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Abstract: In this study, a hierarchical method for segmenting buildings in a digital surface
model (DSM), which is used in a novel framework for 3D reconstruction, is proposed. Most
3D reconstructions of buildings are model-based. However, the limitations of these methods are
overreliance on completeness of the offline-constructed models of buildings, and the completeness
is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore,
a model-free framework using high precision DSM and texture-images buildings was introduced.
There are two key problems with this framework. The first one is how to accurately extract the
buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the
difficult choice of parameter-settings. A level-set method are employed to roughly find the building
regions in the DSM, and then a recently proposed ‘occlusions of random textures model” are used to
enhance the local segmentation of the buildings. The second problem is how to generate the facades
of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided
interpolation of building facades. The 3D reconstruction results achieved by airborne-like images
and satellites are compared. Experiments show that the segmentation method has good performance,
and 3D reconstruction is easily performed by our framework, and better visualization results can be
obtained by airborne-like images, which can be further replaced by UAV images.

Keywords: building segmentation; digital surface model; remote sensing; 3D reconstruction

1. Introduction

For making 3D city maps and visualization [1-3], 3D reconstruction of buildings using remote
sensing (RS) images and digital surface models (DSMs), is always a complicated but necessary work.
To better generate digital building models, 3D reconstruction of buildings using DSMs has been widely
investigated. The main task is to reconstruct all the outer surfaces of a building, which are composed
by the roof and all facades.

With the development of airborne light detection and ranging (LiDAR), high accuracy DSM can
be obtained after pre-processing the original LiDAR data. 3D building reconstructions using DSMs are
generally based on models [4-6]. A number of types of 3D models of buildings are firstly constructed
offline, then a matched one for each segmented buildings in the DSM is used for the 3D reconstruction.
A limitation of these methods is the over-reliance on the completeness of the offline-constructed
models of the buildings, which cannot be easily guaranteed since in modern cities there are a variety
of types of buildings. Moreover, 3D modeling and model selection are labor-intensive work, in which
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complex interactive manual operations are always needed. Furthermore, the facades of buildings are
not properly processed in most of these methods for further texture-mapping and visualization.

By using high accuracy DSM and texture-images of the roofs and facades of the buildings,
3D reconstruction can be performed without creating offline models [7-9], but most of these kinds
of model-free methods only focus on reconstruction of the roofs of buildings, or do not process the
texture-images. In our idea, a DSM and the texture-images of the outer-surfaces of buildings can be
associated for a better reconstruction. Firstly the shapes of the roofs of buildings need to be extracted
and analyzed.

DSMs can mostly be processed as a digital image. Various image segmentation methods
are employed [10-12] for DSM processing, such as classification, edge detection, and some other
filter-based methods. Active contour-based methods are also used. For instants, a level-set is suitable
for efficiently searching the contours of buildings in DSMs, since buildings have larger values than
other objects on the ground. However, roof details cannot be detected if the initialization is not properly
done. Moreover, when a high tree is next to a building, good performance on the edges of the adjacent
building generally cannot be obtained by level-set approaches. Jia et al. [13] proposed a level-set-based
method for building modeling, but it is only applicable to isolated buildings in relatively flat areas.
The processing of details on the edges needs to be improved. Iovan et al. [14] proposed a support
vector machine (SVM)-based tree extraction method in DSMs with prior knowledge. This could be
expanded for further building segmentation since only trees and buildings are higher. Similarly,
a supervised classification method was introduced for change-detection of buildings [15]. Buildings
are segmented by height, spectra, and shape information from a DSM, assisted by orthophotos
of the same area. However, prior knowledge for supervised classification is not easily obtained,
and it always determines the segmentation performance. Liu et al. [16] employed an urban DSM
segmentation by extended locally excitatory globally inhibitory oscillator networks (LEGION), which
is an unsupervised classification-based method without prior knowledge, but it fails to do small
features and boundaries of complex buildings. McCann and his team summarized the limitations
of various generic image segmentation methods and engineered systems. They concluded that most
existing segmentation methods are not successful on histopathology images, since these methods
vary in how the segmentation regions are parameterized and whether edge or region information
is used [17]. In consideration of that, McCann modeled images as occlusions of random texture for
segmentation (ORTSEG), and proposed a new unsupervised mathematical framework method based
on local histograms. The method handles the difficult class of edgeless images and has excellent
applicability to histology image segmentation and it could also be expanded for building segmentation
in DSM, and thus improve the performance on edges, but the limitations of this method are that
certain numbers of parameters need to be properly set for different conditions, and any overall
terrain undulation could have a negative impact on the class judgments in certain local regions near
the building.

Considering both efficient detection and more accurate segmentation on the edges, we introduce
a hierarchical building segmentation method. Rough positioning of buildings is performed by level-set
in a global DSM first, and then all regions of buildings are processed separately by the ORTSEG method
to decrease negative terrain factors, and improve the segmentation accuracy.

Once the roof of a building is extracted from the DSM, only the 3D structure of the roof is obtained,
but all facades of the building need to be generated. Since roof contours might be of different height,
the part of the facade which is close to the roof is uneven. As a result, certain criteria must be defined
referring to the range of each facade. A roof-contour and texture-image guided interpolation (RTGI)
method is introduced for facade generation and texture-mapping of buildings by synergizing with
texture-images of each outer-surface of the building, which are collected from RS optical images
of different views of the building obtained by satellite or unmanned aerial vehicles (UAVs). UAVs
are currently performing significant roles for city remote sensing missions, and higher resolution
texture-images could be collected by UAVs. After pasting these texture-images onto the corresponding
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facade generated by RTGI, the visualization results could be greatly improved. Furthermore, UAVs
equipped with LIDAR can collect high precision DSMs efficiently in the near future, and better use of
our method will be made. The main contributions of this study are:

(1) A novel 3D reconstruction framework without offline models is proposed, and the introduced
RTGI could effectively help generate facades of a building. Our framework could reconstruct 3D
buildings with limited RS resources, and reduce complicated manfully modeling work.

(2) Based on the level-set and ORTSEG techniques, we propose a hierarchical segmentation method
for extracting buildings from DSMs, named LS-ORTSEG. It can greatly reduce the negative factors
that result from the uncertain terrain and the limitations of the different segmentation algorithms.

This paper is organized as following: the model free framework for 3D reconstruction is
introduced in Section 2. The hierarchical segmentation method LS-ORTSEG is discussed in Section 3,
then Section 4 presents our analysis and experimental results. Section 5 concludes this work,
and discusses the advantages, limitations and future work of this method.

2. Framework of 3D Reconstruction

As shown in Figure 1, the first step is to segment the roof of buildings from DSM. Details are
discussed in Section 3.

Digital Surface Model
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S3. Roof
Segmentation
Texture Images of the Roof
S2.1 Contour and Each Facade
Extraction |
&Topology I
Description oo !
; |
i v
Séitz,ﬂ:tl,%ﬁ,t :> S2.3 Roof Resample Mesh' i> Textqre—mapping
of Contour of Roof and Facades Generate Generation &Visualization

Figure 1. Flowchart of 3D building reconstruction and visualization.

Then, the contour of the roofs are extracted and analyzed, and the numbers of facades are found
and then coded. After that, the actual heights of all sampled points of the contour are estimated
by comparing the elevations between inner points and outer points. Further, the RTGI method is
introduced for generating all the outer-surfaces of the building, guided by the coded number of facades
and sizes of different texture-images, and then the 3D points-sets of each outer-surface are obtained.
We then gather the 3D points-sets of all the outer-surfaces of the buildings, and generate the mesh.
Finally, the texture images are mapped onto the corresponding triangle-area of each outer-surface,
and we visualize the mapping result.

2.1. Extraction and Coding of Roof Edge-Lines

Since the edge-line of the roof is the intersection of each facade and the roof, it is important
to generate each facade. In DSM data, like in orthographic images, buildings are represented by
quantified grids (like pixels) in the horizontal direction, and only the elevation of the blue part of a
facade can be obtained, as shown in Figure 2a. When the roof of a building is extracted from the DSM,
Su’s [18] and Qiu’s [19] work are taken for optimizing the extraction results and further determine
the topology of the building. Then buildings with irregular top shapes can be divided into several
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blocks, as shown in Figure 3. The main steps are as follows: (1) line extraction methods like LSD [20],
can be used to find the line features of the building; (2) after removing some erroneous lines caused
by angle and length-based restrictions, the remaining lines can form a group of parallelogram grids,
which divide the irregular shape of roof into different regions; (3) a specific decision criterion is used
to judge each region as building or non-building class, considering both the segmented result and the
restriction of the parallelogram grids. All the blocks can be coded in a customized order, and then the
edge-lines of the roof of each block or a simple shaped building can be directly coded in a clockwise or
counterclockwise, as shown in Figure 2b.

Sk sSe

(a)

(b)

Figure 3. Blocks of an irregular top building. (a) An irregular top building; (b) Divided blocks.

2.2. Height Estimation of Edge-Lines

After extracting and coding the roof edge-lines, the heights of the edge-lines need to be estimated
for further facade generation. In DSM, only the elevation of buildings is directly obtained, but the
heights of buildings need to be estimated. Here we estimate them by comparing the elevation of
the roof-contour and foot-contour. Mathematical morphology methods are used for extracting the
roof-contour RC by an erosion operation after a dilation operation, and the foot-contour FC by a
dilation operation after an erosion operation. If n and m are respectively the numbers of points of the
RC and FC, the height of each point of the RC is estimated by Equation (1):

H(i) = RC() - 3 i_l FCa(m) i=1,2.,n @

As shown in Figure 4, RC(i) is elevation of the i-th point of the RC, and FC 3(m) is the elevation of
the m-th point of the closest three points around the i-th point of the RC.

Figure 4. Height estimation.
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2.3. Roof-Contour and Texture-Image-Guided Interpolation

Since each edge-line point has the same horizontal coordinate as its corresponding part on the
facade below, only the “Z-coordinate’ needs to be interpolated. Assuming the size of a texture image is
M x N, then the facade can be interpolated as shown in Figure 5. Firstly, we resample the edge-line to
fit the image with the nearest neighbor criterion, and the new number of points of the i-th edge-line
P’ will be N. Then we interpolate each row n’ (n” =1, 2, ..., P’) of the side from the foot to the top by
Equation (2):

)

Figure 5. Generated building facades with interpolated points.

After finishing interpolating, each facade can be generated by a 3D point-set as seen in Figure 5,
and then 3D meshes are generated by the combined point-sets including all outer-surfaces for further
detailed texture-mapping. The texture-mapping error E could be evaluated by Equation (3), where we
select Nt testing points, and compare the mean error of the 3D coordinates between the testing points
(v (i), pj (i), pi(i)) and the corresponding measured points (py' (i), py' (i), p¥' (i)):

Nt
E= ;Til (pL(i) — p2(i))* + (p;(i) - p;;l(i))z + (pL(i) — pr(i))? 3)

3. A Hierarchical Building Segmentation Based on the LS-ORTSEG Method

As illustrated above, building segmentation is significant to our 3D reconstruction framework.
Since DSMs used for better 3D reconstruction have quite high resolution, serrated building boundaries
can be happen in the DSM, and also branches and leaves of trees around the building might cause
bad boundaries. As a result, the edges and details of the roof need to be improved when segmenting.
We consider the advantages of the level-set and ORTSEG method, and hierarchically segment the DSM
with following steps, shown in Figure 6.

HIERARCHICAL Digital Surface Model
BUILDING
SEGMENTATION

Level One:

Roughly Level-set
Segmentation

&L

Selection of
Segmented Region
I
Expansion of
The Building Regions

EBROr Not >bld

Yes

A 4

Level Two: ORTSEG for ¢ Combine All
Expanded Region Non-EBR Regions
<L

Selection of
Segmented Region

Segmentation Result
of Buildings

Figure 6. Hierarchical LS-ORTSEG building segmentation.
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A classic Chan-Vese model-based level-set is introduced for level-one segmentation of the DSM,
using a circle mask in the whole DSM. Then the N, reigions are roughly segmented as buildings.
Restrict building regions (BR) adopting some certain geometric properties. Here, we set a
threshold TH 4y, for the area of the segmented region as Equation (4):

Area {i} = NUMpixel{i}-resDSM < THpep 4)
i=1,2,.,Nj

where NUM);y; is the number of pixels in the region and respgsy is the DSM resolution. Then Nis
regions are identified as buildings:

Extract the minimum circumscribed rectangle (MCR) of each building region. As shown in
Figure 7, the Ngpr expanded building regions (EBR) are obtained by Equation (5):

EBR; = MCR; U EX;(Ax, Ay) (5)

where the i-th EBR is the union of i-th MCR and EX in the original DSM region and Ax, Ay are the
expansion distance for the horizontal and vertical directions. Note that when a building is near
the boundary of the input DSM, the corresponding side of Ax or Ay must be decreased to fit the
boundary, and the other side retains the original value. After obtaining all the EBRs, we combine
all non-EBRs as background, by setting the values of all the EBRs in the original DSM to a large
enough constant, and the segmented results of these positions will be replaced by that of EBRs.

4y [ Building
x| IMCR
[ ]EBR

* Center

Figure 7. Region expansion for level-two segmentation.

Then, level-two segmentation is performed on both all EBRs and the background by the ORTSEG
method. The labeling function vy of an image, which defines the class of each pixel with different
numbers, splits the image into Ny regions. That models an image as occlusions of random

textures [ = OV{In}ffg(g‘l (Figure 8).

© (d) (e)

Figure 8. Modeling a DSM as an occlusion of textures. (a—e) is one of the five random textures.

McCanna [17] proved that a local histogram could be approximated by a convex combination

of the value histograms of those regions. As a result, segmentation is handled as an optimization,
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which is to search the labeling function vy, for the best approximation of the local histograms L, H by

the statistical function hy,(r) and probability density function pX"* of the N,y regions:

Norr—1

argmin|[LoH — ) [W*h{n}(’Y)]ﬁan ©®)
Y n=0

Similarly, DSM can be segmented using ORTSEG. However, since the labeling function y of
ORTSEG is to fit global statistical properties, if ORTSEG were used on the whole DSM, the potential
overall undulating terrain might lead to poor performance in the local regions of different buildings.
For example, buildings on the mountainside and on the foot could be identified as different labels.
As a result, we intend to improve the local accuracy by segmenting all the EBRs and the background
instead. The main flow of LS-ORTSEG based EBRs segmentation is as shown in Figure 9.

Fori=1: NEBR

(i) Input EBR(i);
(ii)  Parameters Settings;
(iii)  Quantize EBR(i);

Iteration start
For iter = 1:max_iteration

(i) Labeling function y update, by local histogram
approximate optimization;

iter =iter + 1;
end
end

Figure 9. Main flow of LS-ORTSEG based EBRs segmentation.

4. Experimental Section

4.1. Data Statement

Three groups of datasets are collected for our experiments. As shown in Table 1, Dataset 1
was captured by an aircraft over Vaihingen in Germany at a height of 500 m, which can be reached
by UAVs. The dataset is collected for segmentation with ground truths, as shown in Figure 10.
The Vaihingen dataset was provided by the German Society for Photogrammetry, Remote Sensing and
Geoinformation (DGPF) [21]. The DSMs of Datasets 2 and 3 were obtained from the OpenTopography
website [22], and the texture-images of the two datasets are from satellites and Google-Earth, for testing
the 3D reconstruction performance.

Table 1. Statement of datasets.

SN of Datasets 1 2 3
Position Vaihingen, Germany San Diego, CA, USA San Diego, CA, USA
DSM collection Airborne Airborne Airborne
Texture-images collection Airborne Satellite Satellite
Ground Truths of DSM YES NO NO
Test-points of facades? NO By Google Earth By Google Earth
Resolution of DSM 0.09 m 1.0m 1.0m

Resolution of Texture-images - 1.0m/0.3m 1.0m/0.3m
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Figure 10. Dataset 1: (a) original DSM shown as image, and 1, 2, 3 and 4 is the serial number of the
four buildings; (b) ground truths.

4.2. Building Segmentation Using Hierarchical Method

After investigating the terrain of this scene using the actual map and the DSM data, four adjacent
buildings were selected to verify the reliability and robustness of our method. The reasons were as
follows: (1) they are adjoined, and the surroundings are similar; (2) their terrain factors are similar but
have certain distintions, especially between Buildings 1 and 2, and also between Buildings 3 and 4;
(3) they have several kinds of shapes: Buildings 3 and 4 are similar but different from the others;
(4) they have different orientations, and DSMs have different degrees of error in different directions.

Level-set, ORTSEG, and LS-ORTSEG are used for segmenting these regions. In ORTSEG, besides
the quantize and deconvolution methods that need to be selected, many other parameters need to be
set. "Hist.wSize’ (sets the size of the histogram filter) and ‘NumTextures’ (sets the number of textures
to segment to) are the key parameters that affect the segmentation results. ‘Hist.wSize” is generally
set according to resolution and experience. ‘NumTextures’ is set to 5 for ORTSEG, since the number
of classes is 5 in the ground truth of Dataset 1. Generally, better results should be obtained if we
set ‘NumTextures’ close to the number of classes in the ground truths. However, in LS-ORTSEG,
‘NumTextures” are strictly set to 2 since most buildings in these EBRs are simple shapedones.
Other uniform settings of ORTSEG and LS-ORTSEG are as follows: (1) ‘quantizeMethods’ are set to
‘k-means’; (2) ‘quantize.numColors’ = 8; (3) factor.numReps = 25 (it decides how many times to repeat
the factorization).

The results obtained with these general settings are shown in Figure 11. Similar performance
is obtained for Buildings 1 and 3 by the three methods, but LS-ORTSEG gets better results on
Buildings 2 and 4.

(a) (b)
(©) (d)

Figure 11. Segmentation results of four buildings by different methods. (a) Level-Set; (b) ORTSEG;
(c) LS-ORTSEG; (d) Ground Truths. The ‘Hist.wSize’ is set to 3 for both ORTSEG and LS-ORTSEG.
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ORTSEG and LS-ORTSEG were further compared when using different parameter settings.
Accuracy of segmentation is evaluated by Equation (7):

Accuracy = (TP + TN)/(TP + FN + FP + TN) )

where TP is the number of points of the building in the ground truth matrix. FP is the number of
non-building points in the ground truth matrix. TN is the number of correctly segmented points
of the building according to the ground truth matrix. FN is the number of erroneous segmented
points of the building according to the ground truth matrix. Firstly, ‘NumTextures’ is fixed to 5 for
ORTSEG and LS-ORTSEG, and we draw the accuracy of the two methods when ‘Hist.wSize” are set
from 3 to 9, as shown in Figure 12, which illustrates that LS-ORTSEG gives better accuracy than
ORTSEG for most cases.

0.95 \ T T ‘ ‘
* e s —%— 4 &
S — o — o

0.9 § 'I

>
§ ;-_;_d_“;_:‘:_ik::‘:—;—::—t:l\k ——4
S os8s 1
<
e
o S S—

—®— Buiding 1 by LS-ORTSEG
—=— Buiding 2 by LS-ORTSEG
0.8 —#— Buiding 3 by LS-ORTSEG 1
Building 4 by LS-ORTSEG
—@— Building 1 by ORTSEG
—0— Building 2 by ORTSEG
—&— Building 3 by ORTSEG
Building 4 by ORTSEG

07 4 5 6 7 é, 9

Hist.wSize (Parameter for ORTSEG)
Figure 12. Accuracy using different window sizes. The ‘NumTextures’ are set to 5 for ORTSEG,
and ‘Hist.wSize’ are set from 3 to 9 for both ORTSEG and LS-ORTSEG.

The accuracy analysis when ‘Hist.wSize’ is fixed to 5 and ‘NumTextures’ are set from 2 to §,
is shown in Figure 13. It indicates that ‘NumTextures’ should be set close to the number of classes
of the ground truths for better segmentation. Otherwise, when ‘NumTextures’ is set too small or too
large, the negative impact of the terrain will dominantly destroy the segmentation, and poor accuracy
is obtained.

0.9

08

Accuracy
o I
[=2] ~

o
o
T

—®— Buiding 1 by ORTSEG
—=— Building 2 by ORTSEG .
—4— Building 3 by ORTSEG N\
Building 4 by ORTSEG
= = = Building 1 by LS-ORTSEG -—a
— — — Buiding 2 by LS-ORTSEG
— — — Building 3 by LS-ORTSEG
Building 4 by LS-ORTSEG

0.4

031/

02" . . L L L |
2

3 4 5 6 7
NumTextures (Parameter for ORTSEG)

Figure 13. Accuracy using different texture numbers. The ‘Hist.wSize” are set to 5, and ‘NumTextures’
are set from 2 to 8 for both ORTSEG and LS-ORTSEG.
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The best accuracy of different methods is listed in Table 2. It illustrates that LS-ORTSEG achieved
better segmentation than other methods. Moreover, Datasets 2 and 3 are processed, as shown in
Figures 14 and 15. It could be seen that level-set is not as sensitive to the terrain, but it missed some
of the buildings. ORTSEG obtained a good result while LS-ORTSEG can further segment the small
prominent structures on the roofs, which is crucial to analyze the roof contour.

Table 2. Accuracy of different methods.

Accuracy
Method 1 11
Building 1 Building 2 Building 3 Building 4
Level Set 92.26% 82.44% 84.57% 90.27%
ORTSEG 93.64% 82.96% 86.57% 89.58%
LS-ORTSEG 94.37% 83.08% 86.99% 94.14%

Figure 14. Original DSM and segmentation results of Dataset 2. (a) DSM (b) Level-set; (c¢) ORTSEG;
(d) LS-ORTSEG. ‘Hist.wSize” = 3, ‘NumTextures’ = 7 for both ORTSEG and LS-ORTSEG.

200

100

(o) (d)

Figure 15. Original DSM and segmentation results of Dataset 3. (a) DSM (b) Level-set; (c¢) ORTSEG;
(d) LS-ORTSEG. ‘Hist.wSize” = 3, ‘NumTextures’ = 7 for both ORTSEG and LS-ORTSEG.

4.3. 3D Reconstruction of Buildings

As shown in Figure 16, we selected two buildings from Datasets 2 and 3, respectively, to show
the subsequent 3D reconstruction. After extracting the building roofs from the DSM, the facades are
generated by RTGI.
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(d)

Figure 16. Facade generation of buildings in different cases. (a) Facade generation of Building
A by satellite texture-images; (b) facade generation of Building A by airborne-like texture-images;
(c) facade generation of Building B by satellite texture-images; (d) facade generation of Building B by
airborne-like texture-images.
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Different texture cases were compared in the experiments. For one case, facade images of buildings
captured by IKONOS are cut as texture-images. The resolutions are 1 m/pixel. For another case,
facade images of the buildings are taken from Google-Earth to simulate airborne-like images, and the
resolutions were resampled to 0.3 m/pixel. The texture-images can be replaced by other UAV images
if collected. The heights of the facades of Building A and Building B are 86 m and 4 m, respectively.
The interpolations were strictly fit to the texture-images. 3D-points were properly generated for the
two buildings.

3D-points of all sides of the buildings were collected to generate the triangular mesh.
Then the buildings were reconstructed by the triangular mesh and all texture-images (black texture
for invisible facades in different cases), as shown in Figure 17a—d. They illustrate that RTGI could
process texture-images using different resolutions adaptively, and higher reconstructed quality were
obtained from better texture-images. To verify the accuracy of our method, two groups of testing
points are selected: 15 points for Building A, 10 points for Building B, as shown in Figure 18a,b.
In the maximum display scale of the buildings in Google-Earth, the texture of the two buildings show a
perfect fit and were clearly shown in the screen, so we manually selected and measured the position of
the points as a standard, referring to the supervised geometric information of Google-Earth. Then we
calculated the error at different directions between the testing points and the selected standard points by
Equation (3). The results were acceptable, as listed in Table 3.

(d)

Figure 17. 3D reconstruction of buildings in Dataset 2 and Dataset 3. (a) 3D reconstruction of Building
A in multiple views by satellite texture-images; (b) 3D reconstruction of Building A in multiple views
by airborne-like texture-images; (c) 3D reconstruction of Building B in multiple views by satellite
texture-images; (d) 3D reconstruction of Building B in multiple views by airborne-like texture-images.

(b)

Figure 18. Selected points for accuracy verification. (a) Testing points of the two buildings; (b) standard
points selected from Google-Earth.
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Table 3. Reconstruction errors of testing points.

Serial Number of the Testing Points Building A Building B

1 0.1 04
2 0.9 0.1
3 04 0.6
4 0.8 0.0
5 1.6 0.3
6 0.8 0.4
7 0.3 0.4
8 1.1 0.5
9 0.2 0.3
10 0.8 0.2
11 1.1 -
12 0.2 -
13 0.7 -
14 0.6 -
15 1.1 -
Mean Error 0.7 0.3

5. Discussion and Conclusions

In this paper, a hierarchical segmentation method named LS-ORTSEG was proposed to enhance
the performance of a model-free framework for building 3D reconstructions with RS resources.
In this framework, 3D information of buildings are segmented from DSM, and then together with
texture-images, facades of the buildings are generated by the RTGI method, and texture-images are
further pasted onto the corresponding outer-surfaces to finish the 3D reconstruction. LS-ORTSEG was
used to decrease the negative factors resulting from the uncertain terrain.

Three groups of datasets were used, which were collected from different areas of the world. Some
specific buildings were selected to test the performance of our proposed methods. In the experiments,
the advantages of our LS-ORTSEG in different cases compared to traditional methods were verified by
Datasets 1, 2 and 3. The optimization of parameter settings of LS-ORTSEG could be a future objective.
Moreover, the 3D reconstruction performance showed the effectiveness of our framework, and an
acceptable 3D reconstruction accuracy was obtained according to the measured coordinates of the
testing points. Texture-images from aerial images gave better results than satellite images. Besides,
3D reconstruction results, especially for irregularly shaped roofs, can be found in other work of our
team [19,23]. Furthermore, UAV images, which can take texture-images with more ideal angles and
spatial resolution, are more easily collected now, making our proposed method having scalability and
interesting practical prospects.
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