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Abstract: Localization of a moving target in a dual-frequency radars system has now gained
considerable attention. The noncoherent localization approach based on a least squares (LS) estimator
has been addressed in the literature. Compared with the LS method, a novel localization method
based on a two-step weighted least squares estimator is proposed to increase positioning accuracy
for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and
the number of samples on the performance of range estimation are also analyzed in the paper.
Furthermore, both the theoretical variance and Cramer–Rao lower bound (CRLB) are derived.
The simulation results verified the proposed method.

Keywords: moving target localization; Cramer–Rao lower bound (CRLB); dual-frequency radar;
closed-form solution; range estimation; weighted least squares estimator

1. Introduction

Short-range noncontact microwave radar systems have been widely used for monitoring
in military, environmental, health, and commercial systems [1,2]. Both wideband [3–5] and
dual-frequency continuous wave (CW) [6–10] of signals are applied for range estimation in a
short-range radar. Since a stationary scatterer will reflect wideband echo, a wideband radar is prone to
clutter caused by environment. A dual-frequency CW radar is the preferred solution for moving target
(MT) localization because it is immune to clutter from stationary targets [6–10]. For a dual-frequency
radar, two carrier frequencies are transmitted simultaneously, and phase difference of Doppler signals
is used to estimate the range between the target and radar. Since Doppler echo is generated only by
target motion, clutter from stationary targets is eliminated in a dual-frequency radar. The separation
between two carrier frequencies is used to determine a maximum unambiguous range. A range
estimation method based on a dual-frequency radar is designed for gesture sensing in [6]. The authors
in [7] studied the performance of range estimation using a dual-frequency radar. The radar employs
a receive unit consisting of a yagi antenna. Both simulation and experimental results prove the
effectiveness of the designed dual-frequency radar in [7] for indoor range estimation. Subsequently, a
dual-frequency radar with antenna array is constructed for three-dimensional tracking of humans [8,9].
In this radar, phase difference between various antennas is utilized to estimate the angle of arrival
(AOA), while the phase difference measured at two CW frequencies is used for target ranging. Since
both range and AOA measurements are obtained, the MT can be located by a single radar. Compared
with a single-station radar system, a multi-station radars system may lead to higher positioning
accuracy due to its better Geometric Dilution of Precision (GDOP). For a multi-station dual-frequency
radars system, a noncoherent localization scheme in [10] was proposed for MT localization only using
range measurements. At least three dual-frequency radars are used to locate a MT. The noncoherent
localization approach is most applicable to single-target localization, where it is not necessary to

Sensors 2017, 17, 2914; doi:10.3390/s17122914 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2204-4552
http://dx.doi.org/10.3390/s17122914
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 2914 2 of 15

require cross-range resolution [10]. A least squares (LS) estimator was used in [10] to estimate a target
position. The performance of the LS method can be further improved using a weighted least squares
(WLS) estimator.

In this paper, a novel localization method with closed-form solution and high positioning
accuracy is proposed for a multi-station dual-frequency radars system. The proposed method
extends the two-step WLS estimator from time-difference-of-arrival (TDOA) location system [11]
to a dual-frequency radars system. Like [10], this paper focuses on a single MT. Range measurements
estimated from multi-station dual-frequency radars are used in the proposed method for target
localization. It should be noted that frequency and phase synchronization are very important for
a radar system. Imperfect synchronization will result in frequency shift and phase errors. Precise
frequency and phase synchronization mainly depend on the radio frequency (RF) circuit design.
For signal processing, several channel calibration techniques [12,13] was used to suppress frequency
shift, Inphase/Quadrature (I/Q) mismatch, and direct current (DC) offset. After channel calibration,
the proposed localization method can be used to locate a MT.

Compared with the previous research studies, the main contributions of this paper are listed
as follows:

(1) The effects of signal noise ratio (SNR) and the number of samples on the performance of range
estimation are analyzed in the paper. The fundamental work has been done for performance
analysis of dual-frequency radars in [10] where the influences of drift in frequency and I/Q
mismatch were studied. SNR and the number of samples are another two important factors
which will greatly affect the performance of range estimation.

(2) A novel localization method with closed-form solution and high positioning accuracy is proposed
for a multi-station dual-frequency radars system. The proposed method first derives the variances
of the phase measurements. Based on the derived variances, the two weighted matrices can be
calculated for two-step solutions. Due to the weighted information, the proposed method can
provide the better performance than the LS estimator.

(3) Performance analysis for the proposed method is presented in this paper. Both the theoretical
variance and Cramer–Rao lower bound (CRLB) for the proposed method are derived in the paper.
The derived CRLB can provide a benchmark for MT localization in the dual-frequency radars
system to evaluate the performance of any unbiased estimator. They have not been addressed in
the literature.

Section 2 briefly introduces system model. The proposed method is presented in Section 3.
Section 4 derives the CRLB. In Section 5, the performance of the proposed algorithm is simulated in
terms of the root mean square error (RMSE). Conclusions of this paper are given in Section 6.

2. System Model

The basic model of a dual-frequency radars system for MT localization is briefly introduced in
this section. Assuming that (x, y) is the position of a MT to be estimated and the known coordinate of

the ith radar in a N-Radars system is (xi, yi), denote the measurement with noise of
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2. System Model 

The basic model of a dual-frequency radars system for MT localization is briefly introduced in 
this section. Assuming that ( , )x y  is the position of a MT to be estimated and the known coordinate 

of the i th radar in a N -Radars system is ( , )i ix y , denote the measurement with noise of { }*  as { }*


, the true distance between the i th Radar and MT can be modeled as [14,15]: 

( ) ( )2 22 2 2i i i i i ir x x y y k x x y y k= − + − = − − +  (1) 

where 2 2
i i ik x y= +  and 2 2k x y= + . The range estimate ir

  of ir  can be obtained using a dual-
frequency radar. For the i th radar, it operates at two CW frequencies 1if  and 2if , where both CW 
frequencies are combined and transmitted simultaneously. The frequency separation 2 1i if f−  is used 
to determine a maximum unambiguous range. Assuming that 1iφ  and 2iφ  are the phases 
corresponding to two CW frequencies of operation, the range estimate can be obtained using the 
phase difference 2 1i iφ φ−  of the two CW frequencies [7,8]: 

as
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, the true
distance between the ith Radar and MT can be modeled as [14,15]:

r2
i = (xi − x)2 + (yi − y)2 = ki − 2xix− 2yiy + k (1)

where ki = x2
i + y2

i and k = x2 + y2. The range estimate
_
r i of ri can be obtained using a dual-frequency

radar. For the ith radar, it operates at two CW frequencies fi1 and fi2, where both CW frequencies are
combined and transmitted simultaneously. The frequency separation fi2 − fi1 is used to determine a
maximum unambiguous range. Assuming that φi1 and φi2 are the phases corresponding to two CW
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frequencies of operation, the range estimate can be obtained using the phase difference φi2 − φi1 of the
two CW frequencies [7,8]:

ri =
(φi2 − φi1)c

4π( fi2 − fi1)
= ai(φi2 − φi1) (2)

where ai = c/(4π( fi2 − fi1)). Note that the phase difference is modulo 2π, the maximum unambiguous
range is [7,8]:

rmaxi =
c

2( fi2 − fi1)
(3)

which depends on the frequency separation fi2 − fi1. Proper selection of fi2 − fi1 can provide the
sufficient scope of unambiguous range. Compared with rmaxi = 3.75 cm for a radar with single carrier
frequency, the maximum unambiguous range increases to 100 m when the frequency separation is set
to be 1.5 MHz in a dual-frequency radar.

3. Closed-Form Solution for Dual-Frequency Radars

Although a LS estimator was utilized in [10] for MT location in a dual-frequency radars system,
the performance of the LS estimator can be further improved using a WLS estimator. This section
proposes a novel localization method with a closed-form solution based on a two-step WLS estimator
for dual-frequency radars. The proposed method starts with baseband signals which may help to
further understand the dual-frequency radar. The theoretical variance of the proposed method is also
derived in this section.

3.1. Performance Analysis of Range Estimation Using FFT

Obviously, the positioning accuracy of MT depends on the estimate error of
_
r i. This subsection

analyzes the effects of SNR and the number of samples on the performance of range estimation. It is

observed from Equation (2) that the range estimate
_
r i relies on the phase parameters

_
φ i1 and

_
φ i2.

Hence,
_
φ i1 and

_
φ i2 should be obtained firstly. In this subsection, the phase parameters are estimated

using the fast Fourier transformation (FFT) method since it is widely used in phase estimation [8,9]
and it can attain the satisfactory performance even in low SNR situation (SNR ≤ 0 dB) with sufficient

samples. Furthermore, the theoretical variances of
_
φ i1 and

_
φ i2 are derived to evaluate the performance

of the phase estimation. They are also used for the weighted matrix in the proposed location method,
which is shown in Section 3.2.

For the ith dual-frequency radar, the baseband signals corresponding to each carrier frequency
can be expressed as:

_
Uil(k) = Uil(k) + nil(k), k = 1, · · · , M, l = 1, 2 (4)

where k is the time index, M is the number of samples, and Uil(k) = UIil(k) + jUQil(k) is the complex
signal of the baseband echo. Without loss of generality, the amplitude of Uil(k) can be normalized to 1.
Hence, Uil(k) can be rewritten as:

_
Uil(k) = ejφ′il(k) + nil(k) = ej(2π f dil(k−1)/ f s+φil) + nil(k), k = 1, · · · , M, l = 1, 2 (5)

where φ′il(k) = 2π f dil(k− 1)/ fs +φil , f dil is Doppler frequency, f s is sampling frequency, and nil(k) =
nIil(k) + jnQil(k) is a Gaussian noise with zero mean and variance σ2

ni. Since I/Q channel has the
independent analog digital converter (ADC), the following equations holds:

E[nIil(k)] = E[nQil(k)] = E[nIil(k)nQil(k)] = 0. (6)
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Obviously, the SNR of baseband signals received by the ith radar is:

SNRi =
1

σ2
ni

. (7)

The Fourier transform of (4) is:

U fil

(
k f

)
=

M

∑
k=1

Uil(k)W(k) (8)

where k f is the frequency index corresponding to Doppler shift, W(k) = e−2π(k−1)(k f−1)/M is an Mth
root of unity.

Substituting Uil(k) = UIil(k) + jUQil(k) and W(k) = WI(k) + jWQ(k) into (8) gives:

U fil

(
k f

)
=

M

∑
k=1

(UIil(k) + jUQil(k))(WI(k) + jWQ(k)) =
M

∑
k=1

VIil(k) + j
M

∑
k=1

VQil(k) (9)

where
VIil(k) = UIil(k)WI(k)−UQil(k)WQ(k) (10)

VQil(k) = UIil(k)WQ(k) + UQil(k)WI(k). (11)

From (9), the phase φil can be obtained:

φil = a tan

M
∑

k=1
VQil(k)

M
∑

k=1
VIil(k)

(12)

The estimate variance of φil can be calculated by using the perturbation approach. Further, ∆
is denoted as error perturbation. In presence of noise and disturbance, ∆φil can be obtained using
differential scheme:

∆φil =

M
∑

k=1
∆VQil(k)

M
∑

k=1
VIil(k)−

M
∑

k=1
VQil(k)

M
∑

k=1
∆VIil(k)(

M
∑

k=1
VIil(k)

)2

+

(
M
∑

k=1
VQil(k)

)2 =

M
∑

k=1
∆VQil(k)

M
∑

k=1
VIil(k)−

M
∑

k=1
VQil(k)

M
∑

k=1
∆VIil(k)

|U fil

(
k f

)
|
2 (13)

where
∆VIil(k) = ∆UIil(k)WI(k)− ∆UQil(k)WQ(k) = nIil(k)WI(k)− nQil(k)WQ(k) (14)

∆VQil(k) = ∆UIil(k)WQ(k) + ∆UQil(k)WI(k) = nIil(k)WQ(k) + nQil(k)WI(k). (15)

It should be noted that |U fil

(
k f

)
|
2

is power spectrum of Uil(k) at the Doppler frequency k f . For

a single MT, |U fil

(
k f

)
|
2
= M2.

Substituting |U fil

(
k f

)
|
2
= M2 into (13) gives:

∆φil =

M
∑

k=1
∆VQil(k)

M
∑

k=1
VIil(k)−

M
∑

k=1
VQil(k)

M
∑

k=1
∆VIil(k)

M2 (16)

Noting that WI(k)2 + WQ(k)2 = 1 and deriving from (6), (14) and (15), we have:

E[∆VIil(k)] = E[∆VQil(k)] = E[∆VIil(k)∆VQil(k)] = 0 (17)
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E
[
∆VIil(k)

2
]
= E

[
∆VQil(k)

2
]
=

σ2
ni
2

. (18)

It can be derived from (16)–(18) that:

E[∆φil ] = 0 (19)

cov(∆φil) = E
[
∆φil

2
]
=

σ2
ni

2M
=

1
2MSNRi

. (20)

From (2), ∆ri is derived as:

∆ri =
(∆φi2 − ∆φi1)c
4π( fi2 − fi1)

. (21)

It can be derived from (19)–(21) that the mean and variance of ∆ri are:

E[∆ri] = (E[∆φi2]− E[∆φi1])ai = 0 (22)

cov([∆ri]) = E
[
(∆ri)

2
]
= a2

i

(
E
[
(∆φi2)

2
]
− 2E[∆φi2]E[∆φi1] + E

[
(∆φi2)

2
])

=
a2

i
MSNRi

=
c2

MSNRi(4π( fi2 − fi1))
2 .

(23)

It can be seen from (22) and (23) that the FFT method is an unbiased estimator and it depends
on SNR and the number of samples. The accuracy of range estimation can be improved through
increasing SNR and the number of samples. Equation (23) also implies that the smaller frequency
separation will lead to larger range estimation error. Thus, a proper selection of frequency separation
should consider both the maximum unambiguous range and the accuracy of range estimation.

3.2. Closed-Form Solution for Multi-Station Dual-Frequency Radars System

In this subsection, a novel localization scheme based on the two-step WLS estimator for a
multi-station dual-frequency radars system is proposed.

Substituting (2) into (1) gives:

2xix + 2yiy− k = ki −
(

φ2
i2 − 2φi2φi1 + φ2

i1

)
a2

i . (24)

With the measurement noise, the error vector derived from (24) is:

e = Y−GZ (25)

where

Y =


k1 −

(
_
φ

2

12 − 2
_
φ 12

_
φ 11 +

_
φ

2

11

)
a2

1

...

kN −
(
_
φ

2

N2 − 2
_
φ N2

_
φ N1 +

_
φ

2

N1

)
a2

N

, G =

 2x1 2y1 −1
...

...
...

2xN 2yN −1

, Z =
[

x y k
]T

.

The first step WLS estimator of Z can be obtained from (25):

Z = argmin
{
(Y−GZ)TΨ−1(Y−GZ)

}
=
(

GTΨ−1G
)−1

GTΨ−1Y (26)

where ψ is the covariance matrix of e:

ψ = cov(e) = E
(

eeT
)

. (27)
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Ignoring the square error term and derived from (24), the element ei of e can be expressed as:

ei = −2a2
i (φi2 − φi1)(∆φi2 − ∆φi1). (28)

The expectation of eiej can be derived from (19), (20) and (28):

E
(
eiej
)
=

{
0 i 6= j

4a4
i (φi2 − φi1)

2 1
MSNRi

i = j
. (29)

Based on (29), Equation (27) can be decomposed as:

ψ = cov(e) = E
(

eeT
)
= BQB (30)

where
B = diag

{[
2a2

1(φ12 − φ11) · · · 2a2
N(φN2 − φN1)

]}
(31)

Q = diag
{[

1
MSNR1

· · · 1
MSNRN

]}
. (32)

Since the covariance matrix ψ depends on the unknown φi1 and φi2, the approximate values
_
φ i1

and
_
φ i2 can be used in ψ to make the problem solvable.
The first step solution of Z in (26) is based on the assumption of independent x, y, and k. However,

those parameters are correlated by k = x2 + y2. The estimation accuracy can be further improved
using the relationship between x, y, and k. The results can be revised as follows using the relation of
k = x2 + y2:

e′ = Y′ −G′Z′ (33)

where e′ =
[

e′1 e′2 e′3
]T

is the error vector,

Y′ =

 Z2
1

Z2
2

Z3

, G′ =

 1 0
0 1
1 1

, Z′ =

[
x2

y2

]
.

It can be seen from (33) that Z′ =
[

x2 y2
]T

. To obtain the MT position (x, y), Z′ in (33) should
be solved first.

Z′ can be obtained from (33) using the second step WLS solution:

Z′ =
(

G′TΨ′−1G′
)−1

G′TΨ′−1Y′ (34)

where Ψ′ is the covariance matrix of e′. The final estimation of the MS position Z′′ =
[

x y
]T

is:

Z′′ = sign(Z)
√

Z′. (35)

Using the perturbation approach as (28) and [11], the covariance matrix of Z′′ can be obtained
from (35):

cov(Z′′ ) = B′′−1cov(Z′)2×2B′′−1 (36)

where cov(Z′) =
(
G′TΨ′−1G′

)−1, Ψ′ = E
(
e′e′T

)
= B′cov(Z)B′, cov(Z) =

(
GTΨ−1G

)−1
, B′′ =

diag
{[

2x 2y
]}

, and B′ = diag{[2x, 2y, 1]}.
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4. Cramer–Rao Lower Bound

It is well known that the CRLB sets a lower limit for the variance or covariance matrix of any
unbiased estimate of unknown parameters [16]. This subsection derives the CRLB for MT localization
in a dual-frequency radars system, which can provide a benchmark to evaluate the performance of any
unbiased estimator.

Let
_
U be a measurement vector which contains

_
Ui1(k),

_
Ui2(k), i = 1, · · · , N and k = 1, · · · , M.

Note that φi2 = ri/ai + φi1, the unknown parameter vector θ is:[
x y φ11 · · · φN1 f d11 · · · f dN1 f d12 · · · f dN2

]T
. (37)

The CRLB matrix is defined as the inverse of the Fisher information matrix (FIM) Jθ:

E

((
_
θ − θ

)(
_
θ − θ

)T
)
≥ J−1

θ (38)

where
_
θ is an estimate of θ.

The FIM is determined by [16]:

Jθ = E


∂ ln f

(
_
U|θ

)
∂θ

∂ ln f
(
_
U|θ

)
∂θ


T. (39)

From (5), the probability density function (PDF) f
(
_
U|θ

)
can be written as:

f
(
_
U|θ

)
=

N

∏
i=1

M

∏
k=1

f
(
_
Ui1(k)

)
f
(
_
Ui2(k)

)
(40)

where

f
(
_
Uil(k)

)
= f

(
_
UIil(k)

)
f
(
_
UQil(k)

)
, l = 1, 2 (41)

with

f
(
_
UIil(k)

)
∝ exp

−
(
_
UIil(k)− cos φ′il(k)

)2

σ2
ni

 = exp

−
(
_
UIil(k)− cos(2π f dil(k− 1)/ f s + φil)

)2

σ2
ni

 (42)

f
(
_
UQil(k)

)
∝ exp

−
(
_
UQil(k)− sin φ′il(k)

)2

σ2
ni

 = exp

−
(
_
UQil(k)− sin(2π f dil(k− 1)/ f s + φil)

)2

σ2
ni

 (43)

Substituting (40)–(43) into ∂ ln f
(
_
U|θ

)
/∂θ gives:

∂ ln f
(
_
U|θ

)
∂θ

= Hn (44)

where
H =

[
HT

x HT
y HT

φ1 HT
f d1 HT

f d2

]T
(45)
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with

∂ri
∂x = x−xi

ri
, ∂ri

∂y = y−yi
ri

Hx =
[

Hx1 · · · HxN

]
Hxi =

[
0 0 2

aiσ
2
ni

∂ri
∂x

2
aiσ

2
ni

∂ri
∂x 0 0 0 0

]
Hy =

[
Hy1 · · · HyN

]
Hyi =

[
0 0 2

aiσ
2
ni

∂ri
∂y

2
aiσ

2
ni

∂ri
∂y 0 0 0 0

]
Hφ1 =

[
HT

φ1_1 · · · HT
φ1_N

]T

Hφ1_i =
[

0 · · · 1 1 1 1 · · · 0
]
× 2

σ2
ni

, where the starting index of 1 in Hφ1_i is (i− 1)8 + 1.

H f dl =
[

HT
f dl_1 · · · HT

f dl_N

]T
, l = 1, 2

H f dl_i =
[

0 · · · 1 1 · · · 0
]
× 4π

σ2
ni f s

, where the starting index of 1 in H f dl_i is (i− 1)8 + 4 +

2(l − 1) + 1.

n =
[

nT
1 · · · nT

N

]T
is the noise vector and ni =

[
nT

i1 nT
i2

]T

where

ni1 =

[
M
∑

k=1

{
− sin φ′i1(k)nIi1(k)

} M
∑

k=1

{
cos φ′i1(k)nQi1(k)

} M
∑

k=1

{
− sin φ′i2(k)nIi2(k)

} M
∑

k=1

{
cos φ′i2(k)nQi2(k)

} ]T

(46)

ni2 =

[
M
∑

k=1

{
− sin φ′i1(k)(k− 1)nIi1(k)

} M
∑

k=1

{
cos φ′i1(k)(k− 1)nQi1(k)

}
M
∑

k=1

{
− sin φ′i2(k)(k− 1)nIi2(k)

} M
∑

k=1

{
cos φ′i2(k)(k− 1)nQi2(k)

} ]T (47)

The covariance matrix of ni is derived as

E
[
ninT

i

]
= Ai =

[
Ai11 Ai12
Ai21 Ai22

]
=

[
E
[
ni1nT

i1
]

E
[
ni1nT

i2
]

E
[
ni2nT

i1
]

E
[
ni2nT

i2
] ] (48)

with

E
[
ni1nT

i1

]
=

σ2
ni
2

diag
{[

M
∑

k=1

(
sin φ′i1(k)

)2 M
∑

k=1

(
cos φ′i1(k)

)2 M
∑

k=1

(
sin φ′i2(k)

)2 M
∑

k=1

(
cos φ′i2(k)

)2
]}

E
[
ni2nT

i1
]
= E

[
ni1nT

i2
]
=

σ2
ni
2 diag

{[
M
∑

k=1

(
sin φ′i1(k)

)2
(k− 1)

M
∑

k=1

(
cos φ′i1(k)

)2
(k− 1)

M
∑

k=1

(
sin φ′i2(k)

)2
(k− 1)

M
∑

k=1

(
cos φ′i2(k)

)2
(k− 1)

]}

E
[
ni2nT

i2
]
=

σ2
ni
2 diag

{[
M
∑

k=1

(
(k− 1) sin φ′i1(k)

)2 M
∑

k=1

(
(k− 1) cos φ′i1(k)

)2

M
∑

k=1

(
(k− 1) sin φ′i2(k)

)2 M
∑

k=1

(
(k− 1) cos φ′i2(k)

)2
]}

The expectation of ninT
j is:

E
[
ninT

j

]
= E[ni]E

[
nT

j

]
= 0, i 6= j. (49)
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The covariance matrix of n can be obtained from (48) and (49):

W = E
[
nnT

]
= diag

{[
A1 · · · AN

]}
. (50)

Substituting (44) and (50) into (39) gives:

Jθ = HWHT . (51)

Finally, the proposed CRLB is derived as:

CRLBx,y =

[(
HWHT

)−1
]

2×2
. (52)

5. Simulation Results

In the simulations, the carrier frequency of radars is 24 GHz and frequency separation is 1.5 MHz.
This means the maximum unambiguous range is 100 m. The Zero-IF technique is used to reduce the
sampling frequency and eliminate clutter from stationary targets. The sampling frequency is set to be
10 Khz, which is sufficient to cover the Doppler shift caused by the target motion.

5.1. Range Estimation

This subsection is simulated to study the effects of SNR and the number of samples on the
performance of range estimation. Uniform motion in [10] is used in this simulation. Consider a
single-point target moving towards the origin with uniform velocity v0 where r = r0 − v0t. The speed
of target is set to be 3.5 km/h. Figure 1 shows the true trace and the estimated range when the number
of samples is M = 256 and SNR = −5 dB. It can be seen from this figure that the FFT method can
provide the accurate range estimate even in low SNR situation (SNR < 0 dB).
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Figure 1. True trace and the estimated range.

Baseband signals in time domain and frequency domain for SNR = −5 dB and SNR = 20 dB
are plotted in Figure 2. For the case with SNR = −5 dB, the time domain signals sink below the
measurement noise whereas the FFT can obtain the M times gain in the frequency domain. This implies
that FFT is an effective method to estimate the range in a dual-frequency radars system.
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Figure 2. Baseband data in time domain and frequency domain.

Both the RMSE of range estimation and its theoretical variance (23) are recorded in Figures 3
and 4. Figure 3 shows the RMSEs of range estimation versus SNR when the number of samples is
M = 1024. It is observed that the performance of the FFT method well matches the theoretical variance.
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Figure 4. Range estimation error under different numbers of samples (M).

Performance comparisons with different M are recorded in Figure 4. In this simulation, the
number of samples M is varied from 256 to 2048 and SNR = −5 dB. Figure 4 shows that the number of
samples M can help the FFT method to attain the high ranging accuracy which is in line with (23).

Both Figures 3 and 4 verify the effectiveness of the derived theoretical variance (23).

5.2. Target Localization

A square region of dimensions 64 m × 64 m is considered for simulations. Starting with three
radars with coordinates (−32, −32) m, (32, −32) m, and (32, 32) m, the radars with coordinates
(−32, 32) m, (0, −32) m, (32, 0) m, (0, 32) m, and (−32, 0) m are added successively. The ‘S’ trajectory
as shown in Figure 5 is used in the simulation. The time gap between the two trajectory points is 0.3 s.
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The radial velocity between the adjacent trajectory points is set to be 3.5 km/h. The RMSEs are defined

as

√
E
[(

x−_
x
)2

+
(

y−_
y
)2
]

in the units of m.
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Figure 5. Radars layout.

Based on the estimated range using the FFT method, the LS localization method is used in
this simulation to compare with the proposed method. The LS solution is selected here due to its
closed-form solution and also because the LS estimator has been used for a dual-frequency radars
system in [10]. Comparisons among the derived CRLB (52) and theoretical variance (36) of the proposed
method are also given in the simulations.

Figures 6–8 are performed to verify the performance of the proposed location method in various
channel environments. The performance under different numbers of radars is recorded in Figure 6.
In this simulation, M = 512 and SNR = −10 dB. Figure 6 shows that the positioning error of the
proposed method is about 0.5 m smaller than that of LS method for different numbers of radars.
The positioning error versus SNR is plotted in Figure 7. In this simulation, the number of samples
M = 1024. It is observed from Figure 7 that the advantage of the proposed method presents increasing
trend as SNR decreases. The positioning accuracy is improved about 22% in the low SNR situations
(−15 dB ≤ SNR ≤ 0 dB). The effect of the different number of samples M is studied in Figure 8, where
SNR = −10 dB. For the case with different numbers of samples in Figure 8, the improved positioning
accuracy is about 21%.

It can be seen from Figures 6–8 that the proposed method provides much better performance than
the LS method, and the proposed method can attain its theoretical variance. Figures 6–8 also show that
the positioning accuracy can be improved by increasing the number of radars, SNR, and the number
of samples.
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One possible way for multiple targets localization in a multi-station radars system is a tracking match 
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tracking are left for future work. 
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6. Conclusions

Compared with the LS method, a novel localization method based on a two-step WLS estimator
is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this
paper. Simulation results verify the proposed method. The effects of SNR and the number of samples
are analyzed in the paper. Both the theoretical variance and CRLB for the proposed method are derived
in the paper. This paper mainly focuses on a single MT. Multiple-targets localization in a multi-station
dual-frequency radars system is still an ongoing issue. Doppler frequency can be used to distinguish
different MTs for a single-station radar, whereas Doppler frequencies from the same MT for various
radars in a multi-station radars system are different. Thus, it is hardly to distinguish different MTs
using Doppler information in our system. Wrong phase match will lead to false target. One possible
way for multiple targets localization in a multi-station radars system is a tracking match based on
MT localization and tracking methods [17–19]. False targets may not form a trajectory, whereas true
targets will have clear trajectory. The studies of multiple targets localization and tracking are left for
future work.
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