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Abstract: We consider continuous-time recurrent neural networks as dynamical models for the
simulation of human body motions. These networks consist of a few centers and many satellites
connected to them. The centers evolve in time as periodical oscillators with different frequencies.
The center states define the satellite neurons’ states by a radial basis function (RBF) network.
To simulate different motions, we adjust the parameters of the RBF networks. Our network includes
a switching module that allows for turning from one motion to another. Simulations show that this
model allows us to simulate complicated motions consisting of many different dynamical primitives.
We also use the model for learning human body motion from markers’ trajectories. We find that
center frequencies can be learned from a small number of markers and can be transferred to other
markers, such that our technique seems to be capable of correcting for missing information resulting
from sparse control marker settings.

Keywords: neural networks; markers; human body motions; motion sensors; motion representation;
motion reconstruction

1. Introduction

In recent years, various neural network topologies have been used for recognizing and
representing human body motions. In particular, the use of deep networks has been proposed [1,2] or
of Long Short-Term Memory (LSTM) networks and their extensions [1,3,4]. Additionally, specialized
architectures for human motions such as so-called “phase-functional networks” [5] have recently
been proposed.

In this paper we advocate the use of another kind of network—the so-called centralized
network [6]. Inspired by the success of these networks in neuroscience, genetics, and ecology [7–13],
we consider centralized, continuous-time recurrent networks of an analogous topological structure as
dynamical models for the simulation of human body motions.

Our method combines nonlinear oscillators, centralized architectures, and approximation by
radial basis functions. All these ingredients are present in different fields in neuroscience, robotics,
and machine learning, but to the best of our knowledge they have not yet been put together.
Nonlinear oscillators were discovered as building blocks of locomotor neural circuits in animals,
and similar designs were mimicked to control the movements of robots [14–16]. Although the idea of
coupling oscillators to neural networks was successfully used to model gait transitions in cybernetic
models [15,17], there is no systematic approach for learning complicated body movements from
sensors data based on this idea. In order to do so, we use radial basis function networks—a popular
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general-purpose approximation method used in signal processing and system identification [18,19].
This machine learning technique has already been used in the context of locomotion, but for models
different from ours [20]. The interest of our centralized architecture relating a few pacemaker hubs to
satellite effectors is manifold. Beyond realism, it allows a robust control of body motions. The learning
of the model can be decomposed into two parts. The first part is estimation of the pacemaker
frequencies, which can be done using the signal from any effector or from a small group of randomly
chosen effectors. The second part is also robust, being based on simple, two-layer, feed-forward
radial basis function networks. Several extensions of this basic approach imply recursive networks.
One of these extensions, based on a switching module with feedback, is discussed in the paper.
Other extensions could consider couplings between oscillating nodes, directly or via satellite nodes.
The interest in coupling lies in the possibility of synchronization, which has been shown to characterize
gaits defined as collective nonlinear modes in the entire body [15,17].

Although to the best of our knowledge centralized networks have not directly been used in the
context of human body motions, the widely considered dynamical movement primitives (DMPs) [21–25]
share common grounds on a technical basis in several respects.

Our proposal not only relates the concept of DMPs to neural networks, but also generalizes and
enhances their construction—for example, by transparently allowing more than one central oscillator
and also incorporating switching while staying in the topological realm of centralized networks.

Our model allows us to sufficiently simulate long motions by only two oscillators. However,
in some difficult cases (for example, if a motion consists of walking, running, kicking, punching,
and knee kicking), we also decompose the whole motion into 2–4 segments and then for each segment
we adjust the corresponding oscillator frequency. Then, the application of our approximation algorithm
allows us to automatically obtain a uniform and smooth approximation of the whole motion. The use
of 2–3 oscillators and 20–200 satellites has proven to be sufficient in our experiments.

Due to the network switching module we can use nonlinear oscillators and obtain a global
network that can simulate a large class of different motions.

Our approach is trajectory-based, and works in principle on single marker trajectories
independently of others. In this respect, our approach is similar to the DMP, but is in contrast
to the Bayesian approaches presented in the literature, in which prior information has to be collected
on the level of pose similarity using correlations of the positions of different body parts [26–28].
Our approach can be applied on the basis of a single motion and single trajectory, not requiring a
database of collected motions as a priori knowledge.

The paper is organized as follows: In Section 2.1, we first give background on scale-free networks
and centralized networks in Section 2.1.1. We define the centralized networks for elementary human
motion in Section 2.1.2, and describe our approach to change frequencies, hence building centralized
networks generating a large class of human body motions in Section 2.1.3. The idea of a switching
module is detailed in Section 2.2. Algorithms to construct such networks to generate human body
motions are given in Section 2.3—first for the case of non-segmented motions in Section 2.3.1, and then
for the case of segmented motions in Section 2.3.2. A comparison of our approach with the DMPs is
given in Section 2.4. Experimental results are presented in Section 3. In Section 4, we not only discuss
the results in relation to previous and state-of-the-art methods, but we also give some directions for
possible future works.

2. Materials and Methods

2.1. Network Structure

2.1.1. Background on Scale-Free Networks and Centralized Networks

Networks of dynamically coupled elements have imposed themselves as models of complex
systems in physics, chemistry, biology, and engineering. An important structure-related property of
networks is their scale-freeness [8,9,29,30], often invoked as a paradigm of self-organization, and the
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spontaneous emergence of complex collective behavior. In scale-free networks, the fraction P(k) of
nodes in the network having k connections to other nodes (i.e., having degree k) can be estimated
for large values of k as P(k) ∼ k−γ, where γ is a parameter whose value is typically in the range
2 < γ < 3 [29]. In such networks, the degree is extremely heterogeneous. In particular, there are
strongly connected nodes that can be named hubs, or centers. The hubs communicate to each other
directly, or via a number of weakly connected nodes. The weakly connected nodes that interact
mainly with hubs can be called satellites. Scale-free networks also have nodes of intermediate
connectivity. Networks that have only two types of nodes—strongly connected hubs and weakly
connected satellites—are known as bimodal degree networks [31]. Because of the presence of a large
number of hubs, scale-free or bimodal degree networks can be called centralized.

It has been shown that centralized networks show a good compromise between robustness
and flexibility. They are resilient with respect to external perturbations and are insensitive to
noise, while remaining totally controllable [32–34]. Furthermore, centralized networks are universal
approximate models, and can simulate any structurally stable dynamics [6,35,36]. Other interesting
dynamical properties of centralized networks are related to their ability to switch, activating on
turning the coordinated evolution of different sets of nodes. On one hand, this capacity is responsible
for the “stable yet switchable” property, meaning that the network remains stable in a given context
and is able to reach another stable state when a stimulus indicates a change in the context [6]. On the
other hand, centralized networks can be itinerant; i.e., spontaneously changing their functioning
mode [10].

The above dynamical properties of centralized networks have received particular attention in
neuroscience, genetics, and ecology. Centralized connectivity has been found by functional imaging of
brain activity in neuroscience [7], and also by large-scale studies of protein–protein interactions or of
metabolic networks in functional genetics [8,9]. Itinerant and switching behavior was observed in the
transient activity of antennal lobe neurons involved in insect olfaction or in the activity of high vocal
centers controlling songbird patterns [10]. The robustness of scale-free networks was emphasized in
relation to food-webs and ecosystems [11,12], epidemics [13], etc.

Motivated by the success of centralized networks in neuroscience, genetics, and ecology,
we consider centralized, continuous-time recurrent networks of an analogous topological structure
as dynamical models for simulation of human body motions. From the general setting, we take
the idea that these networks consist of a few centers and many satellites. As human motions are
very often cyclical but with varying frequencies, the centers may evolve in time as oscillators with
different frequencies. We take the idea of radial basis function (RBF) networks to define the center
states. An additional switching module allows us to turn from one particular motion to another.
Due to this structure, the network can simulate a large class of different motions with good accuracies,
which depend on the oscillator frequencies.

2.1.2. Centralized Networks for Elementary Human Motions

The networks consist of n centers with the states qi, and a number of satellites with states Xj, Yj, Zj,
where j = 1, . . . , N � n. In the simplest case, when we approximate a single relatively simple motion,
the time evolutions of the center states are governed by harmonic oscillator equation:

d2qi
dt2 + ω2

i qi = 0, i = 1, . . . , n, (1)

where qi is the coordinate of the i-th oscillator, ωi is the frequency of that oscillator, and n is the number
of oscillators. Often even two oscillators (n = 2) provide a good accuracy, but for more complicated
motions one can take n ∈ {3, 4, 5}. Let q(t) = (q1, . . . , qn) be the vector of the oscillator states,
depending on time t, and xk(t) are output coordinates (here x1(t) = X(t), x2(T) = Y(t), x3(t) = Z(t)).
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The centers are connected with N output coordinates xk by a network:

xk =
Nm

∑
j=1

WkjΦj(q, b) , (2)

where xk is the k-th coordinate on the body, k = 1, . . . , N. The functions Φj form a basis in the
space L2([−X0, X0], where x0 is characteristic maximal amplitude of motion for the j-th point, b is
a parameter, and Nm is the number of basis functions. The matrix entry Wkj describes the action of
the node j on xk. Note that (2) defines a straight-forward network that maps the center states qi into
the output coordinate xk by Nm hidden neurons (satellites), and therefore, there are no interactions
between satellites.

There are possible different choices of Φj. For example, we can consider the following cases.

A Harmonic basis. Here we assume that

Φj(q, b) = cos(bjq), (3)

where b is a frequency.
B System of radial basis functions.

For the case where a motion consists of many segments and we observe sharp transitions between
those segments, we can use radial basis functions

Φj = φ(b|q− q̄(j)|), j = 1, . . . , Nm, (4)

where φ is a fixed function, b is a sharpness parameter, and q̄(j) is the vector of centers of radial
basis functions with components q̄(j) = (q̄(j)

1 , . . . , q̄(j)
n ), where the latter are parameters of the

system, and |z| denotes the Euclidian norm of the vector z: |z| =
√

∑n
i=1 z2

i . We assume that the
radial basis function φ(|z|) is well localized at z = 0 and is smooth. For example, we can take
the Gaussian

φ(|z|) = exp(−|z|2/2). (5)

C Polynomial basis.

Here we take
Φj(q) = qj−1, j = 1, . . . , Nm. (6)

The basis B has an important advantage: the radial basis functions provide local approximations
that are important to approximate complicated motions with sharp transitions.

To perform switching in the network, we will also use the sigmoidal functions σ. They are
increasing and smooth (at least twice differentiable) functions such that

σ(−∞) = 0, σ(+∞) = 1, σ
′
(z) > 0. (7)

Typical examples can be given by

σ(h) =
1

1 + exp(−h)
, σ(h) =

1
2

(
h√

1 + h2
+ 1
)

. (8)

The structure of interactions between centers and coordinates xi can be described by Figure 1.
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Figure 1. This image shows the control of one of the x-coordinates of human body motions by a network
consisting of two oscillators (v1, v2) and a radial basis function (RBF) network with N = 6 nodes.
The graph consists of eight nodes denoted by v1, v2, w1, w2, w3, w4, w5, w6. Each node wi corresponds
to a contribution of a radial basis function Φ(q− q̄(j)). The nodes v1, v2 form the set of centers C and
they affect wi. In turn, the nodes wi determine the output coordinate x1.

2.1.3. Centralized Networks Generating a Large Class of Human Body Motions

To approximate different motions by a single network, we should have the possibility of changing
the frequencies and coefficients Wkj.

The main idea is as follows. Each motion can be approximated by a network described in the
previous subsection, with adjusted frequencies ωi and appropriated coefficients Wkj. We can use
nonlinear oscillators to obtain all possible frequencies. For example, one can use the model described
below. Consider networks consisting of n centers, which evolve as nonlinear oscillators:

d2qi
dt2 + zc f (qi) = 0, i = 1, . . . , n, (9)

where qi is the coordinate of the i-th oscillator, f (q) is a nonlinear function, and zc is a control paremeter
(one can take, for instance, f = sin(q) or f = aq− bq3). We assume that

qi(0) = 0, pi(0) = p0, p(t) =
dq
dt

, (10)

where p0 is a fixed number. Solutions of Equation (9) are periodic functions of time, with the period
T(zi) and the frequency ω(zi) = 2π/T. It can be found by the motion integral of Equation (9) that:

Ei =
1
2
(

dqi
dt

)2 + F(qi, zi), (11)

where F is the antiderivative of f : f (q) = dF
dq .

Notice that Equations (2)–(9) are “standard” (see e.g., [19]).
Consider a set of human motions characterized by a set of coordinates x(j)

1 , . . . , x(j)
N , where the

upper index j corresponds to a particular motion. Each motion can be described by the model (1) and (2)
with the corresponding frequencies ω

(j)
i and coefficients W(j)

kl .
A switching between the different motions can be performed by a choice of the control

parameters zi.
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By the switching module (described in the next subsection), we find a network subsystem which
has z(j)

c as local attractors. Then, we can construct maps zc → ω1(z), . . . , ωn(z) and zc → Wkl(zc)

such that

ω
(z(i)l )

l = ω(z(i)l ), l = 1, . . . , n (12)

W(j)
li = Wki(z(j)). (13)

Hence, our global model for human motion consists of

1. a system of n nonlinear oscillators (9) with the control parameters zi, i = 1, . . . , n;
2. an RBF network defined by (2);
3. maps obeying Equations (12) and (13); and
4. a switching module that is a network with M + 1 nodes, where M is the number of

different motions.

In the next section, we describe the switching module.

2.2. Switching Module

Ideas behind construction. Before stating a formal statement, we present a brief outline which
describes the main ideas of the proof and the architecture of the switchable network. The network
consists of two modules. The first module is a generating one and it is a centralized neural network
with n centers q1, . . . , qn and satellites x1, . . . , xN . The second module consists of a center vn+1 = z
and m satellites w̃1, . . . , w̃m. The satellites from this module interact only with the module center z;
i.e., in this module the interactions can be described by a distar graph [6]. Only the center of the second
module interacts with the neurons of the first (generating) module. We refer to the second module as a
switching one. This architecture is shown in Figure 2.

For the switching module, the corresponding differential equations have the following form.
Let us consider a distar interaction motif, where a node z is connected in both directions with m nodes
w̃1, . . . , w̃m. By this notation, the equations for the switching module can be written down in the form

dw̃i
dt

= σ
(
b̃iz− h̃i

)
− κ−1w̃i, (14)

dz
dt

= σ

(
κ−1

m

∑
j=1

ãjw̃j − h

)
− ξλ̄z, (15)

where i = 1, . . . , m and b̃i, ãj, λ̄ > 0.
In order to come up with a mathematical description of the way in which switching module

works, let us consider the system of differential equations

dv
dt

= Q(v, z), v = (v1, . . . , v2n) , (16)

where z is a real control parameter. Let z1, . . . , zm+1 be some values of this parameter. We find a vector
field Q such that for z = zl , where l = 1, . . . , m, the dynamics defined by (16) have the prescribed
dynamics. For example, we can set n = 2 and

v1 = q, v2 = p =
dq
dt

, (17)

and
Q = v2,

dv2

dt
= zc f (v1) , (18)

which gives (9).
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For the switching module, we adjust the center–satellite interactions and the center response time
parameter ξ in such a way that for a set of values ξ the switching module has the dynamics of the
system shown in (14) and (15), with m different rest points z = z1, z2, . . . , zm+1, and for sufficiently
large ξ the system shown in (14) and (15) has a single equilibrium close to z1 = 0. The existence of such
a choice will be shown in Lemma 1. This lemma has been stated and proven in the generic context ([6]
Lemma 8.2). Due to its importance, we restate it here.

w1

w2

w3

v1

w4

w5

w6

v2

w̃1

w̃2

w̃3

z

Figure 2. Modular architecture. This can be seen as an example of the architecture described in [6].
The switching module consists of the center z and the satellites w̃1, w̃2, w̃3. The generating module
consists of the centers v1, v2 and the satellites w1, . . . , w6. Note that there is a feedback between z and
the satellites wi; however, there is no feedback of wj on vl .

Lemma 1. Let β ∈ (0, 1) and let m be a positive integer. For sufficiently small κ > 0, there exist āj, bi, h̃i, h
such that

(i) for an open interval of values ξ the system in (14) and (15) has m stable hyperbolic rest points

zj ∈ (j− 1 + β, j + β), (19)

where j = 1, . . . , m;
(ii) for ξ > ξ0 > 0 the system in (14) and (15) has a single stable hyperbolic rest point.

For the proof of this lemma we refer to [6].

2.3. Algorithm of Construction of the RBF Network to Generate Human Body Motions

2.3.1. Non-Segmented Motions

Simple motions can be handled as a whole (i.e., without any segmentation). Let us fix the index j
(i.e., consider a particular motion). Let t1, . . . , tK be time moments where we have data on human body
coordinates Xj(t), Yj(t), Zj(t), where j is the index of an optical marker on the body and the number of
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the markers is N, j = 1, ..., N. All X, Y, and Z are thus vectors with N components. Let ε(k, ω) be the
L2- approximation accuracy for the x-component and k-th marker defined by

ε2
X(k, ω) =

K

∑
m=1

(Xk(tm)− xk(q(tm), ω))2, (20)

where xk(q) are defined by (2). Similarly,

ε2
Y(k, ω) =

K

∑
m=1

(Yk(tm)− yk(q(tm), ω))2, (21)

ε2
Z(k, ω) =

K

∑
m=1

(Zk(tm)− zk(q(tm), ω))2 . (22)

The relative accuracies for X, Y, Z components are given by

ε2
r,X,ω(k) = ε2

X(k, ω)/
K

∑
m=1

Xk(tm)
2, (23)

ε2
r,Y,ω(k) = ε2

Y(k, ω)/
K

∑
m=1

Yk(tm)
2, (24)

ε2
r,Z,ω(k) = ε2

Z(k, ω)/
K

∑
m=1

Zk(tm)
2, (25)

respectively. Let us fix a k ∈ {1, 2, ..., N} (i.e., a marker on the human body). For a set of frequency
vectors ω, we compute the integral relative accuracy

εr,k(ω) =
√
(ε2

r,X,ω(k) + ε2
r,Y,ω(k) + ε2

r,Z,ω(k))/3. (26)

Then, we find a ω∗ such that ε(ω∗) is minimal:

ω∗ = argmin εr,k(ω). (27)

The corresponding coefficients Wkl can be found by the standard Matlab programs,
which approximate a target function by RBF networks. Here we use standard radial basis functions of
Gaussian type, where the sharpness parameter b can be adjusted by trial and error to minimize ε.

Numerical results show that the frequencies found for a particular motion by a value of k (a specific
marker choice) and giving a small εr,k can be applied to find good approximations for all rest values
of k (i.e., for all other markers). An alternative method is to take the average of all markers, and then

ω∗ = argmin ∑
k

εr,k(ω).

However, in this case the running time of the algorithm sharply increases.

2.3.2. Segmented Motions

For complex motions it is difficult to uniformly approximate a whole motion using a few neurons;
sometimes such approximation is good anywhere except for a certain interval. In fact, it is difficult to
expect that all parts of complicated motions consisting of quite different elementary submotions can
be handled with the same frequencies. However, we can use the segmentation. We then decompose
the motion in segments [Ti, Ti+1], where i = 1, . . . , Nseg. For each segment we can determine optimal
frequencies as described above and compute the accuracies. The frequency optimization can be done
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in two ways. If the number of oscillators is small (say, n = 1, 2), we can perform an exhaustive search
over a uniform grid. For larger n, one can use a random search.

2.4. Comparison with DMPs

Let us compare the approach based on centralized networks, proposed in this present paper,
and the classical method of dynamic movement primitives (DMPs). Both approaches use the same
general representation, which, following [24], we write down as follows (see Equations (1) and (2)
in [24]):

ds
dt

= Canonical(t, s), (28)

dy
dt

= Transform(t, y) + Perturbation(s). (29)

The first equation is a time-dependent dynamical system, and the second one describes a
transformation of trajectories of that dynamical system to desired trajectories y(t). Note that the
term P(s) = Perturbation(s) should be adapted to induce a desired behaviour in the system;
i.e., to reproduce a given trajectory [24]. So, a DMP consists of two parts, as described by
Ernesti et al. [24]: “the canonical system and the transformation system. While the canonical system
defines the state of the DMP in time, the transformation system is the link between this DMP state
and the robot. The transformation system can be easily adapted to a desired trajectory; i.e., by solving
a standard regression problem. The canonical system determines the type of attractor which can be
either discrete or periodic”.

The DMP method uses P(s) to attain the twofold goal: to represent trajectories tending to rest
points and periodic trajectories. In fact, roughly speaking, the dynamics of any dissipative systems
reduce to some transient trajectories and motions on local attractors. However, it is not so simple to
represent simultaneously transient dynamics, as was mentioned in [22]. To attain this goal, we must
use sufficiently sophisticated formulas for P(s), which are based mainly on radial basis functions and
the fact that RBFs are universal approximators.

In our centralized network approach, we use the same transformation system (29). However,
we add a new idea in the representation of canonical part (28). It is well known that many motions
generated by dissipative systems consist of slow and fast components. Fast components can describe,
for example, transient trajectories, while slow components correspond to motions on local attractors.
To represent such complex dynamics, we can nonetheless use systems of oscillators [37].

In particular, in our approach we usually use two oscillators, one of higher frequency and
another of low frequency, although one can take three or more oscillators for complicated target
motions. This idea works well: we greatly simplify the complicated formulas suggested in [22], and all
transformation systems take the feed-forward form:

y = Perturbation(s). (30)

3. Results

For empiric tests we use the CMU Motion Capture Database [38]. We use two motions from
family number 86, as these consist of sequences of several different motions performed by one
actor subsequently, and hence have also been used as a test suite for different motion segmentation
algorithms (e.g., [39] and references therein).

We use markers on left and right heels and left and right wrists, as in general from the position of
these four markers even the full body motion can be reconstructed quite well [40,41].
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3.1. Results without Segmentation and Ad Hoc Segmentations

We have considered two representative motions: Trial 1 and Trial 2. The first motion consists of
jumping, hopping, turning, kicking, and punching, the second one is comprised of walking, squatting,
running, stretching, jumping, punching, and drinking. The first motion is split into four segments
[1, 1300], [1300, 2000], [2000, 3000], [3000, 4500], which were chosen visually by hand. Notice that the
sampling rate for all examples was 120 Hz, so that the length of the motion segments are 10.8 s, 5.8 s,
8.3 s, and 12.5 s. The first segment consists of walking and hopping motions, the second one of a
walking and a turning motion, the third one of punching (alternatively with both arms) and walking,
and the fourth one of kicking (the right leg) and punching (alternatively with both arms). Similarly,
the second motion was decomposed into segments [1, 1800], [1800, 2500], [2500, 4500]. Hence, the
lengths of the segments are 15.0 s, 5.8 s, and 16.7 s. The first segment consists of walking and squats,
the second one of running (in a circle), and the third one of stretches.

An overview of results is given in Table 1.

Table 1. Integral relative accuracies of approximations by centralized networks of CMU 86 Trial 1 using
different numbers of oscillators and satellites. The motion was segmented into four segments at frames
[1, 1300, 2000, 3000, 4500].

Number of Oscillators Number of Satellites
Integral Relative Accuracies

Segment 1 Segment 2 Segment 3 Segment 4

1 100 0.2133 0.0827 0.423 0.0749

2 25 0.1207 0.0486 0.0405 0.076

2 50 0.0351 0.0089 0.0084 0.0586

2 100 0.0189 0.0068 0.0029 0.0299

3 25 0.0832 0.0253 0.0297 0.0685

3 100 0.0133 0.0063 0.0031 0.0071

In Figures 3–6 we show the results of the approximations of the different marker coordinates by
25, 50, and 100 satellites and two oscillators of motion CMU 86 Trial 1 consisting of jumping, kicking,
and punching. In Figure 7 a three-dimensional plot of the marker trajectory of the right wrist of the
same motion is presented.

In Figures 8 and 9 we give the approximations for a simple non-segmented motion.
An approximation of a complicated motion (CMU 86 Trial 2) consisting of walking, squatting, running,
stretching, jumping, punching, and drinking is given in Figures 10–12. For this motion an RBF-network
with three centers and 100 satellites was necessary for good approximations on the segmentation of
the hand into three parts.

(a) (b)

Figure 3. Cont.
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(c) (d)

Figure 3. An approximation of x-coordinates by 25 satellites and two centers of motion (CMU 86 Trial 1)
consisting of jumping, kicking, and punching (sampled at 120 Hz). (a) Right heel; (b) Left heel; (c) Right
wrist, distal; (d) Left wrist, distal. The red curve shows the experimentally observed coordinates and
the green curve gives their neural approximations.

(a) (b)

(c) (d)

Figure 4. An approximation of y-coordinates by 25 satellites and two centers of motion (CMU
86 Trial 1; sampled at 120 Hz). (a) Right heel; (b) Left heel; (c) Right wrist, distal; (d) Left wrist,
distal. The red curve shows the experimentally observed coordinates and the green curve gives their
neural approximations.
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(a) (b)

(c) (d)

Figure 5. An approximation of y-coordinates by 50 satellites and two centers of motion (CMU
86 Trial 1; sampled at 120 Hz). (a) Right heel; (b) Left heel; (c) Right wrist, distal; (d) Left wrist,
distal. The red curve shows the experimentally observed coordinates and the green curve gives their
neural approximations.

(a) (b)

(c) (d)

Figure 6. An approximation of z-coordinates by 100 satellites and two centers of motion (CMU 86
Trial 1; sampled at 120 Hz). (a) Right heel; (b) The left heel; (c) Right wrist, distal; (d) The left wrist,
distal. The red curve shows the experimentally observed coordinates and the green curve gives their
neural approximations.
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Figure 7. Three-dimensional plot of marker trajectory of the motion of the right wrist (distal; CMU 86
Trial 1). The red curve shows the experimentally observed coordinates and the green curve gives their
neural approximations (with two centers and 100 satellites).
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Figure 8. An approximation of z (vertical) coordinates by 200 neurons and two centers for a
simple non-segmented motion (sampled at 120 Hz). The center frequencies are 0.30 Hz and 0.72 Hz.
(a) z-coordinate for the right heel; (b) The left heel; (c) z-coordinate for the right wrist, distal; (d) The left
wrist, distal. The red curves show the experimentally observed coordinates and the blue curves give
their neural approximations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Approximations of x (left) and y coordinates (right) by 200 neurons and two centers for a
simple non-segmented motion (sampled at 120 Hz). The center frequencies are 0.30 Hz and 0.72 Hz.
(a) Right heel , x-coordinate; (b) Left heel, x-coordinate; (c) Right wrist, distal, x-coordinate; (d) Left
wrist, distal, x-coordinate; (e) Right heel , y-coordinate; (f) Left heel, y-coordinate; (g) Right wrist, distal,
y-coordinate; (h) Left wrist, distal, y-coordinate. The red curves show the experimentally observed
coordinates and the blue curves give their neural approximations. Both curves coincide up to pixel
accuracy in many places.

(a) (b)

(c) (d)

Figure 10. Approximations of x coordinates of a complicated motion (CMU 86 Trial 2; sampled at
120 Hz) by a radial basis function (RBF) network with three centers and 100 satellites. The motion
was segmented into three intervals [1, 1800], [1800, 2500], and [2500, 4000]. (a) Right heel; (b) Left heel;
(c) Right wrist, distal; (d) Left wrist, distal.
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(a) (b)

(c) (d)

Figure 11. An approximation of y coordinates of a complicated motion (CMU 86 Trial 2; sampled at
120 Hz) by an RBF-network with three centers and 100 satellites. The motion was segmented into
three intervals [1, 1800], [1800, 2500], and [2500, 4000]. (a) Right ankle; (b) Left ankle; (c) Right heel;
(d) Left wrist, distal. The red curves show the experimentally observed coordinates and the blue curves
represent their neural approximations.

The integral relative accuracies (for x, y, and z coordinates together) are as follows: for the first
segment consisting of walking and squats the accuracy is 0.006, for the second segment consisting of
running (in a circle) it is 0.002, and for the third one consisting of stretches it is 0.005.

As the accuracies of course improve when using more satellites, we computed the Akaike
information criterion corrected for finite sample sizes (AICc) [42], a likelihood-based measurement for
systematic tests involving 20–250 satellites, which weights accuracy against the number of parameters
(with lower AIC values being better). The results for Trial 1 with 1, 2, 3, and 4 centers is given
in Figure 13.

Notice that only the comparative values are important. The global optimum is reached for three
centers and 150 satellites (with a small increase for higher satellite numbers).
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(a) (b)

(c) (d)

Figure 12. An approximation of the z coordinates of a complicated motion (CMU 86 Trial 2; sampled
at 120 Hz) by an RBF-network with three centers and 100 satellites. The motion was segmented into
three intervals [1, 1800], [1800, 2500], and [2500, 4000]. (a) Right ankle; (b) Left ankle; (c) Right heel;
(d) Left wrist, distal. The red curves show the experimentally observed coordinates and the blue curves
represent their neural approximations.

Figure 13. Akaike information criterion corrected for finite sample sizes (AICc) for CMU 86 Trial 1
with 1, 2, 3, and 4 centers and varying numbers of satellites. The global optimum was reached for three
centers and 150 satellites.
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3.2. Results Based on Algorithmic Segmentations as Pre-Processing Steps

Algorithmic segmentation methods yield much smaller segments than our ad hoc segmentations.
Using the method described by Krüger et al. [39] as a pre-processing step, the motion CMU 86 Trial 1
is segmented into six main parts with five transition motions. When taking each of the 11 segments as
an input, only 16 satellite neurons per segment are sufficient for good approximations. Notice that
the required number of neurons is more than a factor of 15 smaller than the number of frames in
each segment.

In Figure 14 the absolute and relative integral errors for all 31 markers and all 11 segments of
CMU 86 Trial 1 using two centers and 49 satellites are given. The differences between the relative
integral errors and the absolute errors can be explained by the large motions of some markers in
some segments. We observe a certain ruggedness of the fitting landscape, which can be explained by
the rather complicated nature of the motions and the transitions between motions of very different
characteristics.

In Figure 15 a systematic comparison of the approximation errors over the different segments in
CMU 86 Trial 1 are given when using 16 satellites respectively 100 satellites.

Figure 14. Absolute error (ErrABS) and relative integral errors (Err) for all 31 markers and all 11
segments of CMU 86 Trial 1 using two centers and 49 satellites.
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Figure 15. Approximation errors (in mm) for the algorithmically found segments of motions in CMU
86 Trial 1. We give the errors for using 16 and 100 satellites. As a comparison we give the results using
rhythmic dynamic movement primitives (DMPs) with 100 basis functions computed with pydmps,
and the average approximation error of the Bayesian approach reported in [28] (Table 3). Notice that
segments 2, 4, 6, and 8 are short transitional motions between the neighboring segments. The average
over all segments is 8.7 mm for the DMPs, 7.9 mm for two centers and 16 satellites, and 6.7 mm for two
centers and 100 satellites.

3.3. Comparison with Other Approaches

In [28] a method for marker reconstructions based on local similarity searches, building local linear
models of found similar motions, and using this information as priors in a pose-wise reconstruction
process reported results on marker accuracy on the motions of family CMU 86 from the CMU mocap
database. The overall Bayesian framework is similar to that already suggested by [27]. The reported
average joint error for CMU 86 Trial 1 is 1.30 cm ([28], Table 3), when taking prior information of
motions from the CMU database into account. In our approach the average joint errors are more than
one order of magnitude smaller. Although the results are not fully comparable, it is encouraging to
see that our approach gives better results even without relying on prior information of other motions,
as the Bayesian approach used in [28] does.

We approximated the marker trajectories of the segmented motions of CMU motion 86 Trial 1 and
Trial 2 with DMPs using the pydmps implementation by Travis DeWolf, which is available at
https://github.com/studywolf/pydmps. We have used the code for the rhythmic DMPs (using
100 basis functions) on the algorithmically segmented motions. The results in comparison to our
centralized networks are detailed in Figures 15 and 16.

https://github.com/studywolf/pydmps
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Figure 16. Approximation errors (in mm) for the algorithmically found segments of motions in CMU 86
Trial 2. We give the errors for using 16 satellites and 49 satellites. As a comparison we give the results
using rhythmic DMPs with 100 basis functions computed with pydmps. The average over all segments
is 8.0 mm for the DMPs, 15.6 mm for two centers and 16 satellites, and 6.3 mm for two centers and
49 satellites.

4. Discussion and Conclusions

We have shown that marker trajectories of representative body parts can be approximated
well by centralized networks consisting of very few centers as oscillators—2 to 3 oscillators have
been shown to be sufficient even for rather complicated motions. The needed satellites required
even for very good approximations are one to two orders of magnitude smaller than the number
of frames considered; hence, our technique yields very compact representations and compresses
marker trajectories. The learned frequencies of one marker could be transferred to other markers,
so our technique seems to be capable of the motion reconstruction problem from a few markers [27].
As this problem is of particular practical interest if the input data are not marker positions but sensor
readings of inertial measurement units [40,41], an application of our method to this setting is of
interest. As the accuracy of reconstruction at the level of a single marker is very good, we presume
that such a technique could also yield much better reconstruction results than the existing Bayesian
approaches. In future work we will investigate this line of research. Additionally, the use of surface
electromyography (EMG) has become an increasingly practical sensor technology for human motion
interaction (e.g., the Myo Gesture Control Armband), and our technique can be used for sensor data of
different kinds. Additionally, for investigating surface EMG signals of animal motions, the centralized
networks might yield another basic technique, which we will test on existing data sets [43].

While with the dynamic movement primitives (DMPs) the use of one oscillator has been commonly
used and the use of radial basis functions closely correspond to our techniques, we can readily use more
than one oscillator. In our experiments, the use of two (or three) oscillators yielded better results than
using just one. The idea of switching has also been proposed in the context of DMPs [25]—yielding
in some sense a conceptual ad hoc extension. As has been noted in [25] (Section 2.3.5), the modeling
easily becomes complex. In our proposal the switching module stays within the realm of centralized
networks. In principle, our techniques should be applicable in all contexts in which DMPs have been
used, yielding a simpler modeling alternative.

The oscillator frequencies give very useful semantic information on motions that should be widely
applicable. By searching for similar vectors of oscillator frequencies, our technique can also give a
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basis for motion retrieval, which in contrast to other techniques does not involve similarity measures
for poses first [28] but works directly on marker trajectories. As vectors of oscillation frequencies are
readily indexable, efficient retrieval from even huge motion databases is possible—and fine tuning
the query regarding the weighting of different body parts is even possible without a re-indexing of
the entire database. By manipulating the oscillator frequencies or transferring them to other marker
positions, the presented techniques are also capable of various motion adaption and synthesis tasks,
which range from a new technical basis for the classic ideas by Pullen and Bregler [44] to ideas related
to motion fields [45]. It will be the topic of future work to explore these directions in more detail.

In our current method there is no need to use a priori knowledge on human motions by referring
to similar known motions, as is the basis of Bayesian approaches [26–28]. Being an advantage on the
one hand, it is on the other hand a disadvantage if such a priori knowledge on “similar motions” is
available. Incorporating such a possibility is very much in the realm of neural networks, and will be a
topic for future research.

Moreover, centralized networks should also be applicable in the context of motion anticipation:
by extrapolation from the past into the future, the presented technique also has the potential for full
body motion anticipation in the short-term when staying within a fixed tuple of oscillator frequencies
and for the mid-term range when using switching. We will explore this possibility within our future
research in the collaborative research unit “Anticipating Human Behavior”, funded by Deutsche
Forschungsgemeinschaft under grant number FOR 2535.
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