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Abstract: Imaging in the infrared wavelength range has been fundamental in scientific, military
and surveillance applications. Currently, it is a crucial enabler of new industries such as
autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics.
Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however
prevented by high manufacturing cost and low resolution related to the need of using image sensors
based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive,
small-scale III–V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch
full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide
quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in
an inverted architecture shows dark current of 10−6 A/cm2 at −2 V reverse bias and EQE above 20%
at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact
transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can
be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors.

Keywords: infrared; imaging; image sensor; quantum dot; PbS; monolithic integration

1. Introduction

Near infrared (NIR) wavelength range (0.7–1.4 µm) provides vital information in fields such as
low-light/night vision, surveillance, sorting or biometrics, with content interpretation very similar to
visible photography and imaging possible with no additional light source. Unfortunately, the sharply
decreasing absorption of silicon around the wavelength of 900 nm (for standard photodiode thickness)
prevents further extension of usable quantum efficiency range. At the same time, dedicated infrared
sensors are not yet easily accessible due to their significantly higher cost than image sensors based
on complementary metal-oxide-semiconductor (CMOS) technology, operating in the visible range.
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Typically, III–V semiconductor layers are used because of their sufficiently low energy bandgap [1,2].
Since they need to be grown by high-temperature epitaxy (and that on wafer sizes only up to
3–4 inch), already the starting material has orders-of-magnitude higher cost than standard silicon
wafers. Moreover, flip-chip hybridization (usually die-to-die) is required which further increases the
cost [3]. The ideal, simple solution would be to monolithically integrate an absorber layer directly on
top of the silicon-based readout integrated circuit (ROIC, Figure 1).
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Figure 1. Integration route for a hybrid III–V infrared image sensor (a) and a monolithic quantum dot
photodiode (QDPD) infrared image sensor (b).

Another aspect is the achievable resolution and pixel pitch of infrared image sensors.
The traditional hybrid systems are typically limited to small arrays (1 megapixel range) due to
small detector wafer size and low throughput. Pixel pitch does not go below 10 µm [4] which is limited
by the hybridization process—the solder bumps need sufficient volume for reliable bonding which in
turn is limited by the achievable aspect ratio and pixel spacing. With a thin-film active layer integrated
monolithically directly on top of the readout circuit, submicron pixel sizes (0.9 µm state-of-the-art for
CMOS image sensors [5]) can be achieved (Figure 2).
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Figure 2. Positioning of a QDPD-based image sensor: higher wavelength than monolithic Si and higher
resolution than hybrid alternatives.

Proof-of-concept image sensors with thin-film photodetector active layer have been demonstrated
with different materials. Organic absorber integration has already been shown since more than
10 years ago on glass [6,7], flexible plastic foil [8,9] and silicon readout [10]. There have been several
demonstrations of organic thin-film photodetector integration on thin-film transistor (TFT) readout
circuits, mostly for large area image sensors for X-ray radiography applications [11]. Recently,
also perovskite absorbers were successfully integrated [12]. Organic films integration on CMOS
ROIC followed a few improvement rounds by the same group, with the latest generation implemented
with 0.9 µm pixel size showing the potential of resolution scaling [5,13,14]. Near infrared imaging
with solution processed thin-film photodetectors was shown with polymers [15] and quantum dots
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(QD) [16]. In this work, we describe building blocks for realization of a monolithic image sensor
targeted for the infrared range up to the wavelengths close to 2 µm. Quantum Dot Photodetector
(QDPD) is the device architecture of choice, with narrow-band PbS colloidal quantum dots [17–19]
forming the absorber layer. These sensors can be fabricated without flip-chip hybridization of a III–V
chip [20].

2. Materials and Methods

PbS quantum dots enable uncooled NIR detection up to 2 µm wavelength, with the absorption
peak tunable depending on the nanocrystal size (Figure 3). In this work, we describe two types of
quantum dots: Larger (5.5 nm diameter), with the absorption peak at the wavelength of 1440 nm and
smaller (3.4 nm diameter), with the peak at 980 nm. The peak can be adjusted according to device
specifications, for example with smaller dots to add near infrared bands to hyperspectral visible image
sensors and with larger dots to address the spectrum of InGaAs image sensors.
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Figure 3. Schematic external quantum efficiency curves for silicon, InGaAs and PbS QD photodetectors
(a) and indicative absorption peak dependence on quantum dot size (b).

In our investigation, we take a stepwise approach to develop a photodetector stack that can be
used on top of a readout integrated circuit (ROIC) based on complementary metal-oxide-semiconductor
(CMOS) technology (Figure 4). As the first step, we use glass substrates to test the coating feasibility
of the colloidal quantum dot solution. Such structure enables optimization of film parameters such
as thickness, morphology and uniformity, as well as elaboration of the absorption profile. As the
next step, glass substrates with pre-patterned indium tin oxide (ITO) contacts are used to fabricate a
photodetector stack with all additional layers, such as electron transport layer (ETL), hole transport
layer (HTL) and injection/blocking layers. This stack can be characterized electrically and under
bottom illumination (through the substrate). Once the photodiode performance is established, the stack
is transferred to Si/SiO2 substrates with metal bottom contact to imitate the CMOS ROIC architecture.
TiN is used as the contact as it is one of the standard materials in the CMOS flow [21]. Here, we adjust
the stack to operate in top illumination condition, which includes changing the top contact to a stack
that is as transparent as possible in the wavelength range of interest and tuning the thicknesses of all
layers to harness the maximum amount of incoming light [22].

Sensors 2017, 17, 2867  3 of 11 

 

image sensor targeted for the infrared range up to the wavelengths close to 2 μm. Quantum Dot 

Photodetector (QDPD) is the device architecture of choice, with narrow-band PbS colloidal quantum 

dots [17–19] forming the absorber layer. These sensors can be fabricated without flip-chip 

hybridization of a III–V chip [20].  

2. Materials and Methods  

PbS quantum dots enable uncooled NIR detection up to 2 μm wavelength, with the absorption 

peak tunable depending on the nanocrystal size (Figure 3). In this work, we describe two types of 

quantum dots: Larger (5.5 nm diameter), with the absorption peak at the wavelength of 1440 nm and 

smaller (3.4 nm diameter), with the peak at 980 nm. The peak can be adjusted according to device 

specifications, for example with smaller dots to add near infrared bands to hyperspectral visible 

image sensors and with larger dots to address the spectrum of InGaAs image sensors.  

 
(a) 

 
(b) 

Figure 3. Schematic external quantum efficiency curves for silicon, InGaAs and PbS QD 

photodetectors (a) and indicative absorption peak dependence on quantum dot size (b). 

In our investigation, we take a stepwise approach to develop a photodetector stack that can be 

used on top of a readout integrated circuit (ROIC) based on complementary metal-oxide-

semiconductor (CMOS) technology (Figure 4). As the first step, we use glass substrates to test the 

coating feasibility of the colloidal quantum dot solution. Such structure enables optimization of film 

parameters such as thickness, morphology and uniformity, as well as elaboration of the absorption 

profile. As the next step, glass substrates with pre-patterned indium tin oxide (ITO) contacts are used 

to fabricate a photodetector stack with all additional layers, such as electron transport layer (ETL), 

hole transport layer (HTL) and injection/blocking layers. This stack can be characterized electrically 

and under bottom illumination (through the substrate). Once the photodiode performance is 

established, the stack is transferred to Si/SiO2 substrates with metal bottom contact to imitate the 

CMOS ROIC architecture. TiN is used as the contact as it is one of the standard materials in the CMOS 

flow [21]. Here, we adjust the stack to operate in top illumination condition, which includes changing 

the top contact to a stack that is as transparent as possible in the wavelength range of interest and 

tuning the thicknesses of all layers to harness the maximum amount of incoming light [22].  

 

Figure 4. Methodology used for the development of CMOS-compatible QDPD pixel stacks. 

The fabrication process starts by cleaning the substrates with a standard detergent—water—

solvent procedure. A metal-oxide electron transport layer (ETL) is then deposited to form an inverted 

architecture of the photodiode (with photo-generated electrons collected at the readout chip side). 

Examples of this layer are TiOx or ZnO (n-type semiconductors) that improve electron transport and 

injection. The quantum dots are deposited by spin-coating from a colloidal solution as a multilayer 

400    600    800  1000  1200  1400  1600  1800  2000

λ (nm)

E
Q

E
 (

a
.u

.)

silicon
InGaAs

PbS QD

λ (nm)

QD size

a
b

so
rp

ti
o

n
 p

e
a

k

3 nm 9 nm

1.8 µm

0.8 µm

glass

active material

glass

bottom contact

QDPD stack

top contact

silicon

bottom contact

QDPD stack

top contact

CMOS ROIC

bottom contact

QDPD stack

top contact

Figure 4. Methodology used for the development of CMOS-compatible QDPD pixel stacks.

The fabrication process starts by cleaning the substrates with a standard detergent—water—
solvent procedure. A metal-oxide electron transport layer (ETL) is then deposited to form an inverted
architecture of the photodiode (with photo-generated electrons collected at the readout chip side).
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Examples of this layer are TiOx or ZnO (n-type semiconductors) that improve electron transport and
injection. The quantum dots are deposited by spin-coating from a colloidal solution as a multilayer
stack to form a 150 nm thick active layer. The total thickness can be adjusted by the number of sublayers
and by the thickness of each sublayer. On top of the stack, an organic (p-type polymer) hole transport
layer (HTL) is deposited to improve hole transport and injection, followed by a top contact (either
thick, opaque metal for bottom illumination or semi-transparent metal for top illumination).

3. Results

3.1. Quantum Dot Film

Test substrates with a spin-coated three-sublayer stack of the quantum dot film are characterized
with Transmission Electron Microscope (TEM). The inspection reveals perfect crystallinity within
each nanocrystal, high level of crystallinity within a single sublayer and random orientation between
sublayers (Figure 5). In the high magnification image, one can also see a uniform size distribution of
the QDs.
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Figure 5. Cross-section (left: schematic; right: Transmission Electron Micrograph) of a 3-layer active
stack based on 5.5 nm PbS quantum dots.

3.2. QDPD on Glass

Full photodetector stacks including contacts and transport layers are fabricated on glass/ITO
test vehicles. Each 3 × 3 cm2 glass substrate has 12 single pixel devices, each with an active area of
0.125 cm2. Current density—voltage characterization (Figure 6a) of a baseline stack using 5.5 nm QDs
shows dark current density of 1 µA/cm2 at −2 V reverse bias voltage. The external quantum efficiency
(EQE, Figure 6b) shows that by choosing the size of the quantum dot in the active layer, the absorption
peak can be tuned in a wide wavelength range (here, 1020 nm, 1250 nm and 1440 nm). The full width
at half maximum (FWHM) for the EQE is approximately 100 nm.
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External quantum efficiency of the quantum dot photodetectors extends over a wide range of
wavelengths (above 300 nm) and then features a characteristic absorption peak related to the quantum
dot size. In the bottom illumination architecture, we obtain 11% EQE at the wavelength of 980 nm for
QDs with a diameter of 3.4 nm, with above 60% EQE between 350 nm and 500 nm (Figure 7a). For the
larger QDs of 5.5 nm, the peak lies at 1440 nm, with EQE of 22% (Figure 7b). Taking the photodiode
dark current as the major noise component, we can obtain specific detectivity (D*) of 3 × 1011 Jones.
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3.3. QDPD on Silicon

After the first optimization of the stack on glass/ITO, the stacks are transferred to 3 × 3 cm2

silicon substrates with TiN bottom contact. The contact is structured so that different active areas
are available to investigate scaling effects of the dark current. Each substrate has many test vehicles
with pixel sizes of 2 × 2 mm2 down to 50 × 50 µm2. An inorganic edge cover layer (ECL) is used to
precisely define the active area and exclude the effects of the fanout structure (Figure 8).
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Figure 8. Microscope image of the silicon substrate with different pixel sizes showing TiN bottom
contact and inorganic edge cover layer.

Dark current density on silicon/TiN substrates equals 6 × 10−3 mA/cm2 at −2 V which shows that
the photodetector can be fabricated on the CMOS-compatible bottom contact (Figure 9a). Each pixel
size showed also the same current density, indicating linear scaling of the dark current with active
area (Figure 9b). Photocurrent was measured with an infrared light emitting diode (5 mW/cm2 LED
power, 1450 nm center wavelength) in top illumination (through the semi-transparent top contact) and
followed the same trend.
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Figure 9. Dark and photocurrent density vs. voltage curves (a); and current vs. pixel area curves (b) for
active areas between 50 × 50 µm2 and 2 × 2 mm2.

In top illumination tests with IR LED and increasing irradiance, we could observe a linear increase
of the photocurrent (Figure 10). The calculated photo-to-dark current ratio is between 32 and 43 dB in
the reverse bias voltage range of −3 to −5 V, respectively.

Indium tin oxide (ITO) bottom contact used in the bottom illuminated test vehicle is not ideal for
the top illuminated silicon substrates as it has a limited transparency in the infrared wavelength range
(80% at 1100 nm and 55% at 1440 nm). To optimize the semi-transparent top contact for absorption
in the NIR range, we used optical interference modelling with transfer matrix method. We obtained
transparency of 70% (Figure 11) which was verified experimentally. This shows a significant boost
from the standard contact structure used in the visible range. In this way, the EQE of top-illuminated
photodetectors on TiN bottom contact can be further improved and reach 25% at the wavelength of
1440 nm, even though the active layer thickness is only 150 nm.
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3.4. QDPD Additional Characterization

Even though PbS QDPDs enable detection at room temperature, standard IR camera packaging
offers possibility of additional cooling. In the cryostat measurements, we observed that by cooling
the detector to 193 K we can further improve the current ratio to over 60 dB from 30 dB at room
temperature (Figure 12). Depending on the application, this might be a way to boost the sensitivity of
the image sensor.

Speed of the QDPDs was measured using an oscilloscope for a photodiode with an area of
0.041 cm2. While keeping the reverse bias voltage at −2 V, the infrared LED light source (1450 nm
center wavelength) was switched on and off. Rise time of 13 µs and fall time of 41 µs were measured
(Figure 13). Such performance is sufficient for basic imaging, but a further speed improvement will
enable other applications.
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ratio with lowering the operating temperature.
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Figure 13. Transient characteristics of a test QDPD device with an active area of 0.041 cm2 and under
illumination with a switching NIR LED.

4. Discussion

PbS quantum dots are implemented in photodetector stacks targeting detection of near infrared
radiation. Dark current density is in the range of 10−6 A/cm2 at −2 V reverse bias voltage.
This value is several orders of magnitude higher than benchmark silicon-based photodetectors
(10−12 A/cm2–10−10 A/cm2), and within an order of magnitude as compared to InGaAs-based
infrared photodetectors operating at similar conditions [2]. Other quantum dot photodetectors show
different values of dark current density (10−8 A/cm2–10−3 A/cm2), depending on the QD size,
ligands, transport layers used in the stack and characterization conditions [16,23,24]. Even though
it is difficult to have a direct comparison between published results, the photodetectors presented
here have comparable dark current, especially taking into account the stack design for higher cut-off
wavelength (thus with a lower energy bandgap). Here, the dark current values are given for the
5.5 nm QDs (1440 nm) and they are expected to be lower for the smaller diameters (e.g., for 940 nm).
At the same time, the best organic photodetectors with similar thin-film multilayer stacks feature dark
currents comparable to silicon (10−11 A/cm2 after [11]), indicating that the leakage current might not
be limited by the thin-film stack but rather by the narrow-bandgap semiconductor and its interfaces.
Current density scales linearly for pixel sizes between 2 × 2 mm2 and 50 × 50 µm2, indicating no
perimeter effects down to this active area. For smaller pixels, active readout is necessary due to the
very low current levels.

External quantum efficiency (EQE) is above 20% at the absorption peak at the wavelength of
1440 nm in a 150-nm thick active layer. Even though this is still significantly lower than EQE of
InGaAs photodetectors, it is at the same time unachievable by Si photodetectors. Moreover, we have
also demonstrated stacks with other absorption peaks, as they can be quite accurately tuned by the
QD diameter. For a 980-nm peak stack, the EQE is above 10% and is currently under optimization,
expected to exceed 40–50%. As the QDPD can be integrated on top of the CMOS ROIC, one might
imagine not only monochromatic infrared imagers, but also extension of current hyperspectral visible
imagers in combination with a standard silicon pinned photodiode.

As the QDPD stack will be integrated on top of a CMOS ROIC, the pixel stack is optimized for
operation in a top illuminated architecture with a TiN bottom contact. We have observed similar
electrical performance as in reference devices on glass substrates with ITO contact. Photocurrent
and thus efficiency was improved by tuning the thicknesses of all layers in the stack with optical
simulations. The transfer matrix method can be used to maximize performance of thin films for the
wavelength of interest. We have calculated that the EQE achievable with PbS is about 30% for the
wavelength of 1440 nm.

Even though one of the advantages of the PbS photodetector is operability at room temperature,
we have seen that by cooling the device to 193 K, the photo-to-dark current ratio can be increased
from 30 dB to 60 dB. This shows the potential of higher sensitivity for specific applications.
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The photodetector speed is sufficient for imaging, but is still a parameter of concern. Currently,
we are investigating possible limiting factors (e.g., trap states, interface defects) and optimizing the
charge transfer properties of the stack to reach switching speeds in the range of tens of ns.

The next step of development is integration of the photodetector stack on the CMOS ROIC
test chip. Research activities include lifetime studies (to verify the encapsulation specifications),
photolithographic patterning feasibility (to enable side-by-side multicolor arrays) and packaging
aspects. The monolithic QDPD integration method will enable low-cost infrared cameras with
resolution and pitch limited only by the ROIC design.

5. Conclusions

Stacks using PbS quantum dot absorber layer can be used as efficient near infrared photodetectors
even though the total thickness is only in the range of 100 nm. This makes them an interesting
candidate for integration on top of CMOS readout circuits, thus enabling monolithic image sensors
that have an order-of-magnitude lower cost figure than hybrid devices and are not limited by the
resolution and array size of flip-chip hybridization.

The quantum dot photodetector stack can be fabricated using standard semiconductor processing
methods in the fab environment. 8- or 12-inch substrates can be used. In the final camera system,
the detailed optical design will strongly depend on the wavelength of interest for the application.
For the case of extension of visible CMOS image sensor to NIR, the standard optics found in commercial
cameras might be used, while infrared optics will be necessary for a monochrome NIR imager for the
higher wavelengths towards 2 µm.

In summary, the pixel stack demonstrated here shows building blocks for fabrication of a
monolithic image sensor for the near infrared wavelength range. The benefits of using QDPD active
stack are ease of processing, room-temperature operation, submicron active layer thickness and high
EQE in NIR.
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