vi+1(s) = min
a∈Asnew

{
Va

i+1(s)
}

.

3: If ‖Vi+1−Vi‖ < ε(1−λ)/2λ, go to Step 4. Otherwise, increase i by 1 and go back to step 2.

4: For each s ∈ S, choose d(s) = argmin
a∈Asnew

{
R(s, a)+λ ∑s′∈S P(s′|s, a)Vi+1(s′)

}
5: Obtain the efficient transmission policy π∗ε = {d, d, · · · }

In Algorithm 2, since V(aα,1)
i (s) ≤ V

(aα,ap)
i (s) illustrated in Theorem 4, we can ignore the actions

that ap > 1 and formulate the new action space Asnew with a lesser number of candidate actions,
which reduces the computational complexity significantly. The total number of states in the state space
is NB ·NG ·NH. Similar to the analysis of Algorithm 1, the total possible states the current system state
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can transmit to is 3NH. The maximum number of actions regarding the sensing overhead is NB, and the
maximum number of actions regarding the transmit power is two. Therefore, the complexity of each
iteration in Algorithm 2 is O(N2

BN2
HNG).

6. Numerical Results and Discussion

In this section, we evaluate the performance and characteristics of the proposed policies by
extensive simulations on MatlabR2012a. Unless otherwise stated, the system parameters employed
in the simulation are summarized in Table 1, which draws mainly from [26,30,31,42]. The unit of
the energy quantum is eu = 0.5 mJ, and NB = 20. The quantization levels of the channel power are
G= {0,0.3,0.6,1.0,2.0,3.0}. The arrival energy takes values from the finite set {0,4eu, 6eu, 8eu}mJ per time
slot, namely Q0 = 0, Q1 = 4, Q2 = 6, Q3 = 8, and evolves according to the four-state Markov chain
with the state transition probability given by:

Ph =


P0,0 P0,1 P0,2 P0,3

P1,0 P1,1 P1,2 P1,3

P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3

 =


0.5 0.5 0 0
0.25 0.5 0.25 0

0 0.25 0.5 0.25
0 0 0.5 0.5

 . (31)

A normalized SNR γc (i.e., γc = 1/N0) is defined with respect to the transmit power of 1 mW
throughout the simulation. We choose ε to be 10−2. The initial energy state is b0 = 6; the initial channel
state is g−1 = 1; and the initial arrival energy state is h−1 = 1. The total simulation duration is 500 time
slots. All of the numerical results are averaged over 500 independent runs.

Table 1. Simulation parameters.

Parameter Notation Value

Duration of a time slot T 100 ms
Sampling frequency fs 1 MHz

Channel idle probability pi 0.8
Sensing power ps 100 mw

Target detection probability Pd 0.99
Primary signal’s SNR β −15 dB
Average channel gain Ga 2

Normalized Doppler frequency fD 0.05
Discount factor λ 0.99

Normalized SNR γc 10 dB
Data rate threshold Rth 4 bits/time slot/Hz

Idle state power Pc 3 mw

We compare the proposed sensing-transmission (ST) and efficient transmission (ET) policies
with a benchmark named shortsighted policy [32,54] in terms of the performance in Figures 3–6.
The primary concern of the shortsighted policy is to minimize the immediate reward of the current
time slot, without considering the impact of the current action on the future reward, i.e., λ = 0.
However, the policies proposed in this paper take into account not only the current immediate reward,
but also the future expected reward. Therefore, by comparing with the shortsighted policy, we can
evaluate the benefit and advantage of proposed policies. Figure 3 depicts the outage probability of
ST, ET and the shortsighted policies under different normalized SNRs and channel idle probabilities.
First, it can be seen that the ST policy outperforms the shortsighted policy for all settings of normalized
SNR. This can be explained by the fact that the ST policy considers a tradeoff between the current
immediate reward and the future achievable reward; while the shortsighted policy only focuses on
maximizing the current immediate reward, ignoring the impact of the current action on the future
reward. It should be noted that despite the better performance of the ST policy, it is much more
computationally extensive than the shortsighted policy. Second, we can see that for ST and ET policies,
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when γc is sufficiently high, the curves of ST and ET policies almost overlap, and a saturation effect is
observed, namely the outage probability gradually converges to the same value. This phenomenon
coincides with Theorem 5, that is when γc is sufficiently high, the transmit action set that SU needs to
consider is As,aα

pnew , and that ET policy is equivalent to the ST policy in high γc regions. Third, we also
observe that the saturation outage probability of the three policies in high SNR regions becomes smaller
when pi gets larger. This is because larger pi indicates more probability of employing the licensed
channel for data transmission, resulting in lower outage probability.
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Figure 3. Average outage probability vs. normalized SNR.
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Figure 4 plots the outage probability of three policies versus the channel idle probability for
different values of normalized SNR, where the performance curves plotted correspond to γc = 0 dB
and γc = 10 dB, respectively. It can be seen that ST policy outperforms the other two policies for
all settings of pi. Besides, we can observe that the outage probability of all three policies decreases
with the increase of channel idle probability, which can be easily understood since a higher value
of pi results in a higher possibility of successful data transmission and therefore reduces the outage
probability. We can also observe that when γc is small (γc = 0 dB), the gap between the ST and ET
policies becomes larger as pi increases, and the shortsighted policy achieves better performance than
the ET policy. While when γc is large (γc = 10 dB), there is only a tiny difference between the ST and
ET policies, and the ET policy achieves better performance than the shortsighted policy.

Figure 5 illustrates the outage probability of three policies as a function of average channel gain
Ga for different γc. It can be observed that the outage probability goes down with the increase of Ga.
This is due to the fact that as Ga increases, the data transmission is more efficient when the primary
channel is idle, resulting in lower outage probability. Besides, we can see that the ST policy outperforms
the other two policies for all of the settings of Ga. It is also shown that when γc is small (γc = 0 dB),
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the shortsighted policy outperforms the ET policy, while when γc is large (γc = 10 dB), the ET policy
achieve better performance than shortsighted performance in the case that Ga ≥ 1.2. Thus, we can
conclude that in the case that the γc is small or the channel quality is poor, the shortsighted policy
outperforms the ET policy.

Figure 6 plots the outage probability of three policies with different settings of battery energy
state and normalized SNR. It can be seen that the outage probability with respect to ST and ET policies
decreases as NB increases; while the outage probability regarding the shortsighted policy almost
remains unchanged under different values of NB. This phenomenon indicates that by increasing the
capacity of the battery, we can efficiently decrease the outage probability, but the performance of the
shortsighted policy is almost independent of the battery capacity. Besides, we can also observe that
for lower γc, the performance of shortsighted policy outperforms the ET policy. For higher γc, the ET
policy achieves better performance than the shortsighted policy when NB ≥ 14.

Figure 7 shows the outage probability of ST and ET policies as a function of γc for different
data rate threshold Rth. We can see that for lower γc, a lower data rate threshold leads to a lower
outage probability, and the curves with Rth = 2 outperform the curves with Rth = 4 and Rth = 6.
However, when γc is sufficiently high, we observe that the curves correspond to Rth = 2, Rth = 4
and Rth = 6 all converge to the same value. This is because when γc is sufficiently high, according to
Equation (29), the reward functions have no relation to Rth; the curves with different Rth achieve the
same outage probability.
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Figure 7. Average outage probability vs. normalized SNR.

The outage probability of ST and ET policies with different settings of battery energy state NB
and idle probability pi is shown in Figure 8. It can be seen that outage probability of the ST and
ET policies decreases as the battery storage capacity NB increases. This is because with a higher NB,
SU can allocate the energy more efficiently: if the expected channel condition of the next time slot is
good and the channel occupancy is estimated to be idle with high probability, the SU can allocate more
energy for data transmission; otherwise, the SU can allocate less energy for data transmission and save
more energy for future utilization.
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Figure 8. Average outage probability vs. the number of battery energy states.

7. Conclusions

In this paper, we have considered a time-slotted energy harvesting cognitive radio sensor
network, where the cognitive sensor nodes solely rely on harvested energy for spectrum sensing
and data transmission. Our goal is to minimize the long-term outage probability of the sensor
node by adapting the sensing time and transmission power to the current sensor node’s knowledge
of battery energy, channel fading and harvested energy. This problem has been formulated as an
infinite-horizon discounted MDP . The existence of the optimal stationary deterministic policy has
been proven, and an ε-optimal sensing-transmission policy has been presented through using value
iterations. ε is the error bound between the ST policy and the optimal policy, which can be pre-defined
according to the actual need. Moreover, for a special case where the signal-to-noise (SNR) power
ratio is sufficiently high, we have introduced an efficient optimal transmission policy with reduced
computational complexity. It has been illustrated that the efficient transmission policy is equivalent
to the sensing-transmission policy for high regions of SNR. Finally, we have conducted extensive
simulations to verify the performance of the proposed policies, and the impacts of system parameters
have also been investigated.
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