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Abstract: Both 𝐿1/2 and 𝐿2/3 are two typical non-convex regularizations of 𝐿𝑝 (0 < 𝑝 < 1), which 

can be employed to obtain a sparser solution than the 𝐿1  regularization. Recently, the  

multiple-state sparse transformation strategy has been developed to exploit the sparsity in 𝐿1 

regularization for sparse signal recovery, which combines the iterative reweighted algorithms. To 

further exploit the sparse structure of signal and image, this paper adopts multiple dictionary sparse 

transform strategies for the two typical cases 𝑝 ∈ {1/2, 2/3} based on an iterative 𝐿𝑝 thresholding 

algorithm and then proposes a sparse adaptive iterative-weighted 𝐿𝑝  thresholding algorithm 

(SAITA). Moreover, a simple yet effective regularization parameter is proposed to weight each  

sub-dictionary-based 𝐿𝑝 regularizer. Simulation results have shown that the proposed SAITA not 

only performs better than the corresponding 𝐿1 algorithms but can also obtain a better recovery 

performance and achieve faster convergence than the conventional single-dictionary sparse 

transform-based 𝐿𝑝 case. Moreover, we conduct some applications about sparse image recovery 

and obtain good results by comparison with relative work. 

Keywords: 𝐿𝑝 -norm regularization; adaptive weighted; iterative thresholding; multiple 

dictionaries; single–dictionary; image restoration 

 

1. Introduction 

Compressed sensing (CS) [1,2] and sparse representation [3,4] have been widely used in the field 

of wireless communications [5–7] and image processing [8–10]. CS implies that it is possible to 

reconstruct the sparse signal/image from incomplete data if some prior knowledge and 

reconstruction constraints are satisfied. Mathematically, the unconstrained 𝐿0 minimization is the 

optimal model to obtain the sparsest solution 𝐱̂𝑙0
: 

𝐱̂𝑙0
=arg min

𝐱̂ 
 {𝛾‖𝐲 − 𝚽𝐱‖2

2 + 𝜆‖𝐱‖0}, (1) 
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where ‖𝐱‖0 denotes the zero-norm function to find the number of nonzero elements in 𝐱; 𝚽 ∈ 𝑅𝑀×𝑁 

denotes the down-sampling measurement matrix; 𝐲 and 𝐱 represent the observed vector and the 

unknown sparse image, respectively; 𝜆  is the regularization parameter to balance between the 

fidelity of the image and the sparsity; and 𝛾 > 0  is a small positive constant, e.g., 𝛾 = 1/2 . 

Unfortunately, this problem (1) is an NP (non-deterministic) problem, and thus, it is difficult to 

efficiently solve. When the matrix 𝚽 satisfies some necessary conditions [11], an alternative convex 

relaxation method are developed using the 𝐿1 regularization method as: 

𝐱̂𝑙𝑝 =arg min
𝐱̂ 

 {𝛾‖𝐲 − 𝚽𝐱‖2
2 + 𝜆‖𝐱‖1}, (2) 

where ‖𝐱‖1 = ∑ |𝑥𝑖|
𝑛
𝑖=1  denotes the 𝐿1-norm. Then, the NP problem (1) is converted into problem (2), 

which is a typical a convex optimization problem and can be solved efficiently, such as with the 

alternating direction method of multipliers (ADMM) [12,13], fast iterative shrinkage-thresholding 

algorithm (FISTA) [14], Nesterov’s algorithm (NESTA) [15], and approximate message passing 

(AMP) [16]. However, the method of 𝐿1 regularization can only obtain a suboptimal solution and 

usually requires much more measurements. Theoretical analysis of CS implies that better 

performance can be obtained by taking advantage of sparser information in many systems, especially 

in the presence of strong noise interference. 

1.1. The Non-Convex Penalties 

Many state-of-the-art algorithms have been proposed to improve the performance of the 𝐿1 

regularization algorithms. The non-convex penalty regularization algorithms are among the most 

effective algorithms for sparse recovery problems. Research shows that the non-convex penalty-based 

optimization methods can more closely approximate the sparsest solution over the 𝐿1-norm penalty 

in problem (2), which requires a weaker incoherent condition and fewer measurement data [17]. 

There have been many non-convex functions proposed as relaxations of the 𝐿0-norm penalty, such 

as the smoothly clipped absolute deviation penalty (SCAD) [18], the 𝐿𝑝, (0 < 𝑝 < 1)-norm penalty [17] 

and the minimax concave penalty (MCP) [19]. By replacing the 𝐿1-norm with the 𝐿𝑝-norm, the non-

convex 𝐿𝑝-norm regularization optimization method is described as: 

𝐱̂𝑙𝑝 =arg min
𝐱̂ 

 {𝛾‖𝐲 − 𝚽𝐱‖2
2 + 𝜆‖𝐱‖𝑝

𝑝
}, 0 < 𝑝 < 1, (3) 

where ‖𝐱‖𝑝
𝑝

= ∑ |𝑥𝑖|
𝑝𝑛

𝑖=1 . Unfortunately, when 0 < 𝑝 < 1 , problem (3) becomes a non-convex,  

non-smooth, and non-Lipschitz optimization problem. Thus, the 𝐿𝑝-norm optimization is always 

difficult to efficiently address.  

1.2. The Iterative Thresholding Algorithm of 𝐿𝑝 Regularization 

There are two main classes of algorithms to solve the non-convex 𝐿𝑝 -norm optimization 

problem. One is the iteratively reweighted algorithm [20], and the other is the iterative thresholding 

algorithm (ITA). As one of the most effective and efficient methods, the ITA has been employed for 

many sparse recovery optimization problems due to its low computational complexities, including 

the iterative hard thresholding for 𝐿0  regularization [21], the iterative soft thresholding for 𝐿1 

regularization [22] and the iterative 𝐿𝑝  thresholding for 𝐿𝑝  regularization [23]. 𝐿1/2  and 𝐿2/3 

regularizations are two special and important cases, not only their solutions can be expressed in 

closed-forms, but also their importance on sparse modeling. Recent studies show that 𝐿1/2 

regularizer can be taken as the most representative 𝐿𝑝 regularizer [24] and 𝐿2/3 regularization is 

more effective in image deconvolution problem [25]. Hence, in this paper, we focus on the 𝐿1/2 and 

𝐿2/3 regularizations, which is described in Equation (4) and (5): 
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𝐱̂𝑙1/2
=arg min

𝐱̂ 
 {𝛾‖𝐲 − 𝚽𝐱‖2

2 + 𝜆‖𝐱‖1/2
1/2

}, (4) 

𝐱̂𝑙2/3
=arg min

𝐱̂ 
 {𝛾‖𝐲 − 𝚽𝐱‖2

2 + 𝜆‖𝐱‖2/3
2/3

}, (5) 

1.3. New Multiple-State Sparse Transform Based 𝐿1 Regularization Algorithm 

Recently, some new multiple-state sparse transform based algorithms were proposed to exploit 

more a priori knowledge of the signal/image by employing some new sparsifying transform 

strategies. A shearlet-based multiple level sparse representation algorithmic framework was 

proposed in [26,27] for the unconstrained 𝐿1  regularization by adaptively incorporating the 

iteratively reweighted shrinkage step. To enhance the sparsity, the algorithm [27] is specifically 

adapted to the sparse structure of the multiscale coefficients based on the ADMM [12,13]. Similarly, 

considering the fact that the sparsity of a certain signal/image will change under different sparsifying 

transform dictionaries, a sparsity-induced composite regularization algorithm was proposed for the 

unconstrained 𝐿1 regularization problem (Co-L1) [28]. The novel Co-L1 method is described as: 

𝐱̂𝑙𝑑,1

𝑡 = arg min
𝐱̂ 

{‖𝚽𝐱 − 𝐲‖2
2 + ∑ 𝜆𝑑,1‖𝚿𝑑𝐱‖1

𝐷
𝑑=1 }, (6) 

where 𝚿𝑑 = [𝝍1|𝝍2|⋯ |𝝍𝑁𝑑
] ∈ 𝑅𝑁𝑑×𝑁 , (𝑑 = 1,⋯ , 𝐷)  are different dictionaries, 𝑑  denotes the 

number of 𝚿𝑑, and 𝑁𝑑 represents the dictionary size. The regularization parameters 𝜆𝑑,1 =
𝑁𝑑

𝜀+‖𝚿𝑑𝐱‖1
 

play the roles of weighting the 𝐿1-norm of the sparsifying transform coefficients 𝚿𝑑𝐱. Multiplying 

by the weighting parameter 𝝀𝑑,1
𝑡 = [

𝑁1

𝜀+‖𝚿1𝐱‖1
, ⋯ ,

𝑁𝑑

𝜀+‖𝚿𝑑𝐱‖1
]𝑇, the regularizer ∑ 𝜆𝑑,1‖𝚿𝑑𝐱‖1

1𝐷
𝑑=1  is indeed 

a composition of multiple dictionary based regularizers. The algorithm [28] can significantly improve 

the image reconstruction performance over the fast iterative shrinkage-thresholding algorithm 

(FISTA) [29] by iteratively and adaptively weighting the composite regularizer. We define these new 

emerged sparsifying transforms as the “multiple-state” transform. The common property of these 

methods is how to exploit the prior information from the multiple-state sparsifying transform to 

improve the conditioning of the sparse recovery problems. 

In this paper, benefiting from the improvement of the 𝐿p regularization algorithm [24,25,30], 

and motivated by recent advances in the iterative reweighted algorithms, we propose a new 

iteratively-weighted algorithm framework for 𝐿𝑝, 𝑝 ∈ {1/2, 2/3} , norm minimization using the 

multiple-state sparsifying transform, i.e., multiple sub-dictionary sparse representation [28]. The 

contributions of this paper are summarized as follows. (1) Based on the multiple sub-dictionary 

sparse representation, we develop a new iteratively-weighted 𝐿𝑝(𝑝 ∈ {1/2, 2/3})  thresholding 

algorithm, which is called as SAITA- 𝐿𝑝(𝑝 ∈ {1/2, 2/3}) . (2) By comparison with the existing 

iteratively-reweighted parameter scheme, we propose an updating regularization parameter for 

weighting the sub-dictionary. (3) 𝐿1/2  regularization and 𝐿2/3  regularization are special and 

important on sparse modeling, particularly on sparse recovery. However, related studies are rare, 

this paper also extend the applications to sparse image recovery and Magnetic resonance imaging 

(MRI) and get good results.  

The organization of the rest of the paper is as follows: in Section 2, we propose the multiple  

sub-dictionary 𝐿𝑝-regularization in the SAITA-𝐿𝑝 algorithm, including the multiple sub-dictionary 

sparsifying transforms and the iterative reweighted scheme for the SAITA-𝐿𝑝 regularizer. Then, in 

Section 3, we develop a new 𝐿𝑝   norm minimization, iteratively thresholding algorithm SAITA-𝐿𝑝. 

To confirm the proposed algorithm, we conduct simulations and applications in image restorations 

in Section 4. In Section 5, we further validate our proposed algorithm using three applications. 

Finally, conclusions are given in Section 6. 
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2. The Proposed Multiple Sub-Dictionary-Based 𝑳𝒑 Regularization  

The multiple dictionary sparsifying transform method for the 𝐿1 regularization optimization 

problem was proposed in [28], which extends the well-known Lasso problem into a composite 

regularization problem. Motivated by the composite regularization method for the 𝐿1-norm, this 

paper employs the multiple sub-dictionary method for the 𝐿𝑝 regularization problem.  

Suppose 𝐱 ∈ R𝑁×1  is the non-sparse, raw signal. We can obtain the sparse coefficients 𝚿𝐱 

through an analysis dictionary 𝚿 ∈ R𝑁1×𝑁 . The shearlet transform [31] and the wavelet  

transform [32] are two typical sparsifying transforms. We choose the wavelet transform as the ideal 

transform because of its effectiveness to compress natural images. The main steps to design the 

multiple sub-dictionary sparsifying transform based 𝐿𝑝 regularization method are: 

First, we construct an (𝐷𝑁) × 𝑁 over-complete sparsifying transform matrix 𝚿 by: 

𝚿 =

[
 
 
 
 
𝚿𝟏

⋮
𝚿𝑑

⋮
𝚿𝐷]

 
 
 
 

∈ 𝑅(𝐷𝑁)×𝑁, (7) 

and: 

𝚿𝑑 = [

𝝍1

𝝍2

⋮
𝝍𝑁𝑑

] ∈ 𝑅𝑁𝑑×𝑁, (8) 

where 𝐷  denotes the number of sub-dictionaries 𝚿𝑑  in the over-complete sparsifying transform 

matrix 𝚿, the 𝑁𝑑 × 𝑁 sub-dictionary matrix 𝚿𝑑 , (𝑑 = 1,⋯ , 𝐷) is acquired by a collection of row 

vectors {𝝍𝑖}𝑖=1
𝑁𝑑 , such as the “dbN” wavelet basis [33], and 𝑁𝑑 represents the number of column in 

𝝍𝑖. From Equation (8) we can see that each 𝚿𝑑 is composed of a set of rows from the (𝐷𝑁) × 𝑁 over-

complete sparsifying transform matrix 𝚿, and: 

𝑁1 + 𝑁2 + ⋯+𝑁𝑑 = 𝐷𝑁, (9) 

By splitting the matrix 𝚿 into several sub-dictionaries 𝚿𝑑, we convert the sparsifying transform 

𝚿𝐱 to a composition of several 𝚿𝑑𝐱, 𝑑 = 1,2,⋯ , 𝐷 with different sparse structures. Intuitively, we 

can utilize these differences to improve the recovery performance in sparse recovery problems. In 

this paper, we choose 𝑁1 = 𝑁2 = ⋯ = 𝑁𝑑 = 𝑁, so 𝚿𝑑 ∈ 𝑅𝑁×𝑁, which are orthogonal matrixes. 

Then, a new multiple non-convex 𝐿𝑝 regularization method is proposed: 

𝐱̂𝑙𝑑,𝑝

𝑡 = arg min
𝐱̂ 

{𝑓𝑑(𝐱) = γ‖𝚽𝐱 − 𝐲‖2
2 + 𝑅𝑆𝐴𝐼𝑇𝐴}, (10) 

where 𝑅𝑆𝐴𝐼𝑇𝐴 is a linearly weighted combination of multiple sub-dictionary based 𝐿𝑝 regularizers 

‖𝚿𝑑𝐱‖𝑝
𝑝: 

𝑅𝑆𝐴𝐼𝑇𝐴 = ∑ 𝜆𝑑,𝑝
𝑡 ‖𝚿𝑑𝐱‖𝑝

𝑝𝐷
𝑑=1 = 𝜆1,𝑝

𝑡 ‖𝚿𝑑𝐱‖𝑝
𝑝

+ 𝜆2,𝑝
𝑡 ‖𝚿𝑑𝐱‖𝑝

𝑝
+ ⋯+ 𝜆𝐷,𝑝

𝑡 ‖𝚿𝐷𝐱‖𝑝
𝑝

, (11) 

the 𝜆𝑑,𝑝, 𝑑 = 1,2,⋯𝐷  denotes the iterative weighted regularization parameter. Hence, the 

contribution of each sub-dictionary is controlled adaptively and iteratively with the weighted 

parameter 𝜆𝑑,𝑝, and the regularizer ‖𝚿𝑑𝐱‖𝑝
𝑝 will vary across the sub-dictionary index 𝑑. Intuitively, 

the variation of each sub-dictionary based regularizer is best weighted by the parameter 𝜆𝑑,𝑝  to 

improve the sparse recovery problem. 

3. The Proposed SAITA-𝑳𝒑 Algorithm 

The major disadvantage of the 𝐿𝑝(0 < 𝑝 < 1) minimization is that it is nonconvex, making it 

difficult to efficiently solve. In this section, we first introduce the iteratively thresholding 

representation theory for the conventional 𝐿𝑝, (𝑝 ∈ {1/2, 2/3}) algorithm according to the existing 
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series of algorithms in [25,34]. Then, we deduce the SAITA-𝐿𝑝  algorithm combined with the 

proposed weighted scheme 𝜆𝑑,𝑝. 

3.1. The Relationship of the SAITA-𝐿𝑝 and Conventional 𝐿𝑝 Methods 

Considering the multiple sub-dictionary 𝐿𝑝 , (𝑝 ∈ {1/2, 2/3})  regularization problem in 

Equation (10), when 𝛾 = 1, we have: 

𝐱̂𝑙𝑑,𝑝
= arg min

𝐱̂ 
{𝑓𝑑(𝐱) = ‖𝚽𝐱 − 𝐲‖2

2 + ∑ 𝜆𝑑,𝑝‖𝚿𝑑𝐱‖𝑝
𝑝𝐷

𝑑=1 }, (12) 

where the 𝑓𝑑(𝐱)  denotes the objective functions. Correspondingly, the conventional single 

dictionary 𝚿′ ∈ 𝑅𝑁×𝑁 based analysis 𝐿𝑝-norm minimization problem is as follows: 

𝐱̂𝑙𝑝
𝑡 = arg min

𝐱̂ 
{𝑓(𝐱) = ‖𝚽𝐱 − 𝐲‖2

2 + 𝜆𝑝 ‖𝚿′𝐱‖
𝑝

𝑝

}, (13) 

The proposed SAITA-𝐿𝑝(𝑝 ∈ {1/2, 2/3}) methods of (12) and the conventional method (13) are 

nearly identical, and the major difference is how to weight the contribution of the 𝐿𝑝-norm by the 

regularization parameter [28]. Compared with the conventional method, the SAITA method can 

exploit more prior knowledge of the sparse signal/image for reconstruction. Figure 1 depicts the 

relationship between the two methods. In the case of (A), the number of sub-dictionaries 𝑑  is 

reduced to 1, and the multiple dictionaries 𝚿𝑑 convert into a single 𝚿. Then, the proposed SAITA-

𝐿𝑝 algorithm converts to the conventional single dictionary 𝐿𝑝 method [24,25]. In case (B), with the 

increase of the number 𝑑, the conventional single dictionary 𝐿𝑝 method converts to the proposed 

SAITA-𝐿𝑝 method. 

 

Figure 1. The relationship between the conventional single dictionary based 𝐿𝑝 thresholding method 

and the proposed SAITA 𝐿𝑝 method. 

3.2. The Thresholding Representation Theory for SAITA-Lp 

According to the relationship between the proposed SAITA-𝐿𝑝 method and the conventional 

𝐿𝑝  method shown in Figure 1, we first consider the conventional single dictionary analysis 𝐿𝑝 

problem (13). The first order optimality condition of 𝐱 is described as: 

∇𝑓(𝐱) = 2𝚿′𝚽T(𝚽𝐱 − 𝐲) + 𝜆∇(‖𝚿′𝐱‖𝑝
𝑝
) (14) 

in which the operator ∇(∙) denotes the gradient. Letting ∇𝑓(𝐱) = 0, we have: 

𝚿′𝚽T(𝐲 − 𝚽𝐱) =
1

2
(𝜆∇(‖𝚿′𝐱‖

𝑝

𝑝

)), (15) 

Multiplying by any parameter 𝜏  to control the step size and adding 𝚿′𝐱  in both sides of 

Equation (15): 

𝚿′𝐱 + 𝜏𝚿′𝚽T(𝐲 − 𝚽𝐱) = 𝚿′𝐱 +
1

2
(𝜆𝜏∇(‖𝚿′𝐱‖

𝑝

𝑝

)), (16) 

Then, we can immediately obtain: 
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(𝐈 +
𝜆𝜏

2
∇(‖ ∙ ‖𝑝

𝑝
)𝚿′𝐱 = 𝚿′𝐱 + 𝜏𝚿′𝚽T(𝐲 − 𝚽𝐱) (17) 

That is: 

𝚿′𝐱 = (𝐈 +
𝜆𝜏

2
∇(‖ ∙ ‖𝑝

𝑝
)

−1

𝚿′(𝐱 + 𝜏𝚽T(𝐲 − 𝚽𝐱)) (18) 

To this end, when 𝑝 ∈ {1/2, 2/3}, the resolvent operator [24,25,30] is denoted as: 

Hλ,𝑝(∙) = (𝐈 +
𝜆𝜏

2
∇(‖ ∙ ‖𝑝

𝑝
)

−1

, (19) 

where 𝜆 and 𝜏 are the regularization parameter and the step tunning parameter, respectively. Then: 

𝚿′𝐱 = Hλ,𝑝 (𝚿′(𝐱 + 𝜏𝚽T(𝐲 − 𝚽𝐱))) (20) 

where 𝜏 > 0 (e.g., 𝜏 =
0.99

‖𝚽‖2
2, or 𝜏 =

0.99

‖𝚽‖2
) controls the step size in each iteration.  

According to the Equation (20), we immediately imply: 

𝐱𝑛+1 = (𝚿′)−1Hλ,𝑝(𝜽(𝐱𝑛)), (21) 

in which: 

𝜽(𝐱𝑛) = 𝚿′(𝐱𝑛 + 𝜏𝚽T(𝐲 − 𝚽𝐱𝑛)), (22) 

where 𝐱𝑛 represents the 𝑛-th iterative solution. The resolvent operator H𝜆,𝑝(∙) is defined as:  

H𝜆,𝑝(𝑥) = (ℎ𝜆,𝑝(𝑥1), ℎ𝜆,𝑝(𝑥2),⋯ , ℎ𝜆,𝑝(𝑥𝑁))𝑇, (23) 

where the ℎ𝜆,𝑝(𝑥𝑖) is the nonlinear function defined by: 

ℎ𝜆,𝑝(𝑥𝑖) = { 
𝜑𝜆𝑑,𝑝

(𝑥𝑖), |𝑥𝑖| > 𝑇

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (24) 

when 𝑝 =
1

2
; 𝑇 =

3 √2
3

4
(𝜆𝑑,1/2𝜏)

2/3 is the threshold value, and [24]: 

𝜑𝜆,1/2(𝑥𝑖) =
2

3
𝑥𝑖(1 + cos (

2𝜋

3
−

2

3
𝑐𝑜𝑠−1(

𝜆𝑑,1/2𝜏

8
(
|𝑥𝑖|

3
)−

3

2))), (25) 

when 𝑝 =
2

3
; 𝑇 =

2 √3
4

3
(𝜆𝑑,2/3𝜏)

3/4 is the related threshold value, and [25]: 

𝜑𝜆,2/3(𝑥𝑖) =

(

 
 

𝜗𝜆,2/3(𝑥𝑖)+√
2|𝐱|

|𝜗𝜆,2/3(𝑥𝑖)|
−|𝜗𝜆𝑑,2/3

(𝑥𝑖)|
2

2

)

 
 

3

∙ sgn(𝑡), (26) 

Where sgn(⋅) denotes the sign function and 

𝜗𝜆𝑑,2/3
(𝑥𝑖) =

2

√3
(𝜆𝑑,2/3𝜏)

1/4(cosh (
1

3
𝑎𝑟𝑐𝑐𝑜𝑠ℎ(

27

16
(𝜆𝑑,2/3𝜏)

−3/2𝑥𝑖
2)))1/2 (27) 

3.3. The Proposed SAITA-Lp Algorithm 

As mentioned above, the iteratively weighted parameter plays a key role during the 

optimization process for the sparse recovery problem. For the proposed SAITA-Lp method, the 

iteratively weighted parameter 𝜆𝑑,𝑝 mainly plays two roles. One is the role of controlling the tradeoff 
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of the fidelity and the prior knowledge between the quadratic term and the regularizer, and the other 

role is controlling the contribution of each regularizer. Unfortunately, it is not clear how to do this 

because setting an ideal parameter is not straightforward. In [28], a iteratively updating parameter 

was reduced by applying a Maximization-Minimization algorithm shown as: 

𝜆𝑑,1 =
𝑁𝑑

𝜖 + ‖𝚿𝑑𝐱‖1
1 (28) 

where 𝑁𝑑 controls the sub-dictionary size, 𝜖 > 0 is a small constant which prevent the denominator 

form zero. From Equation (28) we can obtain some useful information about setting a proper 

regularization parameter. Firstly, the contribution of denominator in Equation (28) is to counterweigh 

each sub-dictionary based regularizer; Secondly, the numerator 𝑁𝑑  control the size of each sub-

dictionary. Inspired by the above insights, in this paper, we design the important iteratively weighted 

parameter 𝜆𝑑,𝑝 as: 

𝜆𝑑,𝑝 =
𝑁𝑑

(𝜖+‖𝚿𝑑𝐱‖2
2)𝛼

, (29) 

where 𝑁𝑑 controls the sub-dictionary size as showed in [28], 𝛼 ∈ (0,2) is a small constant to tune it 

that is determined from the following experimental results. Then the parameter 𝜆𝑑,𝑝
𝑡  plays the role 

of weighting each 𝐿𝑝-norm regularizer adaptively. 

The following are the analytical justifications. (i) When signal 𝐱 is sparser under any dictionary 

of 𝚿𝑑 than others, the value of each regularizer ‖𝚿𝑑𝐱‖𝑝
𝑝 is smaller. Hence, the dictionary of 𝚿𝑑 is 

more appropriate, and on the other hand, a smaller regularizer ‖𝚿𝑑𝐱‖𝑝
𝑝  will be beneficial to 

minimizing the objective function. Thus, the weight of the regularizer should be enhanced. (ii). When 

the signal 𝐱 may not be sparse enough under another dictionary 𝚿𝑑, that is, the dictionary of 𝚿𝑑 is 

not ideal, the value of ‖𝚿𝑑𝐱‖𝑝
𝑝 will be larger. The larger ‖𝚿𝑑𝐱‖𝑝

𝑝 will not be helpful to minimizing 

the objective function; thus the weight of the ‖𝚿𝑑𝐱‖𝑝
𝑝  should be smaller to counterweigh the 

regularizer. 

For the main comparison, the conventional single-dictionary based 𝐿𝑝, 𝑝 ∈ {1/2, 2/3} -

regularization method in problem (13) will be considered, and the tradeoff parameter 𝜆𝑝 is a fixed 

constant, which is shown as: 

𝜆𝑝 =
1

(𝜖+‖𝚿𝐱‖2
2)

𝛼. (30) 

From Equation (30), we find that the conventional single-dictionary based parameter 𝜆𝑝 is a 

constant and will not vary.  

Moreover, we employ the forward-backward linear strategy to accelerate the convergence of the 

proposed algorithm as [14]: 

𝜇𝑛+1 =
1+√1+4(𝜇𝑛)2

2
, (31) 

and: 

𝐱𝑛+1 = 𝐱𝑛 +
𝜇𝑛−1

𝜇𝑛+1 (𝐱𝑛 − 𝐱𝑛−1), (32) 

The proposed iteratively-weighted SAITA-𝐿𝑝 algorithm can be described in Algorithm 1. 

  



Sensors 2017, 17, 2920  8 of 17 

 

Algorithm 1: The proposed SAITA-𝐿𝑝 algorithm. 

Problem: 𝐱𝑛+1 = argmin 𝛾 ‖𝚽𝐱 − 𝐲‖2
2 + ∑ 𝜆𝑑,𝑝

𝐷
𝑑=1 ‖𝚿𝑑𝐱‖𝑝

𝑝; 

1: Input: {𝚿𝑑}𝑑=1
𝐷 , 𝐲, 𝚽; 𝐿𝒅; 𝛾 = 1; ϵ > 0;  

2: Initialization: 𝑛 = 0; 𝜀 = 0.01; 𝜏 =
1−𝜀

‖𝚽‖2; 𝜆𝑑,1/2
(1)

= 1; 𝛼. 

3: for 𝒏 = 𝟏, 𝟐, 𝟑,⋯ 

4: Calling the conventional analysis 𝑳𝒑 algorithm in (13): 

While not converged do  

   Step 1: Compute 𝜽(𝐱𝑛) = 𝚿′(𝐱𝑛 + 𝚽T(𝐲 − 𝚽𝐱𝑛)) in Equation (22); 

Step 2: Compute 𝐱𝑛+1 = (𝚿′
)−𝟏Hλ,𝑝(𝜽(𝐱𝑛)) in Equation (21); 

Step 3: Update the value of 𝜇 using 𝜇𝑛+1 =
1+√1+4(𝜇𝑛)2

2
 in Equation (31); 

Step 4: Update the solution 𝐱𝑛+1 = 𝐱𝑛 +
𝜇𝑛−1

𝜇𝑛+1
(𝐱𝑛 − 𝐱𝑛−1) in Equation (32); 

End 

5: Updating: 𝜆𝑑,𝑝
(𝑛+1)

←
𝑁𝑑

(ϵ+‖𝚿𝑑𝐱(𝑛)‖
2

2
)𝛼

 in Equation (29); 

6: end 

7: Output 𝐱𝑡 

4. Performance Analysis and Discussion 

We first conduct some experiments to determine the value of 𝛼 and verify the performance of 

the proposed 𝜆𝑑,𝑝
𝑡 , then we evaluate the superiority of the proposed SAITA algorithm compared with 

the conventional single dictionary analysis 𝐿𝑝 iterative thresholding algorithms [24,25] and the Co-

L1 [28]. All the experiments in this paper were conducted on a personal computer (2.21 GHz, 16 GB 

RAM) in a MATLAB (R2014a) platform. 

Assuming the clean image 𝐱 , we construct a measurement matrix 𝚽  using the “Spread 

Spectrum” operator [35], so the measurement image shows: 𝐲 = 𝚽𝐱 + 𝐧 , where n denotes the 

additive noise. Since the wavelet is known to compress natural raw images very efficiently, we choose 

the wavelet transform as the sparsifying transform operator. Then, we construct the sparsifying 

transform matrix 𝚿 ∈ R8𝑁×𝑁 by concatenating the undecimated ‘db1’ and ‘db2’ wavelet transform 

with 2-levels of decomposition. Thus, we can obtain the sub-dictionaries: 𝚿𝑑 ∈ 𝑹𝑁×𝑁 , 𝑑 = 1,2,⋯8.  

 
   (a)   (b) 

Figure 2. (a) the cropped Cameraman image of size 𝑁 = 256 × 256. (b) the selected image portion of 

size 𝑁 = 96 × 104. 

The SNR measurement is adopted to measure the noise level, which is defined as 𝑚𝑆𝑁𝑅 =
‖𝐲‖2

2

𝑀𝜎2, 

where 𝑀  and 𝜎2  denote the number of 𝐲  and the variance of the white Gaussian noise, 

respectively. The higher the value of mSNR, the weaker of the noise level is. We evaluate the 

performance by the popular recovery SNR: 𝑅𝑆𝑁𝑅 = −20log (
‖𝐱−𝐱̂‖2

‖𝐱‖2
), where 𝐱̂ denotes the estimated 

sparse image. The higher the value of 𝑅𝑆𝑁𝑅, the better the performance. We conduct the experiments 

by utilizing the well-known figure of “Cameraman” with mSNR = M/N = 40 dB, which is shown in 

Figure 2a. To reduce the computation time, we choose only a part of the figure, shown in Figure 2b. 

(a) (b)

20 40 60 80 100
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40
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80
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4.1. The Value Range of 𝛼 in 𝜆𝑑,𝑝 

In Section 4.1, we first determine the value range for 𝛼 in 𝜆𝑑,𝑝 by evaluating the performances 

with different values of 𝛼. The results are shown in Figures 3 and 4. From the results, we can find 

that when α ∈ (0, 𝑝), the proposed algorithms perform well and enjoy strong robustness. With the 

increase of α , the performances deteriorate rapidly. Therefore, we estimate that the value of α 

should be [0, 𝑝] to obtain the adaptive weighting. We specially set: 

𝜆𝑑,𝑝
𝑡 =

𝑁𝑑

(𝜖+‖𝚿𝑑𝐱‖2
2)

1−𝑝
2

, (33) 

 
(a) (b) 

Figure 3. The RSNR of the proposed SAITA-𝐿𝑝 algorithm of 𝛼 ∈ (0, 2𝑝) and 𝑝 = 1/2. (a) The RSNR 

of 𝛼 ∈ {
1

6
,
1

4
,
1

3
,

5

12
,
1

2
}. (b) The RSNR of 𝛼 ∈ {

1

2
,

7

12
,
2

3
,
3

4
,
5

6
}. 

 
(a) (b) 

Figure 4. The recovery 𝑆𝑁𝑅 of the proposed SAITA-𝐿𝑝 algorithm of 𝛼 ∈ (0, 2𝑝) and 𝑝 = 2/3. (a) 

The RSNR versus Sampling Ratio of 𝛼 ∈ {
1

6
,
1

3
,
1

2
,
2

3
,
5

6
}; (b) The RSNR versus Sampling Ratio of 𝛼 ∈

{1,
13

12
,
7

6
,
5

4
,
4

3
}. 

4.2. The Recovery SNR Performances Versus Sampling Ratio 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

35

40

Sampling Ratio (M/N)

R
S

N
R

 (
d
B

)

 

 

=1/6

=1/4

=1/3

=5/12

=1/2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-20

-15

-10

-5

0

5

10

15

20

25

30

35

p=1/2

Sampling Ratio (M/N)

R
S

N
R

 (
d
B

)

 

 

=1/2

=7/12

=2/3

=3/4

=5/6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

5

10

15

20

25

30

35

40

Sampling Ratio (M/N)

R
S

N
R

 (
d
B

)

 

 

=1/6

=1/3

=1/2

=2/3

=5/6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-15

-10

-5

0

5

10

15

20

25

30

35

p=2/3

Sampling Ratio (M/N)

R
S

N
R

 (
d
B

)

 

 

=1

=13/12

=7/6

=5/4

=4/3



Sensors 2017, 17, 2920  10 of 17 

 

In Section 4.2, we evaluate the robustness of the proposed algorithm by considering the RSNR 

versus the sampling ratio. Specifically, we set three mSNR levels to 25 dB, 30 dB and 35 dB. Figure 5 

depicts the RSNR versus the sampling ratio. Based on the results, the proposed SAITA-𝐿𝑝, (𝑝 ∈

{1/2, 2/3}) algorithm performs better than the conventional single dictionary based algorithm, and 

the robustness of the proposed algorithm is good. 

 
(a) (b) 

Figure 5. The RSNR performances of the proposed SAITA-𝐿𝑝 algorithm and the 𝐿𝑝 algorithm with 

mRSN ∈ {25, 30, 35} dB. (a) p = 1/2. (b) p = 2/3. 

4.3. The Recovery SNR Performance Versus Measurement SNR 

For our third experiment, we investigate the influence of different noise levels on the proposed 

algorithm and compare the 𝐿𝑝 algorithm and Co-L1 [28]. Similarly, we consider three sampling ratio 

levels of 𝑀/𝑁 ∈ {0.15, 0.20, 0.25}. We evaluate the performance by the RSNR versus the lower mSNR 

(20 dB~40 dB) of the image, and the results are presented in Figure 6.  

  

(a) (b) 

Figure 6. (a) The case of 𝑝 = 1/2 for the sampling ratios 𝑀/𝑁 ∈ {0.15, 0.20, 0.25} of the Cameraman 

images. (b) The case of 𝑝 = 2/3 for the sampling ratios 𝑀/𝑁 ∈ {0.15, 0.20, 0.25} of the cameraman 

images. The RSNR versus mSNR of the proposed SAITA-𝐿𝑝(𝑝 ∈ {1/2, 2/3})  algorithm and the 

𝐿𝑝(𝑝 ∈ {1/2, 2/3}) algorithm for three low sampling ratios 𝑀/𝑁 ∈ {0.15, 0.20, 0.25}. 
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From the results, we can find that the proposed SAITA-𝐿𝑝, (𝑝 ∈ {1/2, 2/3}) algorithm can obtain 

a higher recovery SNR and has better robustness and fidelity than the Co-L1. The robustness and 

fidelity of the corresponding 𝐿𝑝, (𝑝 ∈ {1/2, 2/3}) algorithm will deteriorate with the increase of the 

signal measurement SNR. 

4.4. The Relative Error Performances Versus the Number of Iterations 

We study the convergence and the reconstruction error by the relative error performances versus 

the number of iterations. Choosing the relative error as the second quality measurement, the formula 

is given: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
‖𝐱 − 𝐱̂‖2

‖𝐱‖2

 (34) 

Considering the proposed SAITA-𝐿𝑝, (𝑝 ∈ {1/2, 2/3}) and the corresponding 𝐿𝑝, (𝑝 ∈ {1/2, 2/

3}) algorithm from the result shown in Figure 7, when the sampling ratio is 0.2 (shown in (a)), the 

relative errors of the proposed SAITA-𝐿𝑝, (𝑝 ∈ {1/2, 2/3})  algorithm are significant smaller, and 

converge faster than the corresponding 𝐿𝑝 , (𝑝 ∈ {1/2, 2/3}) algorithm. When the sampling ratio is 

0.5 (shown in (b)), though the final relative errors are close, the convergence speed of the proposed 

algorithm is higher (the number of iterations are approximately 15 and 7, respectively). While 

compared to Co-L1 [28], our proposed SAITA-𝐿𝑝 algorithm can obtain a markedly lower relative 

error when the sampling ratio is 𝑀/𝑁 ∈ {0.2, 0.5}. In addition, one can observe that the relative error 

is slightly smaller than for 𝑝 = 2/3, while the convergence rate is faster than the 𝑝 = 1/2.  

  
(a) (b) 

Figure 7. (a) The relative error for the lower sampling ratio 𝑀/𝑁 = 0.2 in the cameraman image. (b) 

The relative error for the higher sampling ratio of 𝑀/𝑁 = 0.5 in the cameraman image. The relative 

errors verse the iteration number of the proposed SAITA-𝐿𝑝 algorithm and the 𝐿𝑝 algorithm. 

5. Practical Experiments 

The proposed algorithms can be applied in many practical applications [36–42]. In this section, 

we conduct some typical applications about sparse image recovery and medical imaging to extend 

the applications of 𝐿1/2  and 𝐿2/3  regularizations and illustrate the excellent robustness and 

adaptation of the proposed SAITA-𝐿𝑝, (𝑝 ∈ {1/2, 2/3}) algorithm. The conventional single dictionary 

analysis 𝐿𝑝 iterative thresholding algorithms [24,25] and the Co-L1 [28] as the standard algorithms 

for comparison.  
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5.1. Application 1: Image Sparse Restoration 

In the first application, the proposed SAITA- 𝐿𝑝  algorithm is applied to restoring the 

“Cameraman” image shown in Figure 2 versus sampling ratio M/N . We use the reduced 𝑁 =

96 × 104 cameraman image as the objective image. Figures 8a,c show the recovery results using the 

conventional single dictionary algorithm of 𝐿1 and 𝐿𝑝, (𝑝 ∈ {1/2, 2/3}), respectively. Figures 8b,d 

show the recovery images using the corresponding multiple sub-dictionary algorithm of 𝐿1  and 

𝐿𝑝(𝑝 ∈ {1/2, 2/3}), respectively. The experiments show that all the algorithms can recover the images, 

and the proposed multiple sub-dictionary algorithms significantly outperform the conventional 

single-dictionary algorithms. In Figure 9, we depict the RSNR of four algorithms vs. different 

sampling ratios. When 𝑝 = 1/2 and 𝑝 = 2/3, it can be observed that the proposed SAITA algorithm 

can obtain a lager RSNR compared with the conventional 𝐿𝑝  algorithms. There is no obvious 

improvement between the two cases of 𝑝 =
1

2
 and 𝑝 =

2

3
, and the SAITA-𝐿1/2 algorithm outperforms 

the SAITA-𝐿2/3 algorithm with a weak advantage. 

 

Figure 8. The recovery effects of the proposed SAITA-𝐿𝑝(𝑝 ∈ {1/2, 2/3}) and the conventional 𝐿𝑝(𝑝 ∈

{1/2, 2/3}) algorithms for the 𝑀/𝑁 = 0.2 and 𝑚𝑆𝑁𝑅 = 40 dB cameraman image. (a) 𝐿1/2, RSNR =

15.7316 dB; (b) SAITA-𝐿𝑝  algorithm (𝑝 = 1/2), RSNR = 20.5714 dB; (c) 𝐿2/3 , RSNR = 16.3098 dB; 

and (d) SAITA-𝐿𝑝 algorithm (𝑝 = 2/3), RSNR = 20.1259 dB. 

 

Figure 9. The RSNR of the SAITA-𝐿𝑝(𝑝 ∈ {1/2, 2/3}) algorithms vs. the sampling ratio 𝑀/𝑁 for the 

mSNR = 40 dB cameraman image. 

5.2. Application 2: Medical Imaging 
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In the application 2, we extend the applications of our proposed algorithm to solve typical 

medical construction problems. We first consider the well-known Shepp-Logan phantom, and then 

we construct a high-quality dMRI cardiac cine [8,28]. 

5.2.1. Test 1 for the Shepp-Logan Model 

In the test 1, we first consider the well-known Shepp-Logan phantom of 𝑁 = 96 × 96 with an 

𝑚𝑆𝑁𝑅 = 40 dB. We construct the compressed noisy measurement signal 𝐲 by utilizing the “Spread 

Spectrum” operator as the measurement matrix 𝚽 [35], and we conduct a sparsifying transform 

with the constructed operator 𝚿 ∈ 𝑅(4𝑁)×𝑁 (‘db3’, 𝑁 = 1). 

 

Figure 10. The recovery effects of the proposed SAITA-𝐿𝑝(𝑝 ∈ {1/2, 2/3}) and the corresponding 

𝐿𝑝(𝑝 ∈ {1/2, 2/3})  algorithm for the 𝑀/𝑁 = 0.140 , mSNR = 40 dB  Shepp-Logan image. (a) 𝐿1/2 , 

RSNR = 3.5436 dB ; (b) SAITA- 𝐿𝑝  algorithm ( 𝑝 = 1/2 ), RSNR = 43.7016 dB ; (c) 𝐿2/3 , RSNR =

27.2450 dB; and (d) SAITA-𝐿𝑝 algorithm (𝑝 = 2/3), RSNR = 44.9549 dB. 

 

Figure 11. The RSNR of the proposed SAITA-𝐿𝑝 (𝑝 ∈ {1/2, 2/3}) algorithm and the conventional 

𝐿𝑝 (𝑝 ∈ {1/2, 2/3})  algorithm vs. the sampling ratio 𝑀/𝑁  for the mSNR = 40 dB  Shepp-Logan 

image. 
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From the experimental results shown in Figure 10, we find that the proposed SAITA-𝑳𝒑 

algorithm can recover the images perfectly, as shown in Figures 10b,d, while the conventional single 

dictionary algorithms failed to recover the image, which is shown in Figures 10a,c. The proposed 

SAITA-𝑳𝒑 algorithm of 𝒑 = 𝟐/𝟑 can obtain the best effect compared with the other algorithms, and 

the next best is the SAITA-𝑳𝒑  algorithm of 𝒑 = 𝟏/𝟐 . In Figure 11, we depict the RSNR of the 

respective algorithms versus different sampling ratios 𝑴/𝑵. When 𝒑 = 𝟏/𝟐 and 𝒑 = 𝟐/𝟑, it can be 

observed that the proposed SAITA-𝑳𝒑 algorithms can obtain a larger RSNR than the 𝑳𝒑 algorithms 

with 𝑴/𝑵 ∈ (𝟎. 𝟏, 𝟎. 𝟐) significantly.  

5.2.2. Test 2 for Real-World Data (2D MRI) 

MRI is a typical medical inverse problem that can be solved well by CS [8]. In this experiment, 

we apply the proposed algorithm to real-world medical data. We investigate a simplified “dynamic 

MRI” problem [8] and use the high-quality MRI cardiac cine as the ground truth and select a spatio-

temporal slice of 144 × 48  [28]. We construct the sparse matrix 𝚿 ∈ 𝑅3𝑁×𝑁  with a vertical 

concatenation of ‘db1’ and ‘db2’ orthogonal discrete wavelet bases with two levels of decomposition 

(“db1”, “db2”, and 𝑁 = 2 ). Figure 12 presents the constructed MRI images using the  

SAITA- 𝐿𝑝(𝑝 ∈ {1/2, 2/3})  algorithm and 𝐿𝑝 (𝑝 ∈ {1/2, 2/3})  algorithms. From the experiment 

results, we can see that the proposed SAITA algorithm can reconstruct the images perfectly, as shown 

in Figures 12b,d, while the conventional algorithms failed to restore the image in Figures 12a,c. The 

proposed multiple sub-dictionaries algorithm of 𝑝 = 2/3  obtained the best effect and the 

corresponding recovery SNR is 23.1872 dB. Next is the proposed algorithm of 𝑝 = 1/2 with recovery 

SNRs of 21.0189 dB. In Figure 13, we depict the RSNR of four algorithms versus different sampling 

ratios 𝑀/𝑁 . When 𝑝 = 1/2  and 𝑝 = 2/3 , it can be observed that the proposed SAITA- 𝐿𝑝 

algorithms can obtain a lager RSNR compared with the conventional single dictionary 𝐿𝑝 

algorithms. The results also show that the algorithms of 𝑝 = 2/3  outperform the methods of  

𝑝 = 1/2 . That is to say, the 𝐿2/3  regularization can exploit more prior knowledge than 𝐿1/2 

regularization in MRI. 

 

Figure 12. The recovery effects of the proposed SAITA-𝐿𝑝(𝑝 ∈ {1/2, 2/3}) and the corresponding 𝐿1/2 

and 𝐿2/3 algorithm for the 𝑀/𝑁 = 0.2, mSNR = 40 dB 2D MRI image. (a) 𝐿1/2 algorithm, RSNR =

3.6346 dB; (b) SAITA-𝐿1/2  algorithm, RSNR = 21.0189 dB; (c) 𝐿2/3  algorithm, 𝑅𝑆𝑁𝑅 = 7.7718 dB; 

and (d) SAITA-L2/3 algorithm, RSNR = 23.1872 dB. 
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Figure 13. The RSNR of the proposed SAITA- 𝐿𝑝, (𝑝 ∈ {1/2, 2/3})  algorithm and the 𝐿𝑝, (𝑝 ∈

{1/2, 2/3}) algorithm versus the sampling ratio for the mSNR = 40 dB 2D MRI image. 

6. Conclusions 

In this paper, we propose a novel adaptive iteratively weighted thresholding algorithm  

(SAITA-𝐿𝑝) based on the conventional 𝐿1/2 and 𝐿2/3 thresholding algorithm by incorporating the 

multiple sub-dictionary sparse representation strategy. We make the following conclusions from the 

above experiments: 

(1) Using the proposed multiple sub-dictionary sparsifying transforms strategy, we construct a 

multiple sub-dictionary based 𝐿𝑝 regularization method to exploit more priori knowledge of 

images for the sparse image recovery problem. By multiplying by the proposed adaptive 

weighting parameter 𝜆𝑑,𝑝
𝑡 =

𝑁𝑑

(𝜖+‖𝚿𝑑𝐱‖2
2)

1−𝑝
2

, we can gain more control of weighting the 

contribution of each sub-dictionary based regularizer. Experiments show that the proposed 

algorithms appear to perform better than the conventional single-dictionary algorithms, 

especially when the sampling rate is very low (e.g., 0.1~0.3); 

(2) Compared with the 𝐿1-norm regularization based work, the nonconvex 𝐿𝑝(0 < 𝑝 < 1)-norm 

penalty can more closely approximate the 𝐿0 -norm minimization over the 𝐿1 -norm, which 

gives a sparser solution and needs fewer measurement data. 

(3) In our experiments, we find that the recovery performances between the 𝐿𝑝 (𝑝 = 1/2)  and 

𝐿𝑝(𝑝 = 2/3) are close, even when the corresponding 𝑝 = 2/3 algorithm can obtain a better 

performance over the 𝑝 = 1/2. Hence, a proper 𝑝 need to be selected in practical applications. 

(4) Moreover, the proposed SAITA-𝐿𝑝  method also indicates that it is feasible to improve the 

recovery performance by exploiting the signal inner sparse structure and designing a proper 

sparse representation dictionary. Thus, it is beneficial to exploit the signal sparse structure with 

a dictionary learning method, which will be the subject of future work. 

(5) The proposed SAITA-𝐿𝑝  algorithm can be extended to other non-convex penalties include 

smoothly clipped absolute deviation (SCAD) and minimax concave penalty (MCP). 
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