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Abstract: To reduce cost, increase resolution, and reduce errors due to changing light intensity
of the VIS SPEC, a new technique is proposed which applies the Kalman algorithm along with a
simple hardware setup and implementation. In real time, the SPEC automatically corrects spectral
data errors resulting from an unstable light source by adding a photodiode sensor to monitor the
changes in light source intensity. The Kalman algorithm is applied on the data to correct the errors.
The light intensity instability is one of the sources of error considered in this work. The change in light
intensity is due to the remaining lifetime, working time and physical mechanism of the halogen lamp,
and/or battery and regulator stability. Coefficients and parameters for the processing are determined
from MATLAB simulations based on two real types of datasets, which are mono-changing and
multi-changing datasets, collected from the prototype SPEC. From the saved datasets, and based
on the Kalman algorithm and other computer algorithms such as divide-and-conquer algorithm
and greedy technique, the simulation program implements the search for process noise covariance,
the correction function and its correction coefficients. These components, which will be implemented
in the processor of the SPEC, Kalman algorithm and the light-source-monitoring sensor are essential
to build the Kalman corrector. Through experimental results, the corrector can reduce the total error
in the spectra on the order of 10 times; for certain typical local spectral data, it can reduce the error by
up to 60 times. The experimental results prove that accuracy of the SPEC increases considerably by
using the proposed Kalman corrector in the case of changes in light source intensity. The proposed
Kalman technique can be applied to other applications to correct the errors due to slow changes in
certain system components.
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1. Introduction

The VIS SPEC applies Beer-Lambert law to find the substance concentration [1]. Sensitivity
and accuracy of a SPEC depend on several factors, one of these is, firstly, the analog-to-digital
converter (ADC) which is responsible for digitalizing the measured analog signal from the sensors
and providing resolution to the spectrometer [2]. Secondly, another important factor that affects
the accuracy are the system stability factors such as light intensity, voltage regulator, ambient and
operating temperature. The stability of the system can be improved by smoothing techniques and data
correction methodology [3,4].

Most of SPECs on the market use a 16-bit ADC and a charge-coupled device and CMOS sensors,
which account for their high prices [4,5]. Therefore, to increase the SPEC’s sensitivity and to reduce
the cost, an ADS1252 [6] and BPW-34 [7] are chosen.

Many approaches and techniques have been used to increase quality of the SPEC [3]. The change
in the light intensity emitted from the 12V-50W halogen lamp [8,9] and drift of the lead acid battery [10],
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which is used to make the SPEC portable, are the causes of error in such devices. Though, the light
intensity from the lamp in the device is controlled by a voltage regulator to keep it stable, the emitted
light intensity may still fluctuate for some reasons such as the usable-remaining lifetime, working time,
and physical mechanism of the halogen lamp [8,9] and the battery. In addition, ambient temperature
changes can directly affect the light emission from the halogen lamp [9] and the battery capacity [10]
which can also possibly influence the light intensity from the light source. All these factors can cause
the light intensity to be unstable at some ranges as the measurement time goes on. If this instability
happens during a spectral measurement, the intensity of the investigated spectrum will be unstable as
well, and the recorded digital data will contain errors which correspond to the light intensity change.

We note that the errors in the data, which have the causes previously mentioned, are different from
the errors caused by photon shot noise, dark noise, and Johnson or thermal noise [11,12] in which the
contribution of shot and Johnson noises dominate the dark noise. For an exposure period, which is smaller
than five minutes, the dark noise and dark current are minor and negligible [13]. The Johnson noise can be
tackled by applying transimpedance amplifiers [3,12], whereas the shot noise can be treated by low-pass
filter circuits [3] or digital filters such as the moving-average filter [14]. Since these noises in a SPEC were
previously discussed in [3] and in other references [11,12], in this work, the noises or also-called errors of
data possibly caused by the light intensity instability and quantization are investigated.

Through experimental observation, two main types of light intensity change which were seen
during experiments are the mono-trend style, which can be the result of the gradual weakening of the
battery, or the physical-working mechanism of the halogen, and the multi-trend style which can be
caused by the waving-output voltage for the lamp and is not as quick as a shot noise. Although the
output voltage is regulated by a voltage regulator, small or uncommonly-large amplitude oscillations
can be seen, that may result from unideal conditions such as unsteady temperature, unstable load,
or poor-quality capacitors [15]. As the halogen lamp is 12 V–50 W and the operating voltage is around
12 V, the average current that goes through the lamp is around 4 A. Moreover, the lamp must be
warmed up at least 15 min to 30 min before use [16,17]. In addition, after a 15-min warm-up, the output
voltage of the battery, which is full charge before use, starts dropping [12]. In the next period of 33 min,
the voltage drop will be approximately to 1V, i.e., about 30 mV/min.

Consequently, the instability can affect to the quality of the spectral measurement without our
awareness. As a result, it is essential to monitor the light source intensity to compensate for the change
in intensity in order to reduce errors in a SPEC. In this design of the SPEC, a second photodiode is
inserted in the light path to monitor its potential light intensity changes. By observing the light intensity
change, spectral data and its errors caused by the light changes, one can recognize the correlation
between them. Thus, by studying such correlation, the spectral error can be corrected or minimized.
This study is implemented by using MATLAB simulations, in which the program uses the Kalman
algorithm and the proposed correction functions to find necessary parameters such as process noise
covariance. The parameters and coefficients are to be used in hardware implementation of the SPEC.

2. Methodology

In this work, the VIS SPEC structure is shown in the diagram of Figure 1. The system is separated
into device 1 and device 2 for convenience in implementation, experiment, and observation. In device 1,
the battery supplies energy for the halogen lamp through an adjustable voltage regulator having
3 power 2N1544 transistors [18] to provide load current and the regulator LM317 [19] to control the
output voltage. The maximum current through these three transistors is around 15 A and the output
voltage can be adjusted from around 6 V to 12 V. In device 1, lens 1 and lens 2 with the focuses of about
61.5 ± 0.5 mm and 36.0 ± 0.5 mm respectively collimate the light from the halogen lamp. Figure 2
shows more details of device 2.

In device 2, the collimated light from the device 1 goes through the slits units which are designed
with metal blades. These slits are used to decrease the cross section of the light into thin-slit light to
reduce the diffractive effect [20]. In between the first two slits, there is a sample holder whereby a
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1 mm-wide-quartz cuvette is inserted. When the light goes through the sample, the sample absorbs
energy of certain wavelengths of the incident light and the remained light provides useful information
about the sample. However, to get this information, this transmitted light must be continuously
processed by another process where the light shines onto a monochromator, which is a reflective
grating, and is separated into mono lights. The period of the grating is 747 ± 11 nm. The grating can
be deviated from the incident light by the stepper motor [20] having 4096 steps/round. Moreover,
the modified-5V 28BYJ-48 stepper motor [21] having 82,944/round can drive the grating to deviate
from the incident light. Thus, each rotating step equals to 75.752 × 10−6 radian or 0.0043 degree.
Based on the grating, wavelength of the light can be calculated by using the relating formula among
incident light, mono diffracted light and the grating period:

mλ = d(sin θi + sin θm) (1)

where m is diffraction order, d is grating period, θi is incident angle, and θm is diffraction angle.

Figure 1. Block diagram of the VIS SPEC. Device 1 provides visible light and device 2 analyzes sample
spectrum and sends digital data to a computer.

The mono lights are then directed to sensor 2 which is a photodiode, BPW-34, the diode is used
to measure the intensity of the mono lights. The signal from sensor 2 is then properly amplified and
filtered by the amplifier and the two low pass filters before being collected, processed and filtered
again to eliminate noise by the 24-bit ADC and the Atmel328P microcontroller [22]. From Figure 1,
the signals from sensor 1 and sensor 2 after amplified and filtered by the electronic circuits are sent to
ADCs and the digital signals then enter the microcontroller.

Now the details of the error correction mechanism are presented. Basically, the light-source
monitoring sensor 1 collects the light-source intensity data, x, and the spectral sensor 2 records spectral
data, y, to send to the microcontroller for further processing. In case, the light-source intensity is
stable, there are no errors for both x and y. Therefore, x = xreal , and y = yreal , where xreal and yreal are
the real value of x and y respectively. If the light intensity is unstable, then x 6= xreal , and y 6= yreal .
The difference of these values can be defined as error values, and:

dx = x− xreal ; dy = y− yreal (2)

From experiments, when the light intensity is decreased, the spectral intensity is also decreased;
and, inversely, when the light intensity is increased, the spectral intensity is also increased. Therefore,
y is proportional with x.
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Figure 2. Device 2 components: (a) light entrance; (b,d) slits on the two sides of each unit; (c) sensor 1;
(e) grating and its close view; (f) gears are used to increase the scanning steps, one gear is attached
to the grating; (g) 5 V regulator circuit supply energy for other electronics units inside the device 2,
and the driver circuit using ULN2003 IC controls the stepper motor; (h) power supply input; (i) digital
data output; (j) metal box protects inner circuits from external noise; (k) sensor housing; (l) amplifier
circuits are combined two low-pass filters which filter out noise greater than 50 Hz; (m) wall protects
the sensor 2 area from the light entrance area; (n) sample cuvette.

Consequently, from Equation (2), it can be seen that dy is proportional with dx, so dy ~dx. Thus,
dy = f (dx), and:

Y = y + dy = y + f (dx) (3)

where Y is the corrected data, and f (dx) is considered as correction function. f can be proportional with
dx, |dx|2 ∗ dx

|dx| , dx3, . . . , or |dx|1/2 ∗ dx
|dx| , dx1/3, .... Because the form of f is not know yet, let assume:

f (dx) = Co ∗ dx + C1 ∗ |dx|2 ∗ dx
|dx| + C2 ∗ dx3 + . . . + C′1 ∗ |dx|1/2 ∗ dx

|dx| + C′2 ∗ dx1/3 + . . . (4)

where, Co, C1, C2, . . . , C′1, C′2, . . . are proportional constant values which must be estimated by
simulation on MATLAB software to have optimal coefficients. dx

|dx| has only two values, −1 or +1,
and indicates dx is negative or positive. To support for a successful simulation, some algorithms and
technique are manipulated.

2.1. Greedy Technique

The way to find out these constants’ values is simple. It is based on the greedy technique [23] in
which Equation (4) is used in the simulation. At first, all Co, C1, C2, . . . , C′1, C′2, . . . are set to zero. Then,
∆Co, ∆C1, ∆C2, . . . , ∆C′1, ∆C′2, . . . are the increment values of Co, C1, C2, . . . , C′1, C′2, . . . respectively,
and set to certain small values. With the greedy technique, the simulation program will start to find a
certain proportional constant. Let’s start with Co. The program will add ∆Co into Co, then substitute
Co into Equation (4) to calculate dy = f (dx). After that, put dy into Equation (3) to have the corrected
data, Y, and then compare Y with yreal to see whether Y is good or not. Theoretically, Y is good when
Y equals yreal . However, this is impossible when there are many other factors such as circuit noise
can influence to the estimation process. Thus, to know when the proportional estimation process
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should stop, some criteria such as absolute error (AR), relative error (RE), error (ERR), least square (LS),
or correlation parameter (CP) [14] have been applied, where the definitions of AE, RE, ERR, or LS are:

AE = ∑N
i=1 |Y(i)− yreal(i)|;RE = ∑N

i=0|Y(i)− y_real (i)|y_real ;
ERR = ∑N

i=1(Y(i)− yreal(i)); LS = ∑N
i=1 (Y(i)− yreal(i))

2 (5)

where i is the index of data vector Y and yreal , and N is the number of data points, as Y and yreal are
discrete data. Let’s take AE for instance, after estimate the AE, a prior AE is compared with a posterior
AE. If a posterior AE < a prior AE, then the estimation of Co still need to be processed again by adding it
with ∆Co. Inversely, the program will stop to search for Co and move to another proportion constant.
This process keeps going until all Co, C1, C2, . . . , C′1, C′2, . . . are found to fulfill f.

The advantage of the greedy technique is that it is feasible to apply, but the disadvantage is that
the solution, f, and its correction coefficients results from the simulation program, are probably not the
best ones. For example, with a certain suggested f, if the order of searching the correction coefficients
for f is Co, C1, C2, . . . , C′1, C′2, . . . respectively, then the result is supposedly f1. Again, changing the
order of searching into C2, C1, Co, . . . , C′2, C′1, . . . , one can get f2 6= f1. Thus, if n orders of searching
are conducted, there can be n different forms of f. To determine which f is the better one, the above
criteria are looked at. Consequently, among these forms there should be the best one.

In practice, when the form of the correction function is long and complicated, then it is not efficient
to code in a microcontroller. Moreover, it also increases running time in the measurement which may
lead to further error. For example, the running time for a measurement of more than five minutes
produces dark noise [11] and/or potential light-intensity errors during that time. Therefore, in practice,
several cognitive short forms of f are proposed for the simulation program.

2.2. Divide and Conquer Algorithm

From experiments, the correction function found from the greedy technique cannot effectively and
adequately correct the range of the spectrum of interest. To circumvent this difficulty, the investigated
range is divided into smaller subdomains. At each of these subdomains, there will be a correction
function and corresponding parameters to conquer it. This technique is called divide-and-conquer
algorithm [24]. Therefore, data error of each subdomain will be mitigated by the function. Supposedly,
there are n subranges, and so, there are n correction functions. In the operation program, the main data
domain R is cut into twelve subdomains, Ri:{

R1, R2, . . . , R11, R12 ≤ R
R1
⋃

R2
⋃

. . .
⋃

R11
⋃

R12 = R
(6)

Theoretically, the smaller the subranges are divided, the better the corrected data are. However,
when the number of the subranges increases, the time which is used to process data will be longer.
There must be a balance among measuring time, the number of subranges, and the measured data.
In this work, through experiments, twelve subranges are formed to perform the data correction task.
As mentioned above, to achieve the best results, a MATLAB simulation will be used to search for
them. In the MATLAB code, some subrecursive functions are built and recalled continuously in the
simulation. In general, the problem is just shrinking into smaller domains to get better simulation
results which serve for the later steps.

2.3. Kalman Algorithm

There is one more obstacle still able to hinder the search for the best Co, C1, C2, . . . , C′1, C′2, . . . .
In practice, after running the searching simulation with the raw data x, to get f, and applying
it to correct the spectral data, the results are not as satisfactory as expected, since when the raw
light-source-monitoring data, x, which could have noises [11–13], quantization error [14], and unstable
light-intensity error, are sent to f, not only is the unstable light-intensity error transformed by f but also
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by the mixture of noises and quantization error. These noises and quantization error will make the
operating criteria (AE, RE, ERR, LS, or CP) work ineffectively and inadequately. Consequently, x must
be treated by certain approaches before use.

Moreover, the chosen approach should be applicable and feasible for the microcontroller code
and satisfies real-time application without any processing lag and procrastination. For feasibility, two
outstanding algorithms are the moving average [14] and the Kalman algorithm [23,25,26]. For real-time
applications, the Kalman algorithm has been proved by some simple experiments to dominate the
moving average algorithm. After being treated by the Kalman algorithm, ideally, dx (dx = x− xreal)
containing only unstable light-intensity error, which is considered as useful information, will be ready
to serve for the correction process.

Details of the Kalman algorithm can be found in [23,25,26], but it is necessary to focus on some
Equations and quantities of the theory for later applying explanation. First, the system is supposed to
be linear [26,27], so its state equation has the form:

Xk = AkXk−1 + BkUk + Wk (7)

where Xk and Xk−1 are the state vector, and ∈ Rn, Ak, is the n × n state transition matrix, Bk is the
optional n × l control input matrix, Uk is the control vector, and ∈ Rl, and Wk is the process noise
vector. The observation vector of the system is:

Zk = HkXk + Vk (8)

in which Zk is the observation or measurement vector, and ∈ Rm, Hk is the m × n observation matrix,
and Vk is the measurement noise vector. Then, the noise happening in the device is assumed to be
white noise in the frequency domain, while in the time domain, its probability density has the Gaussian
shape at each point on the time axis [27]. The normal probability distributions of Wk and Vk are:{

p(Wk) ∼ N(0, Qk)

p(Vk) ∼ N(0, Rk)
(9)

where Qk and Rk are process-noise covariance and measurement-noise covariance, respectively.
Their normal probability density functions have the form of:

f (x) =
1√

2πσx
exp
[
− x2

2σ2
x

]
(10)

where x stands for one state of the state vector or one observation of the observation vector. σx is the
standard deviation of x [28]. From stochastic theory, in a deviation range and a three-time deviation
range from the mean, there will contain 68.27 percent, and 99.73 percent of the measured values,
respectively [29,30]. Therefore, from the comment and the experiment error theory [31], the error can
be approximated to the three-time deviation. From [29,32], the standard deviation of the sample is:

σ =

√
∑N

j
(

xj − x
)2

N
(11)

with:

x =
1
N

N

∑
j

xj (12)

According to [14], a priori and a posteriori estimate errors can be defined respectively as:

e−k = Xk − X̂−k (13)
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e+k = Xk − X̂+
k (14)

where X̂−k ∈ Rn is the a priori estimate at discrete time k providing information of the previous
process, and X̂+

k ∈ Rn is the a posteriori estimate at discrete time k providing information of the
measurement Zk. From (13) and (14), the covariance of a priori error and the covariance of a posteriori
error are respectively:

P−k = E
[
e−k e−T

k

]
(15)

P+
k = E

[
e+k e+T

k

]
(16)

The a posteriori estimate has the form [11,12,14] of:

X̂+
k = X̂−k + Kk

(
Zk −HkX̂−k

)
= (1−KkHk)X̂

−
k + KkZk (17)

where (Zk −HkX̂−k ) is the residual or measurement innovation which shows the difference between
the measurement and a priori estimate, and Kk, named Kalman gain or blending factor, is chosen by
minimizing the covariance in (16). From [26,27,32], Kk is:

Kk = P−k HT
k(HkP−k HT

k + Rk)
−1

(18)

From (18), when the measurement noise covariance is small, Zk has high fidelity and the Kalman
gain will be large. At that time, from (17), the weight coefficient of Zk is greater than the weight of X̂−k ,
so X̂+

k will “believe” more in Zk than X̂−k . Inversely, as P−k is small, the Kalman gain will be small and
X̂+

k will “believe” more in X̂−k than Zk. Figure 3 shows the operation loop of the Kalman algorithm.

Figure 3. Kalman filter operation loop.

In practice, Qk and Rk can be estimated before applying the Kalman filter. In the study, Rk is
calculated by several rough measured data, but Qk is determined by MATLAB simulation to get
the best results. These values, during operation, can be constant, so they are presented without the
discrete-time subscript k. From [23,25,26], one can see that Rk = σ2. In practice, Rk is easily determined
by using Equations (11) and (12).

2.4. Performance Description

In this section, all the processes manipulated to process data with the order of correction function,
process noise covariance, and correction coefficients findings, by MATLAB simulation are presented.

First, in Equations (1), (2), and (4), the values of real data of sensor 1 and sensor 2 were mentioned
and known. However, that is only a hypothesis to help establish the processing algorithm. In practice,
the values measured in stable conditions are considered approximately equal to the real values and
are reference values to serve for comparison and calculation in simulation. The flowchart in Figure 4
shows the core algorithm for the simulation program, where Y1 and Y2 are spectral data measured
in unsteady conditions and good conditions respectively, whereas X1 and X2 are light intensity data



Sensors 2017, 17, 2939 8 of 20

recorded in these two cases. Conventionally, X1 and Y1 are data with unstable-light-intensity data with
error, and X2 and Y2 are reference data.

Second, noticing that Y1 and Y2 are 24-bit data, while X1 and X2 are 10-bit data. Then, Q1, e11,
and ∆Q, respectively are process noise covariance, measurement error, and the decrement of Q1
sequentially. Especially, e12 takes two roles, a posterior error and a priori error in the Kalman module.
Many data, X1, X2, Y1, and Y2, were measured and saved in datasets before the simulations. LScurrent

and LSsave are the least square parameters which are used to operate the loop. b1, b2, . . . , and b5 which
are the fixed values are set to satisfy condition:

0 < b1 < b2 < . . . < b5 < Ymax (19)

and they are considered as “boundary” values to help divide the grand spectral data domain into
subdomains. In the simulation program, the maximum potential number of the subdomains which
are non-empty is 12, if the minimum data value is smaller than b1, the maximum data value is greater
than b5, and at any range of (0, b1), [b1, b2), . . . , [b4, b5), [b5, Ymax] both positive and negative dX values
exist. C1, C2, . . . , C12 are the correction parameters, whereas dC is the increment of these parameters.

Figure 4. The simulation flowchart to find correction parameters or process noise covariance Q1.

2.4.1. Correction Function Finding

As discussed above, to make the correction function feasible and applicable, several short forms
of Equation (4) are proposed. They are sequentially replaced into the simulation program which is
illustrated by the flowchart in Figure 4. Thus, the simulation program will help to find the correction
coefficients for the suggested functions. After finishing each simulation, the program will return not
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merely Q1, C1, C2, . . . , C12, but also AE, ERR, LS, or CP which can be used as the quality assessment
criteria of the correction functions. Therefore, which correction function with the prominent assessment
parameters is to be adopted. The simulation program starts by loading data X1, X2, Y1, and Y2 from the
assigned datasets and initiating the values for Q1, e11, e12, ∆Q, LScurrent, LSsave, b1, b2, . . . , b5, and dC.

In the flowchart, X1 and X2 are processed by the Kalman algorithm to mitigate the quantization
error and electronic noises, which may remain, albeit being filtered by hardware filters, to keep the
light-source-intensity information as clean as possible. The searching simulation is not successful
if the light-source data still have high quantization error and noises. Furthermore, to empower the
corrector to work effectively and adequately, the data from sensor 1 and sensor 2 should be collected
by applying unstable-light-intensity styles from gradual to fast changes and from mono-changing, to
multi-changing styles with large enough fluctuation amplitudes to use in the simulation. However,
at this stage, the correction coefficients of the correction function are the priority, so Q1 is cognitively
set to a certain value that is good enough for the simulation and of course, larger than Qmin. ∆Q is set
to zero to not influence on Q1.

Let’s look at the operation in the flowchart of Figure 4. At first, LScurrent = 0 < LSsave = 1 and
Q1 > Qmin satisfy the main condition in the flowchart. Then, Q1 is decreased by a ∆Q = 0, so it does
not change. X1 and X2 are smoothed by the Kalman module that returns X1 and X2 respectively prior
to calculate dX = X1 −X2. Then, the Division function is called to divide dX, Y1, and Y2 into smaller
domains. At this point, the divide-and-conquer algorithm is applied to separate the grand data domain
into smaller domains which are more easily to conquer and to find the solution. The way to divide the
data is illustrated in the flowchart of Figure 5.

Figure 5. The diagram of the Division function.

In this function, there are thirteen indexes, i, j, k, l, m, n, o, r, s, t, u, v, w to address data points
in the vector dX, Y1, and Y2. Initially, i is smaller than the number of the data elements of Y1 that is
checked by the first condition in Figure 5. i is increased one unit and the condition of whether dX(i) is
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positive is checked. With either “Yes” or “No”, this first data element, Y1(1) is compared with b1, b2, b3,
b4, and b5 to see to which data subdomain it must belong to. The difference here is that if dX(i) > 0, the
first six subdomains, Y1,1, Y1,2, . . . , Y1,6 for Y1, Y2,1, Y2,2, . . . , Y2,6 for Y2, dX1,1, dX1,2, . . . , dX1,6 of dX,
are used for the arrangement. In case dX(i) < 0, the second six subdomains, Y1,7, Y1,8, . . . , Y1,12 for Y1,
Y2,7, Y2,8, . . . , Y2,12 for Y2, dX1,7, dX1,8, . . . , dX1,12 of dX, are used for the assembly. When dX(i) = 0,
the running point will jump back to the first condition. Then, the same procedure is repeated until i,
loop index, is larger than the number of the data elements of Y1. Especially, when all vector dX = 0,
the division will return twelve empty subdomains. In this case, there is no need to fix the spectral data.
When all dX > 0, from Figure 5, the left side condition boxes will be conducted. Consequently, the first
six subdomains are none-empty, and the second six subdomains are empty. Inversely, when all dX < 0,
the second six subdomains are none-empty, and the first six subdomains are empty.

The data subdomain of order i, Y1,i, Y2,i, dXi, are loaded. In this process, lscurent and lssave are
also the least square values to serve for operating the loop. When lscurent < lssave and Y1,i is different
with null, Ci is increased by a dC. lscurent < lssave condition means the current corrected sub data is
better the previous corrected data, so this sub data still can be better amended. Then, the suggested

correction function is applied to fix Y1,i and returns
=
Y1,i. Next, the subprogram will call the Assessment

function to calculate LS, AE, ERR based on Equation (5), the corrected data,
=
Y1,i, and reference data,

Y2,i, and updates lssave with lscurent, and lscurent with LS. Then, the subprogram keeps going back to
the operating condition until lscurent > lssave which means the current corrected data cannot be further
corrected. From the flowchart in Figure 4, the finding module are called twelve times to access all the
subdomains without noting of whether they are null or not.

Figure 6. The Finding flowchart for correction parameters.

After escaping from the finding module and having all correction coefficients, the main simulation
grogram will apply these values to correct all the sub data, Y1,1, Y1,2, . . . , Y1,6, of the grand spectral
data, Y1 by calling the Correction function which is built from the suggested correction function, f.
The Equation is in the form:

=
Y1,i(j) =Y1,i+Ci ∗ f [(dXi(j),Y1,i(j)] (20)
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Then, the Assessment function will help to evaluate LS, ERR, AE, or CP by using Y1 and Y2. Thus,
it is similar to the above description of how the least square criterion works that the program will not
stop when LScurrent < LSsave.

Finally, at the end, the simulation will return many coefficients, but the most interesting coefficients
are LS, ERR, AR, and CP. Therefore, with each suggested short-form correction function, they are the
most interesting coefficients. Assessing these coefficients, the best one is chosen to be used in the
correction function.

2.4.2. Process Noise Covariance Finding

After finding the appropriate correction function from the suggested functions, the simulation
program is applied again to find the process noise covariance, Q1. Although, Q1 used above is good
enough, it may not be the best to assure the light-source-intensity data as clean as possible. As mentioned
above, many types of data will be used to serve the simulation. Currently, ∆Q is cognitively set to a
certain value which is small enough for the searching simulation. The procedure exactly repeats what
is described in Section 2.4.1, except for the main operating condition must account for the condition
Q1 < Qmin, and at every loop, Q1 is decreased by a ∆Q. When the condition LScurrent < LSsave and
Q1 < Qmin cannot be satisfied, the simulation program will cease to return Q1. This value of process
noise covariance is to be expected that can keep the best light-source data from the noise.

2.4.3. Correction Coefficients Finding

After the above crucial steps, the main simulation program, which having the flowchart depicted
in Figure 4, simply reinstalls the found correction function and Q1 back into itself to find C1, C2, . . . ,
C12. Before that, ∆Q is set to zero. At the end, it returns the correction coefficients.

2.4.4. Application

After the simulation step, all necessary key components, correction function, correction
coefficients, and process noise covariance are provided and ready to apply in the device and to
build the Kalman corrector. Figure 7 illustrates the procedure of collecting and processing data.
The light intensity signal from sensor 1 enters the 10-bit ADC and the spectral intensity signal from
sensor 2 goes to the 24-bit ADC. These signals are digitalized to become digital data. X is filtered out
noises and quantization error by Q1 to become X. Next, the compare block will calculate dX which
dX = Xo −X, where Xo is a loosely optional value. Xo can be equal to a certain standard value or a
measured value which is measured ahead before any spectral measurement. Then, dX and Y values
will be delivered by the subdomain deliver to assigned data subdomains which are characterized
by b1, b2, . . . , b5 and controlled by dX. Here, the subdomain deliver works similar to the division.
It will base on whether dX is positive or negative and to what range among (0, b1), [b1, b2), . . . , [b4, b5),
[b5, Ymax] Y belongs to. Y is then sent to the correction function which is governing the data subdomain
corresponding with that range (Section 2.4.1 and Figure 6). For example, if dX > 0, and 0 < Y < b1,
then Y is sent to the corresponding subdomain, where is governed by a data correction function of Y1

founded by the previous simulation, to be thoroughly amended. This is performed in real time, so dX
and Y are no longer data vector but rather discrete-time data measured at each discrete time.

Figure 7. The main roles of the Kalman algorithm and their correlation with other parts.



Sensors 2017, 17, 2939 12 of 20

3. Results

The light source in this study is visible, so its spectrum ranges from 450 nm to 750 nm.
For convenience in the following figures, on the vertical axis, the unit for the light intensity or
spectra is an arbitrary unit (a.u). With the spectral intensity plot, the horizontal axis presents the
step unit corresponding to the scanning steps of the stepper motor instead of wavelength unit or
number wavelength unit which can be changed among them by using Equation (1). The step value is
changed to rotation angle and the angle is translated into wavelength. However, in the light-source
intensity plots, the step value on the horizontal axis simply corresponds to the discrete time values in
the sampling signal.

As described earlier, the light intensity may increase or decrease randomly when the voltage
regulator is not working well or changes due to other reasons such as physical conditions, ambient
air temperature, lamp temperature, or warm up and working time. The changes can also display a
mono trend, caused by some conditions such as the drift of the battery. Before running the simulation
program, many experimental data have been recorded to serve the simulations. The recorded data
are collected under unchanging and slightly changing working conditions to simulate the unstable
factors as mentioned in the Introduction which can lead to slight changes in light intensity. Then data
recorded in good working conditions (external stable power supply) serve as reference data for the
assessment process.

3.1. Initial Q1 Selection for Simulation

In Figure 8, the red-dot line is the recorded raw 10-bit data of the light intensity source which
was slightly adjusted to simulate an unstable light source. Several values of Q1 are tested to study the
features of Q1. One may see that the smaller the Q1 is, the smoother output data from the Kalman
function will be. This leads to that X1, the blue line, is so smooth, when Q1 is so small, for example
Q1 = 10−8 (it is matching with this type of data and measurement error). Thus, not only the electronics
noises and quantization error are removed but also some useful and crucial information from the light
source. Obviously, this will ruin the data correction and simulation process.

Figure 8. Raw intensity data and its filtered data with different Q1 values.

When Q1 = 10−3, the filtered data, X1, plot is the cyan line. Currently, X1 keeps much
light-intensity information, but also some electronic noises and quantization error as well. If using
this filtered data for simulation, the results, such as correction coefficients, or corrected spectral data,
may not be the best.

Therefore, neither too large nor too small Q1 can lead to good results which are demonstrated by
plot groups of Figure 9a,b, respectively. In both cases, the corrected data are not close to or similar
to the reference. Section 2.4.2 shows how to obtain an appropriate and adequate Q1. To serve for the
simulation of finding correction function which will be discussed in the next section, Q1 is set to 10−3.
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3.2. Correction Function Choice

A multi-changing data set 1 is loaded for test. The general initial values are: b = 7 × 105, b1 = b,
b2 = 2 × b, b3 = 3 × b, b4 = 3.6 × b, b5 = 4 × b, Q1 = 10−3, e11 = e12 = 1, and e21 = e22 = 500
(experimentally determined by Equations (11) and (12)). With each correction function which is chosen,
the increment, dC, of the correction parameters must be cognitively adjusted to a certain appropriate
value that assures that the finding function will be called at least several times. This value should not
be so small because the simulation process may last too long without getting better results. In the next
section, four typical correction functions are investigated to select the most appropriate one in these.
These proposed functions are based on experiment, evaluation, and observation of the results to adjust
logically. Objectively, these correction functions are tested with the same dataset 1. Notice that, LS, AE,
ERR, and CP are the controlling criteria that are also used as effective and qualitative parameters for
the decision.

In Table 1 below, fA, fB, fC, and fD are short correction function forms. The formulas of
these functions are given in Appendix. The LS, AE, and ERR are expected as small as possible,
i.e., the corrected spectral data are similar to the reference spectral data. For CP, if the two data signals
are very close to each other, CP will be approximately one. In the table, an auxiliary index is Feasibility.
Simply, it takes the relative evaluation values which are based on the form of the correction function.

Figure 9. Results of measurement data and processed data (a) the three plots of data in the case of
Q1 = 0.9, and (b) the three plots of data in case of Q1 ≈ 1.27 × 10−21.

Table 1. LS, AE, ERR, and CP of fA, fB, fC, and fD are shown, respectively.

LS AE ERR CP(Y1, Y2) CP(Y1, Y2) Feasibility
fA 2.159 × 1011 1.483 × 107 2.773 × 106 0.999608 0.999968 Medium
fB 1.846 × 1011 1.3747 × 107 3.3367 × 106 0.999608 0.9999769 Low
fC 1.9372 × 1011 2.3045 × 107 3.3367 × 106 0.999608 0.9999725 Low
fD 1.840 × 1011 1.3719 × 107 2.8859 × 106 0.999608 0.9999756 High

If Feasibility is high, the function is easily applied. In some cases, this index can strengthen a
decision, albeit merely an auxiliary one. In the table, the prominent values are highlighted. Observing
Table 1, one sees the most outstanding correction function is possibly fD, and the second one is fB,
finally, fD is selected.
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3.3. Process Noise Covariance Search

After the correction function,
=
Y1,i(j) = Y1,i(j) + Ci ∗ dXi(j) ∗ Y1,i(j), has been chosen, the process

noise covariance, Q1, search is the next step. As previously discussed, to achieve an appropriate and
adequate of Q1, many datasets which were measured under different light-intensity-changing styles
are used. The multi-changing dataset 2 to dataset 19 (named by the authors) are chosen to be loaded
into the simulation program. Table 2 provides the values of Q1 gathered after the simulations.

Table 2. Q1 values of multi-changing datasets.

dataset 2 dataset 3 dataset 4 dataset 5 dataset 6 dataset 7 dataset 8 dataset 9 dataset 10
Q1 0.0071 0.0321 0.0561 0.0147 0.0112 0.0076 0.0352 0.0119 0.0155

dataset 11 dataset 12 dataset 13 dataset 14 dataset 15 dataset 16 dataset 17 dataset 18 dataset 19
Q1 0.0144 0.0349 0.0124 0.0203 0.0126 0.0249 0.0107 0.0165 0.0268

From the above Q1 search simulations corresponding with multi-changing data sets, a Q1 will
be chosen. There will be some points of view in choosing Q1. For instance, one may suppose that
the average Q1 partly satisfies all the cases of light intensity change, or the greatest Q1 of the found
values is the safe solution as the Kalman filter can catch up the possibly fastest and, obviously, slowest
intensity change of the studied data sets. However, with the later philosophy, Q1,max will be greater
than the average one, Q1, and then the corrected data pertaining to Q1,max is probably not as smooth
as the corrected data of Q1. If Q1,min is selected, there will probably be some quick-changing-light
intensity not detected well by the Kalman filter. To implement in the device, the selected process
noise covariance is Q1 = 0.0203. After selecting the best correction function and the appropriate Q1
for the Kalman module, the next process is to load the mono-changing data sets to find the correction
parameters, Ci.

3.4. Correction Parameters Finding

In this section, the mono-changing datasets are considered. In these datasets, there are two
subtype data where one has spectral and light intensity data greater than the reference spectral
and light intensity data, and the other one has spectral and light intensity data smaller than the
reference spectral and light intensity data. Thus, with these types of dataset, after division module is
called, there should be six continuous empty data subdomains and six continuous non-empty data
subdomains. The upper-subdomain data and lower-subdomain data are investigated separately to
find the correction parameters. The values of Ci of the upper-subdomain and lower-domain data are
collected by simulation and shown in Tables 3 and 4, respectively.

Table 3. Ci values of upper-subdomain data.

Data Set
Cj of Subdomains

C1 C2 C3 C4 C5 C6 dX

1 0.00386 0.00264 0.00245 0.00233 0.00208 0.00207 5.7078
2 0.00345 0.00261 0.00202 0.00246 0.00231 0.00230 4.9686
3 0.00392 0.00240 0.00231 0.00231 0.00206 0.00206 4.4369
4 0.00377 0.00283 0.00204 0.00243 0.00240 0.00227 4.6495
5 0.00356 0.00238 0.00201 0.00248 0.00229 0.00226 10.3858
6 0.00359 0.00242 0.00196 0.00213 0.00206 0.00202 9.8095
7 0.00364 0.0026 0.00227 0.00230 0.00222 0.00216 9.8672
8 0.00328 0.00256 0.00247 0.00222 0.00212 0.00218 9.5766
9 0.00345 0.00264 0.00236 0.00233 0.00220 0.00230 8.5105
10 0.00391 0.00267 0.00238 0.00248 0.00229 0.00231 15.2758
11 0.00393 0.00272 0.00234 0.00225 0.00216 0.00213 14.6995
12 0.00380 0.00277 0.00238 0.00230 0.00224 0.00217 14.5844
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Table 3. Cont.

Data Set
Cj of Subdomains

C1 C2 C3 C4 C5 C6 dX

13 0.00398 0.00272 0.00247 0.00224 0.00215 0.00210 14.0529
14 0.00391 0.00265 0.00215 0.00257 0.00238 0.00233 12.1743
15 0.00340 0.00249 0.00246 0.00232 0.00215 0.00219 12.7739
16 0.00341 0.00260 0.00236 0.00255 0.00236 0.00236 16.4325
17 0.00341 0.00265 0.00233 0.00234 0.00224 0.00219 15.8561
18 0.00357 0.00259 0.00242 0.00230 0.00215 0.00212 15.3245
19 0.00371 0.00274 0.00252 0.00240 0.00227 0.00224 16.5607
20 0.00342 0.00228 0.00210 0.00249 0.00234 0.00231 11.2676
21 0.00349 0.00248 0.00235 0.00232 0.00228 0.00222 10.7491
22 0.00384 0.00247 0.00234 0.00224 0.00221 0.00216 11.3957
23 0.00368 0.00238 0.00216 0.00243 0.00236 0.00232 12.4826
24 0.00391 0.00233 0.00223 0.00207 0.00208 0.00201 11.3750
25 0.00370 0.00242 0.00212 0.00214 0.00217 0.00211 11.9064
26 0.00386 0.00257 0.00218 0.00231 0.00221 0.00215 29.6674
27 0.00396 0.00254 0.00222 0.00229 0.00216 0.00211 28.5594
28 0.00385 0.00256 0.00221 0.00243 0.00228 0.00226 29.0910
29 0.00366 0.00255 0.00232 0.00222 0.00214 0.00212 29.4339
30 0.00388 0.00264 0.00229 0.00238 0.00224 0.00222 29.1488

Average 0.00369 0.00256 0.00227 0.00233 0.00222 0.00219

Table 4. Ci values of lower-subdomain data.

Data Set
Cj of Subdomains

C7 C8 C9 C10 C11 C12 dX

1 0.00355 0.00231 0.00219 0.00187 0.0019 0.00188 −20.2399
2 0.00355 0.00226 0.00182 0.00225 0.00218 0.00209 −13.4950
3 0.00343 0.00253 0.00248 0.00189 0.00189 0.00187 −6.5176
4 0.00336 0.00232 0.00211 0.00209 0.00209 0.00196 −18.0569
5 0.00373 0.00242 0.00211 0.00206 0.002 0.00196 −13.2514
6 0.00381 0.00241 0.00203 0.00207 0.002 0.00197 −13.7458
7 0.00307 0.00226 0.00213 0.00194 0.00193 0.00188 −13.3111
8 0.00307 0.00236 0.00228 0.00203 0.00205 0.00202 −12.9464
9 0.00323 0.00199 0.00171 0.00186 0.00181 0.00172 −10.6810
10 0.00358 0.00251 0.00204 0.00234 0.00223 0.00213 −13.0744
11 0.00309 0.00239 0.00205 0.00197 0.00195 0.00201 −17.5519
12 0.00351 0.00229 0.00215 0.00183 0.00186 0.00183 −13.5530
13 0.00306 0.0021 0.00161 0.00195 0.00189 0.00185 −11.2250
14 0.00368 0.0023 0.00218 0.00185 0.00183 0.00187 −14.6510
15 0.00335 0.00238 0.00223 0.00187 0.00184 0.00188 −13.2710
16 0.00389 0.00253 0.00215 0.00205 0.00198 0.00196 −17.3292
17 0.00374 0.00249 0.00207 0.00227 0.00216 0.00209 −23.2423
18 0.00364 0.00248 0.00209 0.00219 0.0021 0.00201 −24.7748
19 0.00373 0.0026 0.00222 0.00214 0.00208 0.00205 −26.7884
20 0.00364 0.00255 0.00233 0.002 0.00199 0.00197 −22.6055
21 0.00347 0.00232 0.00204 0.00217 0.00212 0.00208 −35.0176
22 0.00341 0.00253 0.00227 0.00205 0.00202 0.00203 −22.3267
23 0.00382 0.00246 0.00207 0.00217 0.0021 0.00202 −32.2190
24 0.00373 0.00243 0.00202 0.00217 0.00209 0.00202 −41.6049
25 0.00347 0.00231 0.00191 0.00210 0.00201 0.00194 −39.7620
26 0.00379 0.00242 0.00198 0.00215 0.00206 0.00199 −29.6439
27 0.00309 0.00242 0.0022 0.00204 0.00197 0.00196 −22.4463
28 0.00361 0.00242 0.00214 0.00217 0.00213 0.00208 −35.0595
29 0.00383 0.00254 0.00227 0.00219 0.00208 0.00208 −31.3988
30 0.00347 0.00239 0.00215 0.0021 0.00197 0.00198 −29.5559

Average 0.00351 0.00239 0.00210 0.00206 0.00201 0.00197
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Notice that dX is adjusted from around the range of −40 to 30 units corresponding to
the potential change of the light intensity. Each unit corresponds to approximately a 4.9 mV
difference when the 10-bit ADC of the microcontroller is used. For a small change in light intensity,
the relationship of dX and Ci is expected to be linear with that the best applied correction function,
=
Y1,i(j) = Y1,i(j) + Ci ∗ dXi(j) ∗ Y1,i(j).

When dX is adjusted to different positive and negative values which correspond to the simulations
of different voltage increases and decreases, one can see from the plots of Figures 10 and 11 that Ci and
dX relationship is linear as expected and the slope angle is zero. In this case, one can take the mean
values of Ci to make it as the correction coefficients of the corresponding subdomains.

Figure 10. The plots of correction coefficients and dX of upper-subdomain data.

Figure 11. The plots of the correction coefficients and dX of lower-subdomain data.

3.5. Practice

Through experiments and simulations, the correction function below is used:

=
Y1,i(j) = Y1,i(j) + Ci ∗ dXi(j) ∗Y1,i(j),

and the noise process covariance, Q1 = 0.0203, and the correction coefficients, C1 = 0.003709,
C2 = 0.002577, C3 = 0.002278, C4 = 0.002368, C5 = 0.002242, C6 = 0.002215, C7 = 0.003694, C8 = 0.002449,
C9 = 0.002103, C10 = 0.002155, C11 = 0.002084, C12 = 0.002036 are found through the simulation described
in the previous sections.
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3.5.1. Dataset Correction Simulation

Now with the all the parameters and function found, one can check to see how the output data
from the corrector is better than the uncorrected data. For the process assessment, two new quantities
are added:

|dY1|=|Y2 − Y1| (21)∣∣dY2|=|Y2 − Y1
∣∣ (22)

Equations (21) and (22) are the absolute errors of the uncorrected data and corrected
data, respectively.

Figure 12. |dY1| and |dY2| plots of multi-changing dataset 24; (b): |dY1| and |dY2| plots of
lower-mono-changing dataset 1.

Figure 12 shows the plots of the new quantities, |dY1|, |dY2| of the multi-changing data and
mono-changing data of the two different styles datasets. The expectation here is that the absolute
error plots is as close to the zero line as possible. From the plots, the corrected data is better than the
uncorrected data. The intensity plots only illustrate how the light intensity was changed to simulate
possible reality situations.

3.5.2. Measurements on Air, H2O, and KMnO4 Samples

After the simulation testing, the correction function and the parameters are applied into the
device for further testing. For the test, the reference data are still required. The light intensity of
the light source is adjusted similarly when the data with error were recorded to serve for the above
simulations. The difference here is the data with error will be corrected immediately by the corrector
module which is coded into the Atmel328P processor. To check the effectiveness and ability of the
corrector, several different types of samples are required (air, H2O, and KMnO4 samples) under the
light intensity changes in both mono-changing and multi-changing strategies. From experiment data,
spectral data, light intensity data, and errors are plotted, Experimental results prove that the corrector
module works well as can be seen in Figure 13. Note that there are four types of different samples and
three types of plots in the figure to illustrate the work of the corrector. The errors of the data after the
correction are also plotted.
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Figure 13. Experimental data of different samples. (a) 0.011 g KMnO2 and 30 mL distilled H2O; (b) air;
(c) 0.021 g KMnO2 and 25 mL distilled H2O; (d) distilled H2O.

By defining the simple formula, r = |dY1|
|dY2| , indicates how many times the corrector reduces the

light-intensity error. According to calculation from the measured data, r ≈ 10 times. At some local data
points, it could reach to 60 to 70 times. This coefficient is a used as a merit to evaluate the effectiveness
of the Kalman corrector. However, it just shows much meaningful when there is much light-intensity
error happening, albeit a good coefficient.

4. Discussion and Conclusions

In general, the Kalman algorithm is modified as a corrector to compensate for the data error
caused by the unstable light source in a VIS SPEC. The single-beam-24-bit visible spectrometer, which
is empowered by an auxiliary photodiode sensor, an appropriate correction function, and Kalman
algorithm, can automatically correct the error caused by the light-source-intensity instability which
happens randomly or by drifting of the sources. In average, when there is error in the spectral data,
it can be reduced approximately by 10 times. The results show a good performance both in simulations
and experiments.

One drawback of the technique is the use of the average of Q1,min to Q1,max from the simulation.
Section 3.3 provides a range of the applicable values of the noise process covariance. For being
able to adapt to the diversity of light-intensity instability, the mean value of the range is selected.
Consequently, the data with error may not be perfectly corrected due to either the lack of or not enough
light-intensity error information and/or quantization errors still remaining in the light-intensity data.
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To improve the ability of the corrector module, other methods can be applied along with this
technique to achieve better results. For example, one can use moveable boundaries, instead of applying
the currently fixed boundaries. With moveable boundaries, LS, AE, ERR, and correlation coefficient
are still the operation criteria.
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Appendix A

The short correction forms of the formulas used in Section 3.2, Table 1:

fA = Y1,i(j) + Ci ∗ dXi(j) ∗Y2
1,i(j),

fB = Y1,i(j) + Ci ∗ dXi(j) ∗
√

Y1,i(j),

fC =Y1,i(j) + Ci ∗ dXi(j) ∗Y
3
2
1,i(j),

fD = Y1,i(j) + Ci ∗ dXi(j) ∗Y1,i(j).

Noticing that the form of fA, fB, fC, and fD is slightly different from Equation (4). As in the
experiments, authors found that the correction function work much more effectively if Yn

1,i(j) is
inserted, where n is 1, 2, 3, . . . , or 1/2, 1/3, 3/2. Thus, there is a relation between the correction
function f with not only dX but also Y.
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