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Abstract: As a diagnostic monitoring approach, electroencephalogram (EEG) signals can be
decoded by signal processing methodologies for various health monitoring purposes. However,
EEG recordings are contaminated by other interferences, particularly facial and ocular artifacts
generated by the user. This is specifically an issue during continuous EEG recording sessions,
and is therefore a key step in using EEG signals for either physiological monitoring and diagnosis
or brain–computer interface to identify such artifacts from useful EEG components. In this study,
we aim to design a new generic framework in order to process and characterize EEG recording
as a multi-component and non-stationary signal with the aim of localizing and identifying its
component (e.g., artifact). In the proposed method, we gather three complementary algorithms
together to enhance the efficiency of the system. Algorithms include time–frequency (TF) analysis
and representation, two-dimensional multi-resolution analysis (2D MRA), and feature extraction
and classification. Then, a combination of spectro-temporal and geometric features are extracted
by combining key instantaneous TF space descriptors, which enables the system to characterize
the non-stationarities in the EEG dynamics. We fit a curvelet transform (as a MRA method) to 2D
TF representation of EEG segments to decompose the given space to various levels of resolution.
Such a decomposition efficiently improves the analysis of the TF spaces with different characteristics
(e.g., resolution). Our experimental results demonstrate that the combination of expansion to TF space,
analysis using MRA, and extracting a set of suitable features and applying a proper predictive model is
effective in enhancing the EEG artifact identification performance. We also compare the performance
of the designed system with another common EEG signal processing technique—namely, 1D wavelet
transform. Our experimental results reveal that the proposed method outperforms 1D wavelet.

Keywords: electroencephalography (EEG); artifact identification; curvelet transforms; time–frequency
representation; multi-resolution analysis

1. Introduction

Electroencephalography (EEG) is a method for recording electrical activities of the brain,
and is indicated in activities which originate from the cerebral cortex. Examples include brain
tumors, encephalopathy, brain death diagnosis, epilepsy, psychiatric disorders, dementia, coma,
degenerative diseases related to the nervous system, vertigo, cerebro-vascular disease, and head
injury. Detected signals in EEG recordings which have origins other than the brain itself are
considered as artifacts. The amplitude of the desired cortical-related EEG component can be
somewhat smaller than the amplitude of the artifact signals. Non-cerebral sources of artifacts in
the EEG recordings can be as follows: saccade, eye blinking [1,2], respiratory-related artifacts [3,4],
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electrode placement, cardiac (electrocardiography) artifact [5], broken electrode, and power line
noise [6–9]. Diagnostic information in EEG recordings can be suppressed by these categories of
artifacts. Therefore, continuous EEG-based systems demand preprocessing to distinguish between
artifacts and target brain activities to annotate noisy segments from clean segments of EEG activities.

User-generated artifacts such as ocular and muscle artifacts are always present in EEG recordings,
and almost all EEG recordings suffer from these two categories of noise. There is always a need
to preprocess the EEG recording to identify its various components and distinguish them as usable
for any further diagnoses. A reliable EEG component identification system enables the practitioner
to distinguish between various components presented in the recordings. Based on the literature,
any EEG artifact identification system applies the following three major steps to accomplish the
identification task:

(1) analyzing the acquired signal in either time or frequency space, or even in frequency and time
space jointly.

(2) extracting features in order to characterize various artifacts.
(3) modeling and classification of the artifacts based on the extracted features and assigning specific

labels to the contaminated portions of the recorded EEG, such as ocular, muscle, etc.

For extracting features and characterization, various one-dimensional (1D) methods have been
proposed [10]. Previous studies have focused on spectral analysis of the EEG signal [11]. These methods
include, but are not limited to, parametric models, spike detection of EEG, epoch analysis, methods of
clustering, quantitative analysis, and spectral EEG signal analysis. These are based on a quasi-stationarity
assumption, require long recordings, and lead to false identification rates because of the presence
of various artifacts [12–14]. These methods provide spectral information but they do not provide
temporal information about a specific event as well.

The other approach to dealing with non-stationary characteristics in EEG is to assume a
fundamental non-stationary stochastic model, and then consider the EEG recording as stationary
segments. Applications of this category include, but are not limited to, automatic detection of epileptic
seizures, neuronal burst discharges, and artifact identification [15]. The difficulties associated with
accurate detecting and quantifying these changes, and also efficiently and automatically analyzing
them, have restricted the application in the clinical practices.

Other approaches employ frequency and time features jointly [16], or other chaotic features [17,18].
More advanced approaches employ the coefficients of the wavelet transform of EEG recording [2,19],
and also a combination of chaotic measures and discrete wavelet transform coefficients [20].
A comprehensive study of EEG artifact identification methods can be found in [6]. Recent artifact
identification methodologies include non-linear models [11], artificial neural networks [21],
and independent component analysis (ICA) [1].

A specific category of approaches capable of analyzing and detecting non-stationary signals are
time–frequency distributions (TFDs). This category allows visualization of the evolution process of the
spectral behavior during non-stationary events by mapping a 1D time domain signal into a 2D function
of frequency and time. Thus, the TF space enables the extraction of relevant features using approaches
such as energy estimation, filter banks, multi-resolution analysis, peak matching, etc. [6]. Because of
the non-stationarity in EEG recordings, instantaneous frequency (IF)- and TF-based approaches seem to
be naturally more proper for EEG artifact identification [22,23].

In this study, we propose a 2D multi-resolution analysis approach to track patterns in TF space,
then follow and measure their characteristics. The main goal is to obtain a new feature set capable
of enhancing the identification performance. We implement this approach in an identification task
and evaluate its performance on a real EEG database. In this study, we apply 2D multi-resolution
analysis (MRA) in order to decompose the given image and then extract discriminative features based
on the acquired sub-bands for the task of EEG artifact characterization and identification. MRA is as an
effective decomposition algorithm that provides a hierarchical view of information which is proper for
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extracting instantaneous frequency-related features and also geometric patterns in the TF space of a
given segment. In this study, we consider various TF analysis representations. Then, we apply 2D MRA
analysis using wavelet and its higher-dimensional extension (Curvelet) decompositions. We extract
their coefficients and conduct a comparative investigation between our proposed 2D MRA features
with a 1D counterpart as the baseline. In this way, we generated and characterized the basis dimensions
from the generated feature space using principal component analysis. For a comparison between the
proposed features and the baseline space, we employed several multi-class classifiers, including
(1) linear support vector machine; (2) highly non-linear complex tree; and (3) an instance-based and
non-parametric 1-nearest neighbor classifier, for the identification task and then results were reported
in parallel. Our experimental results present that the proposed 2D MRA features are capable of
characterizing and discriminating between various EEG artifacts with >90% accuracy. Furthermore,
as a comparison with the other state-of-the-art studies in single-channel EEG artifact detection, we
implement and apply one-dimensional discrete wavelet transformation in the task of EEG artifact
detection [24–26].

The rest of this study has been organized as follows: The second section presents the EEG data
collection procedure and experimental setup, and then provides the necessary background of TF
analysis and 2D MRA, and finally describes the procedure of TF analysis and MRA implementation.
The third section provides the details of the experimental results over a population of ten participants.
Section 4 concludes the obtained results and also provides further insights into the advantages of the
proposed framework for EEG artifact characterization and identification.

2. Materials and Methods

Figure 1 presents a flowchart of our proposed identification framework. After preprocessing
and channel selection, the EEG signal is passed to different time–frequency representation methods.
Then, 2D transformations including 2D wavelet and curvelet (as multi-resolution analysis methods)
are applied. After extracting features, artifacts are identified and classified into seven classes. In this
section, we discuss the implementation of each step in detail.
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Figure 1. Flowchart of the details of the proposed framework in this study. EEG: electroencephalogram;
WVD: Wigner–Ville distribution; SWVD: smoothed-WVD; SPEC: spectrogram; GKD: Gaussian kernel
distribution; MBD: modified B-distribution; SPEK: separable kernel.

2.1. Experiment Setup and Data Collection

A 16-channel EEG system with a sampling rate (Fs) of 256 Hz was used for data collection.
Right and left earlobes were selected as ground for data acquisition setup, and impedances of
the electrodes were clamped less than 5 kΩ. Table 1 shows the parameters of the EEG setup.
Electrode locations were chosen to be over the parietal, central, and frontal areas of the skull.
Channels’ numbers and names are as follows: Fpz-1, AF3-2, AF4-3, Fz-4, FC3-5, FCz-6, FC4-7, C3-8,
Cz-9, C4-10, CP3-11, CPz-12, CP4-13, P3-14, Pz-15 and P4-16. We use these channel names and numbers
hereafter. Figure 2 presents the EEG channels’ locations, and also illustrates the data collection setup
attached to one of the participants.
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Figure 2. (a) Wireless EEG setup attached to a participant to collect data; (b) Illustration of channel
locations and distribution used in this study.

Table 1. Parameters of EEG setup.

Parameter Description

Amplifier 16-channel device (Cognionics, Inc., San Diego, CA, USA)
Sampling frequency 256 Hz
High-pass filter 0.5 Hz
Electrode arrangement 16-channel subset of 64-channel 10–20 systems (presented in Figure 2)
Ground reference Left and Right earlobes
Electrode type Ag/AgCl
Recording platform Our exclusive software

We aimed to collect supervised artifact data from ten participants while they were exposed to
seven different types of ocular and muscle artifacts, as follows: eye-blinking, eye-up movement,
eye-left movement, eyebrow movement, head movement, jaw clinch, and jaw movement.
The experiments were conducted at the Wearable Sensing and Signal Processing Laboratory, University of
Michigan-Dearborn (Dearborn, MI, USA). The data were collected from ten healthy participants, including
six males and four females, all between 20–30 years of age. Neither training nor practice were conducted
before the data collection. Participants were instructed to remain stationary while recording in a lab
environment. Ten trials of 1-s stationary data were recorded. Additionally, participants were asked to
introduce user-generated artifacts such as head and eye movement. One second of each artifact type
for ten trials was recorded per participant. Using a beep sound, participants were notified when the
recording started and when it ended. Lab Streaming Layer, which is a system of unified collection of
time series measurements, was utilized to serve as an interface between the Cognionics data acquisition
software and MATLAB. The recorded artifact samples per participant were as follows:

• 1 s of baseline × 10 trials.
• 1 s of eye blinking (no squinting) × 10 trials.
• 1 s of eye movement (up) × 10 trials.
• 1 s of eye movement (left) × 10 trials.
• 1 s of head movement × 10 trials.
• 1 s of eyebrow movement × 10 trials.
• 1 s of jaw clinch × 10 trials.
• 1 s of jaw movement × 10 trials.

Figure 2. (a) Wireless EEG setup attached to a participant to collect data; (b) Illustration of channel
locations and distribution used in this study.

Table 1. Parameters of EEG setup.

Parameter Description

Amplifier 16-channel device (Cognionics, Inc., San Diego, CA, USA)
Sampling frequency 256 Hz
High-pass filter 0.5 Hz
Electrode arrangement 16-channel subset of 64-channel 10–20 systems (presented in Figure 2)
Ground reference Left and Right earlobes
Electrode type Ag/AgCl
Recording platform Our exclusive software

We aimed to collect supervised artifact data from ten participants while they were exposed to
seven different types of ocular and muscle artifacts, as follows: eye-blinking, eye-up movement,
eye-left movement, eyebrow movement, head movement, jaw clinch, and jaw movement.
The experiments were conducted at the Wearable Sensing and Signal Processing Laboratory, University of
Michigan-Dearborn (Dearborn, MI, USA). The data were collected from ten healthy participants, including
six males and four females, all between 20–30 years of age. Neither training nor practice were conducted
before the data collection. Participants were instructed to remain stationary while recording in a lab
environment. Ten trials of 1-s stationary data were recorded. Additionally, participants were asked to
introduce user-generated artifacts such as head and eye movement. One second of each artifact type
for ten trials was recorded per participant. Using a beep sound, participants were notified when the
recording started and when it ended. Lab Streaming Layer, which is a system of unified collection of
time series measurements, was utilized to serve as an interface between the Cognionics data acquisition
software and MATLAB. The recorded artifact samples per participant were as follows:

• 1 s of baseline × 10 trials.
• 1 s of eye blinking (no squinting) × 10 trials.
• 1 s of eye movement (up) × 10 trials.
• 1 s of eye movement (left) × 10 trials.
• 1 s of head movement × 10 trials.
• 1 s of eyebrow movement × 10 trials.
• 1 s of jaw clinch × 10 trials.
• 1 s of jaw movement × 10 trials.
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Between two trials, there was a 2-s delay to give the participant time to return to the stationary
state. The dataset for each participant contains 80 artifact and normal trials. In total, the dataset
contains 800 trials of artifacts and normal data.

2.2. Preprocessing

EEG recording was first pre-processed using a high-pass filter with cut-off frequency of 0.5 Hz
for removing trends. Then, a rectangular window with the length of L seconds was used to segment
the EEG data. The best size for the L is based on the performance of the system (discussed in the
Results section). The size of the jth segment is equal to L× Fs samples. No overlap was considered
between the consecutive segments. The facial-related signals will be predominant in the frontal
regions of the brain. Therefore, we only considered channel Fpz as the representative of the other
channels, as it is the closest channel to facial muscles, which are in turn the source of the artifacts
considered in this study. Furthermore, previous research studies on ocular and facial muscle artifacts
revealed that Fpz is the most prone channel to be affected by these categories of artifacts [21,27,28].
Based on this assumption and hereafter, we investigate Fpz for our proposed method of single channel
two-dimensional multi-resolution analysis. This analysis can be extended to multi-channel-based
identification systems based on the discriminative ranking of the EEG channels.

2.3. Time–Frequency Analysis and Representation

Time–frequency analysis could be considered as non-stationary signals analysis with frequency
content varying with time. Time–frequency distribution (TFD) is a suitable representation for
non-stationary and multi-component signals which is able to describe the energy distribution of
the given signal over time and frequency space simultaneously. The TFD presents the beginning
and end times of the different components of the signal as well as their frequency scope. TFD is also
capable of presenting variation in both time and frequency, namely instantaneous f requency (IF) [29].
IF introduction requires an explanation of the analytic signal. For signal x(n) with real values,
we correlate a complex value signal xh(n) which is defined as

xh(n) = x(n) + iHT(x(n)) (1)

where HT(x(n)) is the Hilbert transformation of the input signal x(n). xh(n) is the analytic version
of the x(n). The interpretation of this definition in the frequency space is simple since xh is a Fourier
transform in which the negative frequency component has been eliminated, the positive values have
been doubled, and the DC part is kept unchanged:

Fh(w) = 0 i f w < 0

Fh(w) = F(0) i f w = 0

Fh(w) = 2F(w) i f w > 0

(2)

where F is the Fourier transform of the x, and Fh is the Fourier transform of xh. Therefore, it is possible
to acquire an analytic signal from a real signal by multiplying its spectrum by zero for the negative
frequencies, which does not change the information content due to the fact that for a real signal,
F(−w) = F∗(w). The resulting output can be used to define the concepts of IF and instantaneous
amplitude (IA) in a unique way by:

f (n) =
1

2π

d argxh(n)
dn

instantaneous f requency, (3)

h(n) = |Fh(w)| instantaneous amplitude (4)
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The notion of IF assumes that at each time n, there should be only one single frequency component.
The single IF concept is not applicable to multi-component signals. To apply IF law to multi-component
signals, it can be assigned to every component of the signal separately. Different IF estimation methods
for multi-component signal analysis have been considered in the literature [29]. These methods extract
and localize signal components from TF representation of the signal. Then, they implement an IF
estimation procedure [30]. Any typical implementation of IF estimation for a multi-component signal
includes two major steps:

(a) Transformation to TF space—first, the given signal is mapped to the TF domain using a suitable
TFD approach.

(b) Detecting local peaks in TFD and linking the components—the output of TFD (R(T, F)) is
considered as a representation in 2D space of frequency and time by the IF estimation approach.
Frequency and time are considered as the column and row of the 2D space, and by applying a
derivative test (first and second) they characterize local extremums. Extremums with values lower or
higher than a specific threshold are counted as valid peaks. Then, an algorithm designed to detect
connected components by evaluating the connectivities in pixels and counting the number of connected
pixels, detects the connected components in R(T, F). TFD selection for EEG signal representation is the
first step in identification and detection system designation in the TF space. A proper TFD highlights
the non-stationarities in the input signal that enables the system to discriminate between considered
classes. To generate an efficient feature set, a TFD approach should satisfy the following constraints:

• IF Rule: Peaks in TFD space of the signal under consideration should be capable of estimating
the IF of the signal.

• Real Values: R(T, F) must have real values.
• High Resolution: The reduced interference property is achieved while preserving a good

TF resolution.
• Reduced Interference: The TFD attenuates the unwanted cross-terms in the TF domain relative to

the signal terms.
• Energy: The energy of a specific portion of the input signal can be considered as a simple

integration of TFDs over a related area.

Two-dimensional representation techniques are categorized as a group of techniques that process
the TF distribution of a recorded signal. Many studies have applied a variety of approaches to the TFD
to select a proper methodology for their application, helping to improve the resolution, robustness,
precision, or performance. Based on the previous studies, the suitability of the TFD approach is data-
and application-oriented [31].

A review of the recent methods for TF representation reveals that they can be categorized in
six groups as follows: Gaussian kernel, Wigner–Ville distribution (WVD), spectrogram, modified-B,
smoothed-WVD, and separable kernel. Reduced interference approaches such as Smoothed-WVD are
capable of improving the quality of the representation. This is because decreasing the interference
results in a reduction in the effect of cross-terms [32].

Our aim is to assess the mentioned approaches to determine their performance regarding our
specific application in this study (i.e., artifact identification). Table 2 lists the kernels for the TFDs used
in this paper. The author in [22] provides a gentle and comprehensive introduction to this area.
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Table 2. Six different time–frequency distributions (TFDs) used in this study and their related kernels.
γ is a real positive value and W[l] shows the basic function for a window. Hannl [l] and Hammm[l] are
Hanning and Hamming functions, respectively.

TFD Kernel Kernel Type

SEPK Hammn[l]Hannl [l] Separable kernel
SWVD δ[l]W[n] Lag-independent Kernel

GKD
√

πσ
2|m| e

−π2σl2

4n2 Product kernel

MBD cosh−2γ

∑l cosh−2γ l Lag-independent
SPEC W[l + n]W[l − n] Non-separable kernel
WVD δ[l] Lag-independent Kernel

Figure 3 depicts the TF representation of a sample set of artifacts using the SWVD approach.
This is generated by concatenating seven artifact segments and a normal segment of EEG from the
Fpz channel. Figure 3 illustrates the SWVD representation of different categories of artifacts highlighted
in different colors.

Figure 3. EEG signal representation. (top): Time domain; (bottom): TF domain using the SWVD approach.

2.4. Multi-Resolution Analysis (X-Let Transforms)

Multi-resolution analysis (MRA) was introduced to EEG signal characterization by Clark [33].
MRA decomposes the input data to different levels to characterize their patterns and intensities in the
input data. MRA application for EEG artifact identification is based on the idea that many of the ocular
and muscle artifacts may have specific characteristics in time and/or frequency domains (Figure 3).
They can distort the EEG only in a limited time or frequency range. Characteristics of the artifact
result in some specific IFs and patterns in time–frequency (TF) space which can be analyzed with MRA
decomposition methods. In this study, we consider X-let transformations (2D wavelet transform and
curvelet transform) as 2D MRA methods for the purpose of artifact identification from TF space.
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2.4.1. Two-Dimensional Wavelet

The basic concept of wavelet transforms is to provide multi-scale analysis, which means taking
apart and analyzing a function in more detail. Two-dimensional (2D) wavelet is a natural extension of
the single dimension case. To use the wavelet transform in two dimensions, first a 1D filter bank must
be applied to the rows of the TF space, and then applied to the columns. If the given image has M1

columns and M2 rows, applying a one-dimensional (1D) filter bank to the rows results in two sub-band
images; each sub-band image has M1/2 columns and M2 rows. Then, applying 1D filter bank to the
columns of the two resulting sub-band images results in four new sub-band images; each sub-band
image has M1/2 columns and M2/2 rows. The 2D filter bank concatenates four sub-band images to
generate the given input TF space of size M1 by M2 [34].

N levels wavelet decomposition results in 3N + 1 matrices of coefficients. One approximation and
3×N details matrices, N diagonal, N vertical, and N horizontal matrices for each level. Each sub-band
carries specific information about the input image. Figure 4 illustrates the sub-bands of four-level 2D
wavelet transformation applied to one segment of EEG data. According to Figure 4:

LL quadrant: The upper-left portion presents all of the coefficients of the wavelet decomposition,
which resulted from applying a low-pass filter HL to the given TF image. This block is an
approximation of the input image, and is called LL in this study.

HH quadrant: The lower-right portion is similar to the upper-left one except the high-pass filter
HG is applied for coefficient extraction. This portion contains overall patterns from the given image in
the diagonal direction.

HL\LH quadrant: The lower-left and the upper-right portions are filtered using HL and
HG, respectively. HL and LH portions contain vertical and horizontal patterns from the given
image, respectively.

HH(1)LH(1)

HL(1)

HH(2)LH(2)

HL(2)
HH(3)

HL(3)

LH(3)

HH(4)

HL(4)

LH(4)

LL

Figure 4. Structure of four-level wavelet transformation with Haar mother wavelet applied to one
segment of the EEG signal. k in HH(k), HL(k), LH(k) and LL(k) indicates the kth level.

In this study, 2D wavelet decomposition with Haar mother wavelet at four levels was applied
to smoothed Wigner–Ville distribution time–frequency representations. Haar mother wavelet has
mainly been used for signal and image processing, since it is computationally efficient. With four
levels of wavelet decomposition, we have 13 matrices of coefficients (12 matrices for details and
one matrix for approximation). For each matrix of coefficients, we extracted the following features:
variance, kurtosis and skewness, mean, and second-order statistical features extracted from a gray-level
cooccurrence matrix. The features extracted from the cooccurrence matrix include contrast, correlation,
energy, and homogeneity (based on Table 3). Figure 4 illustrates the representation of four levels 2D
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wavelet transformation applied to one segment of EEG TF representation. Each level represents the
data from different orientations (vertical, horizontal, and diagonal).

Table 3. List of statistical features extracted from the gray-level co-occurance matrix (GLCM).

Property Description Formula

Contrast provides the difference between a pixel and
a neighbor over the given matrix ∑k,l |k− l|2 p(k, l)

Correlation provides correlation value between a pixel
and a neighbor over the given matrix ∑k,l

(k−µk)(l−µl)p(k,l)
σkσl

Energy provides the squared summation of the
elements of the given matrix ∑k,l p(k, l)2

Homogeneity provides the closeness of the distribution of
elements in the given matrix ∑k,l

p(k,l)
1+|k−l|

Wavelets succeed in providing a sparse framework for the signals. However, this efficient
representation is restricted to 1D signals because of the nature of this transform. Sparse structures and
linear and nonlinear trends in 2D space (e.g., lines and curves) could have a sparse representation.
Wavelets may fail to provide such a sparse representation, since obtaining 2D wavelets by only
three directions (vertical, diagonal, and horizontal) may not be able to exploit local correlatedness
within 2D signals. Therefore, wavelet’s limited directions raises the need for the next generation of
multi-directional 2D multi-resolution analysis.

2.4.2. Curvelet

A new member of the family of multi-resolution analysis is curvelet. It is the next,
higher-dimensional, version of the wavelet transformation designed with the aim of decomposing 2D
data in different angles and scales. The idea behind curvelet transformation is to represent a curve
shape as a superposition of other functions with different widths and lengths which obey the law of
parabolic scaling (length2 = width). Using this scaling, decreasing the scale as a power law results
in an increment in anisotropy. Applying a dyadic decomposition to the frequency space doubles
the length of each localizing window at each of the other dyadic sub-bands. Figure 5 represents the
curvelet scales and curvelets parameterized by scale, location, and orientation.

Figure 5. Curvelets parameterized by scale, location, and orientation. j represents the jth scale.

This feature gives curvelets the ability to represent the signature patterns in the TF space much
more efficiently by capturing singularities along curves of the patterns, and results in better IF estimates.
Figure 6 shows edge representation and matching by wavelet and curvelet transforms and how the
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curvelet transform is more efficient in comparison with wavelet. Curvelet is capable of using a lower
number of coefficients to represent a smooth contour while keeping the precision.

Figure 6. Edge representation and matching by wavelet and curvelet. A lower number of curvelets
decompose an edge more efficiently in comparison with wavelets. (left): Curvelet; (right): Wavelet.

• Curvelet Implementation:

To define a curvelet transform, suppose that we work in the space R2 with a given 2D input P[k, l]
with dimensions K and L; the discrete curvelet transformation, DCTD(c, d, β), is achieved as

DCTD(c, d, β) = ∑
0≤k<K

∑
0≤l<L

P[k, l]ΨD
c,d,β[k, l] (5)

Equation (5) has been implemented in frequency space. It can be written as follows:

DCTD(c, d, β) = IFFT(FFT(P[k, l])× FFT(ΨD
c,d,β[k, l])) (6)

where DCTD, ΨD, c, d, and β are coefficients of the discrete curvelet transform, curvelet function,
scaling parameter, location parameter, and orientation parameter, respectively. A detailed explanation
of the implementation of Equations (5) and (6) can be found in [35].

Curvelet implementation approaches can be grouped into two classes. The first class is based on
the wrapping of specially selected Fourier samples, while the other is based on an unequally-spaced
fast Fourier transform (USFFT).

The difference in these two approaches is just in choosing the spatial grid which is used in
translating curvelet at each angle and scale. Both approaches return a curvelet coefficient based on the
orientation, spatial location, and scale parameters. USFFT irregularly samples the Fourier coefficients
of the input f to obtain the curvelet coefficients. However, the wrapping approach finds the curvelet
coefficients using a wraparound technique and various translations. The output for both approaches is
the same, but the wrapper is computationally more efficient. Therefore, curvelet via wrapping is used
in this study.

• Curvelet Coefficient Matrix Selection and Feature Extraction:

In order to extract features from time–frequency (TF) input fi[m; n], it was decomposed using
the discrete curvelet transformation via the wrapper approach. Five scales of decomposition were
used. Five decomposition bands are as follows: (1) Scale one as approximation; (2) Scale two as details;
(3) Scale three as details; (4) Scale four as details; and (5) Scale five as finest details. The number of
angles at the second level of decomposition was set to eight [36]. The first matrix is coarse scale
and includes the low-frequency component of the image. The next scales contain the high-frequency
component of the TF input fi. Based on the orientation, scales 1 to 5 have 1, 8, 16, 16, and 1 matrices
of coefficients, respectively. Since a curvelet with angle θ generates the same coefficient as the other
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curvelet at angle θ + π, then we only use half of the sub-bands at scales 2–4. Figure 7 presents
the selected matrices in this study. In Figure 7, Li means level i, and numbers 1, 2, 3, etc., are the
orientation numbers in levels 2–4. We selected these sub-bands in this study. Therefore, a total of
22(= L1(1matrix) + L2(4matrix) + L3(8matrix) + L4(8matrix) + L5(1matrix)) matrices of curvelet
coefficients were selected.

L1

L2

L3

L4

8

7

6

5

4321

1 2 3 4

5

7

8

6

4

3

21

L5

Figure 7. Representation of five levels of curvelet transform, and considered scales in this study. L1, L5
and gray scales (half of the scales L2, L3 and L4) are the selected ones in this study.

The extracted geometrical and statistical features from curvelet coefficient matrices are as
follows: a co-occurrence matrix and its related properties including correlation, entropy, contrast,
and homogeneity (based on Table 3). Furthermore, first- and second-order statistical features including
third- and fourth-order moments (kurtosis and skewness), variance, and mean have been extracted.
We have added kurtosis and skewness of curvelet coefficients at a given scale as texture features,
since together they provide more discriminative capability as the TF patterns’ boundaries are implicitly
captured by curvelet coefficients. Thus, eight features were extracted for each matrix. A feature vector
with 176 columns (8× 22 = 176) was generated for each TF input fi. Figure 8 shows the result of
curvelet transform at scale 5 for one segment of EEG TF representation.

Original Image

Coarse

Details 1

Details 2

Details 3

Fine

Figure 8. The result of curvelet transformation applied to one segment of EEG TF representation.
Curvelets here were manually thresholded for visual observation.
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2.5. Predictive Model

Complex decision tree is a data-driven rule-based predictive method which attempts to employ
as many features as possible in order to expand the decision tree and fit the training data. The resulting
rule base is interpretable by humans and can be used for knowledge acquisition. We used information
gain as the splitting criterion ([37], Section 6.2).

Support vector machine (SVM) is a discriminative robust linear classifier that aims to maximize
the margin between different classes of data using a quadratic objective function. We employed
soft margin SVM with a Gaussian kernel in order to add the nonlinear capability of the resulting
hyperplane [38].

K-nearest neighbor (K-NN) (K = 1 in this study) is a non-parametric distance-based classifier
which is highly non-linear and employs the training data themselves to evaluate and label unseen data.
The choice of predictive methods was made based on different and complementary properties among
them [39]. Using the above-mentioned different classifiers, we aimed to identify the characteristics of
the extracted feature sets.

3. Results and Analysis

In this section, we evaluate the performance of the proposed EEG artifact identification scheme
using time–frequency (TF) analysis and multi-resolution analysis (MRA). The data set we used
has been described in Sections 2.1 and 2.2. For each participant, the data consists of one channel
EEG signal which includes seven artifact trials and one normal session. Features were extracted
from the TF representation of each segment of the EEG data with the length of T seconds based on
Section 2.4.1. TFDs discussed in Section 2.3 have been considered to generate TF images for EEG
segment, including Wigner–Ville distribution (WVD), spectrogram (SPEC), modified B-distribution
(MBD), Gaussian kernel distribution (GKD), and Smoothed WVD (SWVD). The parameters for GKD
and MBD have been chosen as α = 0.8 and β = 0.02, respectively. These values have been selected
based on the previous research studies and investigations on theoretical and practical applications of
TF representation of EEG signal using GKD and MBD approaches ([22], Sections 7.4 and 15.5), [40,41].
A Hanning window has been chosen for SPEC and SWVD, with a length of [Fs/4] samples.

Ten-fold cross-validation (10-CV) multi-class SVM, complex decision tree, and 1-nearest neighbor
(1-NN) trained with the extracted feature sets have been selected for the evaluation procedure. In 10-CV,
the original dataset is partitioned into 10 equal-size subsets. Of the 10 subsets, a single subset is retained
as the validation data for testing the model, and the remaining nine subsamples are used as training
data. The cross-validation process is then repeated 10 times (the folds), with each of the 10 subsets
used exactly once as the validation data. The 10 results from the folds can then be averaged to produce
a single estimation. The advantage of this method is that all observations are used for both training
and validation, and each observation is used for validation exactly once.

3.1. Artifact Identification Result Comparison

In this section, we compare the accuracies obtained by different TFDs, classifiers, time window
lengths, and 2D MRA methods to identify seven different artifact classes using various performance
measures. Figure 9 illustrates the comparison of the results for five TFDs and two X-let transformations.
Figure 9 shows that SWVD outperforms the rest of the TFDs when associated with curvelet
transformation. A comparison between three classifiers and time intervals based on curvelet
transformation and SWVD in Figure 10 reveals that the SVM predictive model and 1-s window
achieve the best results. As Figures 9 and 10 present, the window length of 1 s, SWVD TF method,
and SVM predictive model demonstrated the best performances in our experiments.
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Figure 9. Accuracy for 2D wavelet and curvelet transformations versus TFDs using support vector
machine (SVM) classifier and one-second window length.
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Figure 10. Accuracy versus time window length for SVM, complex tree, and 1-nearest neighbor
(1-NN) classifiers.

3.1.1. Population Average Identification Result Comparison

Table 4 presents the results of the SVM model for different classes of artifacts using a 1-s time
interval and the SWVD TF method. Statistical parameters of the SVM classifier including total accuracy,
specificity, and sensitivity have been provided in Table 4. The table also reports a comprehensive
comparison between the average performance results over all participants using our proposed 2D
MRA features using (1) 2D wavelet; (2) curvelet transforms; and (3) 1D discrete wavelet transform
(DWT), which is a state-of-the-art method for EEG artifact identification [42–46]. In order to obtain the
EEG artifact identification results using 1D DWT, we extracted a set of features from the sub-bands of
DWT, and support vector machine (SVM) as a predictive model. The wavelet transformation gives us
the multi-resolution description of a non-stationary signal. Low- and high-pass filters are repeatedly
applied to the signal, followed by decimation by 2, to produce the sub-band tree decomposition to
some desired level. The low- and high-pass filters are generated using orthogonal basis functions.
The length of these filters is chosen as twice the length of the signal. The DWT consists of log2(N)

levels at most. At each decomposition level, two sets of coefficients, approximations, and details are
generated. DWT of level five was applied to the EEG recordings to reach the approximate frequency
ranges of the α, β, δ, and θ sub-bands. After decomposing the signal in each window, the following
features were extracted from the sub-bands:
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• Average power of the coefficients.
• Mean of the coefficients.
• Standard deviation of the coefficients [47].

Figure 11 shows the confusion matrices for the SVM predictive model, EEG segments of length
T = 1 s, SWVD method, and curvelet transform. For a specific artifact, each row of the figure presents
the overall percent of segments which were correctly identified, and also the percent of the segments
confused with the other classes. In each class, the total number of segments is 70. The results show
that jaw clinch is confused with eyebrow movement and jaw movement 3.11% and 7.41% of the time,
respectively; likewise, jaw movement is the first contributor to the total error, which is confused with
head movement and jaw clinch 5.96% and 9.79% of the time, respectively.

In order to compare the 2D wavelet and curvelet results, we conducted a statistical test with
the null hypothesis that the performance accuracies of the 2D wavelet and curvelet on different
participants comes from independent random samples from normal distributions with equal means,
using a two-sample t-test. The alternative hypothesis is that the 2D wavelet and curvelet performance
accuracies come from populations with unequal means. The test rejected the null hypothesis at the
0.5% significance level.
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Figure 11. Confusion matrix for participant 1, SVM predictive model, 1-s window length, and
SWVD TFD.
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Table 4. Achieved accuracies for each artifact of all participants, 1-s window length, SWVD TFD, and SVM predictive model.

Sensitivity Specificity Total Accuracy

1D Wavelet
(%)

2D Wavelet
(%)

Curvelet
(%)

1D Wavelet
(%)

2D Wavelet
(%)

Curvelet
(%)

1D Wavelet
(%)

2D Wavelet
(%)

Curvelet
(%)

Eye blinking 96.02 92.15 97.91 99.58 99.02 99.72

Eye left movement 91.05 81.24 91.97 99.02 97.91 99.16

Eye up movement 85.53 85.45 92.73 98.33 98.32 99.15

Eyebrow movement 89.43 83.49 95.82 98.75 98.19 99.51 89.57 83.71 92.71

Jaw movement 83.84 79.78 84.25 99.31 97.77 98.19

Jaw clinch 88.43 76.68 89.48 98.73 97.36 98.87

Head movement 92.75 87.12 96.81 99.45 98.61 99.59

Average 89.57 83.71 92.71 99.02 98.17 99.17 89.57 83.71 92.71
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3.1.2. Statistical Analysis and Comparison of the Identification Results

Table 5 investigates whether the accuracy improvements via the curvelet method are statistically
significant. To do so, a one-tailed Wilcoxon signed-rank test [48] was employed to compare the
results achieved by “curvelet” compared to “2D wavelet” and “1D wavelet”. The confidence
intervals of the differences in the results with respect to the curvelet/wavelet methods are shown in
Table 5. Positive confidence levels imply that the curvelet method had a better performance than the
comparative method, while negative confidence levels indicate otherwise. Confidence levels higher
than 90% are commonly considered as significant improvements in the results. It can be observed
in Table 5 that the curvelet method significantly improved the results achieved by the 1D wavelet
and 2D wavelet methods. This further verifies the effectiveness of the proposed high-dimensional
multi-resolution analysis method (curvelet). Table 5 also shows that the 1D wavelet method achieved
better results compared to the 2D wavelet method. However, the differences in the results are not
statistically significant.

Table 5. Statistical test of the results achieved by the proposed 1D wavelet and 2D wavelet in
comparison with the curvelet method.

System 2D Wavelet Curvelet

1D Wavelet −89.74% 91.65%
2D Wavelet NA 96.47%

3.1.3. Participant-Specific Identification Accuracy Comparison

Figure 12 reports the results for 10 different participants. Results are based on the 10-CV SVM
classifier, 1-s window length, and SWVD TFD. As Figure 12 presents, curvelet transform had the best
performance in comparison with 1D wavelet and 2D wavelet transformations consistently over all
participants. Comparing the results of 1D vs. 2D wavelet analyses, there is no dominant trend, and
depending the participant, one led to better results than the other. The observations in Figure 12
suggest that participant-specific results are generally in line with the population average results.
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Figure 12. Total accuracy for 10 participants.
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3.2. Principal Component Analysis (PCA) Results

Due to the high dimensionality of the curvelet feature space, the curse of dimensionality might
negatively affect the generalization performance. Feature transformation techniques aim to reduce
the dimensionality in the data by transforming data into new spaces. The intuition behind most of
these approaches is that the useful portion of data lies near the low-dimensional manifold that is a
part of the original high-dimensional space. Recent approaches have tried to efficiently identify these
manifolds and then extract them. In this study, we applied PCA [49] with the aim of reducing the
dimensionality of the feature set.

We employed PCA to the features extracted from segments and analyzed the resulting principal
components (PCs) in order to detect the most descriptive bases of artifacts data. Since the PC space is
orthonormal, we can simply remove the dimensions without affecting others. Figure 13 illustrates the
resultant PCs by decomposing data segments recorded from participant 1 using PCA transform.

As shown in Figure 13, most of the contribution to the variance of the data (>85%) was summarized
in the first ten principal components (PCs). Therefore, we kept the first ten components of the data
for the subsequent predictive model training. In order to characterize the PCs, we also generated
the contribution of the curvelet coefficients as variables to each of the PCs. Figure 14 demonstrates
the contribution of curvelet variables to PC#1. As shown in Figure 14, the contribution is shared
between many of the curvelet coefficients. Based on our observation, variables from different ranges
of coarse to fine representations of curvelet contribute to the PCs. We noticed that coefficients from
fine representations contributed more than the coarse representations, which might be the result of
capturing diagonal and nonlinear trends in the data by curvelet transform, as shown in Figure 8.
Similar observations were made with other participant data, such that there was always a combination
of the curvelet coefficients from different levels that contributed and described the PCs as the bases of
the curvelet space.
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Figure 13. Resultant principal components (PCs) by decomposing the data segments.
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Figure 14. Contribution of variables to PC1.

Identification Result Comparison after Applying PCA

Table 6 reports the results of applying PCA on ten participants’ data. Applying PCA improved
the average accuracy of 2D wavelet and curvelet by 3.27% and 1.11% over the population of
participants, respectively. The relative improvement of PCA transformation on wavelet space was
20.07%. The relative improvement of PCA transform on curvelet was 15.28%. The improvement
caused by PCA is likely to be due to the fact that the original high-dimensional wavelet and curvelet
spaces are summarized into a reduced basis vector space that are more aligned with the distribution of
data (i.e., principal vectors). In this way, the redundancy in the high-dimensional space is eliminated,
and as a result, the generalization ability of the predictive model is improved.

Table 6. Accuracies for 10 participants before and after applying principal components analysis (PCA) (%).

Total Accuracy

2D Wavelet Curvelet

Method - PCA - PCA

participant 1 81.71 84.34 93.71 94.31
participant 2 79.03 83.51 94.91 96.15
participant 3 80.01 87.56 95.61 97.32
participant 4 83.26 87.21 92.89 93.37
participant 5 81.08 84.62 93.74 94.39
participant 6 89.86 90.12 89.83 91.47
participant 7 85.13 91.31 88.79 90.01
participant 8 86.87 85.98 92.85 93.95
participant 9 87.38 91.54 90.68 93.17
participant 10 82.78 83.65 94.24 94.25

Average 83.71 86.98 92.72 93.83

4. Discussion

In this study, we considered the possibility of improving the identification and localization
of EEG artifacts by proposing a generic approach that combines three complementary techniques,
including TF analysis, multi-resolution analysis, and machine learning. In this study, we investigated
different approaches for the TF representation of EEG segments, as well as a new approach (MRA)
to decompose the TF images in order to capture information in different resolutions and image sizes.
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In particular, in this study, we implemented a MRA algorithm on the TF spaces using wavelet and
curvelet decomposition methods in order to identify and localize EEG artifacts. The intuition behind
using decomposition (multiple resolutions) is that a feature in a TF image may lie on the first resolution
and the other feature may lie on the next resolution. An image could have features with low contrast
and small size, and the other image could have features with high contrast and large size. In real
applications, a sample image contains both types of features. Therefore, decomposition provides an
analysis of all the features lying on different levels of resolution. An empirical comparison of the
proposed method with another common EEG signal processing method (1D wavelet) demonstrated
that the 2D MRA approach outperformed it when used for EEG artifact identification.
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