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Figure S1. Correlation between source time series derived from magnetometers only and 

magnetometers+gradiometers combined, depending of the λ regularization parameter. Squared 

Pearson correlation coefficients averaged across subjects are shown for four selected sources, as a 

function of the regularization parameters λ for magnetometer (x-axis) and 

magnetometer+gradiometer (y-axis) beamforming reconstructions. For the (mag+grad) dataset, data 

for both sensor types were variance normalised.  

 

 

Figure S2. Dependence between the squared Pearson correlation coefficient r2 between source time 

series derived from magnetometers and gradiometers and the noise estimate in the raw recordings 

(𝑧𝑛𝑜𝑖𝑠𝑒). Each point represent a single recording (subject). r2max,raw and r2max,SSS is the strongest r2 across 

pairs of regularization parameters λmag and λgrad for datasets without and with SSS, respectively, for 

each subject separately (averaging r2 maps across the four sources of interest). 𝑧𝑛𝑜𝑖𝑠𝑒  is defined as the 

ratio between the maximum magnetometer amplitude (across channels and time) before SSS and 

after SSS and is computed for each subject and trial separately, and then averaged over trials.   
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Supplementary Methods:  

The visual stimulation task employed here is part of the Cam-CAN database acquired using a 

306-channel Vectorview system (Elekta Neuromag, Helsinki). Data was acquired with 1000 Hz 

sampling rate and an online band-pass filter between 0.03 and 330 Hz was applied. MEG recordings 

took place during passive audio-visual sensory task, with 120 trials of unimodal stimuli presented 

every 1 s. In half of the trials participants listened to an auditory tone presented for 300 ms, and in 

the other half they watched two circular checkerboards to the left and right of a fixation cross for 34 

ms with no response required from the subject. Our analyses focused on trials involving visual 

stimuli. A detailed description of the exact task settings and session protocol can be found elsewhere 

[1–3]. 

A standard preprocessing algorithm was used: raw MEG data were filtered with tSSS using the 

settings described in CamCAN dataset (http://www.mrc-cbu.cam.ac.uk/datasets/camcan/). Bad 

channels were detected automatically with Maxfilter, applying tSSS with a correlation window of 

10s and a correlation limit of 0.98. Artifacted segments were detected using FieldTrip and visually 

confirmed afterwards. MEG signals were corrected for ocular artifacts using Independent 

Component Analysis (ICA). MEG data were filtered into [2-35] Hz and segmented into trials (-100ms 

to 900ms relative to visual stimulus onset). Only non-artifacted trials were kept for further analyses 

(number of trials: mean: 57. 5, SD: 6.1).  

Sensor Space ERP: We followed a similar approach than [2]. ERF were defined as the first 

Principal Component of the Nchannels x Ntimesamples sensor space ERF matrix over the -0.1–0.5s 

interval, relative to stimulus onset. For the sensor space analysis, only subjects for which the first 

Principal Component explained over 40% of the variance of the sensor space ERF matrix were 

included (32/37 subjects).  

Source space analysis: Forward models were solved using 3-shell Boundary Element Method. 

Source positions were defined in MNI space in a regular grid with 1 cm spacing. The inverse 

problem was solved with beamforming, following equation (10).  
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